韋凌翔,陳紅,王永崗,蔡志理,鐘棟青,李玉華
(1.鹽城工學(xué)院 材料工程學(xué)院,江蘇 鹽城 224051;2.長安大學(xué) 公路學(xué)院,陜西 西安 710064;3.山東交通學(xué)院 交通與物流工程學(xué)院,山東 濟(jì)南 250357)
短時(shí)交通流量預(yù)測方法
韋凌翔1,2,陳紅2*,王永崗2,蔡志理3,鐘棟青1,李玉華1
(1.鹽城工學(xué)院 材料工程學(xué)院,江蘇 鹽城 224051;2.長安大學(xué) 公路學(xué)院,陜西 西安 710064;3.山東交通學(xué)院 交通與物流工程學(xué)院,山東 濟(jì)南 250357)
短時(shí)交通流量是短時(shí)交通參數(shù)的基礎(chǔ)參數(shù)之一,其變化規(guī)律可直觀反映調(diào)查路段或區(qū)域的交通變化趨勢,可為交通出行提供有效的路徑選擇信息。基于對統(tǒng)計(jì)分析模型、人工智能模型、非線性理論、交通模擬、組合預(yù)測模型等短時(shí)交通流量預(yù)測方法特點(diǎn)和應(yīng)用的分析,鑒于短時(shí)交通流量自身的隨機(jī)波動(dòng)特性,指出單一的交通參數(shù)預(yù)測方法很難有效提高預(yù)測的精度和效果,而基于組合預(yù)測模型的預(yù)測方法具有廣闊的應(yīng)用前景和實(shí)踐意義,并指出短時(shí)交通流量預(yù)測方法研究領(lǐng)域今后可能的發(fā)展趨勢。
城市交通;短時(shí)交通流量;預(yù)測;智能交通系統(tǒng)
近10 a來,隨著我國經(jīng)濟(jì)的迅速發(fā)展和城市化進(jìn)程的不斷加快,我國機(jī)動(dòng)車保有量的增量及增速均為世界第一,年均增幅約為17%,截至2016年底,我國城市機(jī)動(dòng)車的保有量高達(dá)2.9億輛[1]。在機(jī)動(dòng)車保有量快速增長的情況下,城市交通擁堵問題日益突出。城市交通是帶動(dòng)整個(gè)城市功能布局發(fā)展、改善居民居住生活和出行方式的關(guān)鍵因素之一,而城市交通擁堵問題造成交通事故、環(huán)境污染、能源消耗、經(jīng)濟(jì)損失等負(fù)面影響,嚴(yán)重阻礙社會(huì)進(jìn)步和經(jīng)濟(jì)發(fā)展,因此城市交通擁堵已成為制約城市和諧發(fā)展的瓶頸[2-3],大大增加了居民的出行時(shí)間和出行成本[4-5]。
智能交通系統(tǒng)(Intelligent Transport System,ITS)是緩解城市交通擁堵、減少機(jī)動(dòng)車尾氣污染、降低交通事故率等的最有效方法之一[6-7]。ITS把多源交通信息采集設(shè)備、先進(jìn)數(shù)據(jù)傳輸技術(shù)、智能信息處理器、多樣的交通信息發(fā)布方式以及實(shí)時(shí)的交通控制與誘導(dǎo)技術(shù)運(yùn)用到城市交通管理系統(tǒng)中,從而建立多層次、全方位、高效率的綜合交通運(yùn)輸管理系統(tǒng)[8-9]。實(shí)現(xiàn)城市交通智能化管理的前提是實(shí)時(shí)掌握交通信息的即時(shí)狀態(tài)、發(fā)展態(tài)勢,而ITS技術(shù)的主要目標(biāo)就是實(shí)現(xiàn)城市智能化的交通管理與控制,該系統(tǒng)中不同子系統(tǒng)協(xié)同運(yùn)行,可以有效及時(shí)的感知與城市交通運(yùn)行狀態(tài)相關(guān)的實(shí)時(shí)交通信息,并對未來的交通參數(shù)數(shù)據(jù)進(jìn)行短時(shí)預(yù)測。短時(shí)交通流量作為短時(shí)交通參數(shù)的基礎(chǔ)參數(shù)之一,可作為智能交通系統(tǒng)進(jìn)行交通決策的關(guān)鍵依據(jù)[10-11]。本文在分析現(xiàn)存各類短時(shí)交通流量預(yù)測方法的基礎(chǔ)上,指出短時(shí)交通流量預(yù)測方法研究領(lǐng)域今后可能的發(fā)展趨勢。
短時(shí)交通流量是指采樣時(shí)間間隔不超過15 min的交通流量,對短時(shí)交通流量進(jìn)行預(yù)測即為短時(shí)交通流量預(yù)測[12]。短時(shí)交通流量預(yù)測方法研究一直是國內(nèi)外研究的熱點(diǎn)之一,早在20世紀(jì)60~70年代,一些學(xué)者就開始把經(jīng)濟(jì)學(xué)、物理學(xué)等學(xué)科中成熟的預(yù)測方法運(yùn)用到短時(shí)交通流量預(yù)測中,預(yù)測方法中主要是應(yīng)用線性理論和統(tǒng)計(jì)學(xué)理論等。隨著先進(jìn)人工智能算法在短時(shí)交通流量預(yù)測領(lǐng)域的應(yīng)用,其預(yù)測精度得到一定程度的提高。當(dāng)前,短時(shí)交通流量預(yù)測方法主要可分為統(tǒng)計(jì)分析模型、人工智能模型、非線性理論、交通模擬、組合預(yù)測模型等5類[13]。
1)基于統(tǒng)計(jì)分析模型的短時(shí)交通流量預(yù)測。該方法是在分析短時(shí)交通流量時(shí)間序列變化特性的基礎(chǔ)上,運(yùn)用與之適用性較高的統(tǒng)計(jì)分析模型擬合交通流量變化趨勢,進(jìn)而實(shí)現(xiàn)對短時(shí)交通流量的預(yù)測。該方法的應(yīng)用比較成熟,主要包括歷史平均模型[14]、時(shí)間序列模型[15-19]、卡爾曼濾波理論[20-22]以及非參數(shù)回歸模型等[23],各模型的主要研究方法及成果如表1所示。

表1 基于統(tǒng)計(jì)分析模型的短時(shí)交通流量主要預(yù)測方法
2)基于人工智能模型的短時(shí)交通流量預(yù)測。該方法是結(jié)合短時(shí)交通流量時(shí)間序列自身的不可控性,將人工智能模型作為訓(xùn)練方法,進(jìn)而輸出交通流量預(yù)測值。人工智能模型主要包括神經(jīng)網(wǎng)絡(luò)模型[24-28],支持向量機(jī)模型等[29-31],各模型的主要研究方法及成果如表2所示。

表2 基于人工智能模型的短時(shí)交通流量主要預(yù)測方法
3)基于非線性理論的短時(shí)交通流量預(yù)測。該方法是在分析短時(shí)交通流量時(shí)間序列非線性規(guī)律的基礎(chǔ)上,借助混沌理論、耗散結(jié)構(gòu)論、自組織理論等非線性系統(tǒng)理論構(gòu)建對應(yīng)的預(yù)測方法。目前發(fā)展較為成熟的預(yù)測方法有小波理論[32-35]、突變理論[36-38]、混沌理論等[39-42],各理法的主要研究方法及成果如表3所示。
4)基于交通模擬的短時(shí)交通流量預(yù)測。該方法把車輛當(dāng)作實(shí)體,用相關(guān)模型與算法描述道路網(wǎng)交通基礎(chǔ)設(shè)施和駕駛員在路網(wǎng)中的交通行為,結(jié)合交通流模型,利用計(jì)算機(jī)微觀仿真技術(shù),模擬出道路網(wǎng)上車輛的動(dòng)態(tài)交通運(yùn)行狀態(tài),從而預(yù)測短時(shí)交通流量數(shù)據(jù)[43-46]。該方法的主要理論研究成果為:論述一種使用元胞自動(dòng)機(jī)模型對大尺度下交通網(wǎng)絡(luò)進(jìn)行交通流量預(yù)測的方法;運(yùn)用微觀交通仿真技術(shù)開展針對快速路上短時(shí)交通流量的預(yù)測研究;在運(yùn)用M3分布模型對車輛進(jìn)行初始分布的基礎(chǔ)上,采用微觀交通仿真技術(shù)預(yù)測快速路的交通流量;基于動(dòng)態(tài)規(guī)劃思想,構(gòu)建路網(wǎng)交通流量動(dòng)態(tài)預(yù)測方法。

表3 基于非線性理論的短時(shí)交通流量主要預(yù)測方法
5)基于組合預(yù)測模型的短時(shí)交通流量預(yù)測。該方法同時(shí)采用2種或2種以上的預(yù)測方法對短時(shí)交通流量進(jìn)行預(yù)測,以發(fā)揮不同預(yù)測方法的優(yōu)勢。該方法的主要組合模型有:神經(jīng)網(wǎng)絡(luò)模型與ARIMA模型[47-48]、RBF神經(jīng)網(wǎng)絡(luò)模型與模糊均值[49]、神經(jīng)網(wǎng)絡(luò)模型與模糊決策系統(tǒng)[50]、神經(jīng)網(wǎng)絡(luò)模型與遺傳算法[51-53]、蟻群算法與支持向量機(jī)[54]、卡爾曼濾波與二次指數(shù)降噪法[55]、卡爾曼濾波模型與人工神經(jīng)網(wǎng)絡(luò)模型及模糊綜合模型[56]、BP 經(jīng)網(wǎng)絡(luò)模型與小波分析及ARIMA模型[57]。
為更好地分析不同短時(shí)交通流量預(yù)測方法的差異性,本文對以上短時(shí)交通流量預(yù)測方法的優(yōu)缺點(diǎn)進(jìn)行對比分析,如表4所示。
由表4可知:各種短時(shí)交通流量預(yù)測方法的本質(zhì)是借助預(yù)測算法的某些擬合優(yōu)勢,使之適應(yīng)短時(shí)交通流量變化機(jī)理,進(jìn)而提高預(yù)測精度和效率。然而,由于短時(shí)交通流量自身具有一定的隨機(jī)波動(dòng)特性,導(dǎo)致單一的交通參數(shù)預(yù)測方法很難有效提高預(yù)測精度,而基于組合預(yù)測模型的預(yù)測方法具有廣闊的應(yīng)用前景和實(shí)踐意義。
隨著先進(jìn)人工智能技術(shù)、多交通參數(shù)協(xié)整理論、多源異構(gòu)交通大數(shù)據(jù)等的不斷發(fā)展,短時(shí)交通流量預(yù)測研究領(lǐng)域的機(jī)遇與挑戰(zhàn)并存,具體主要體現(xiàn)在以下幾方面:
1)先進(jìn)人工智能技術(shù)的應(yīng)用。從研究方法上看,短時(shí)交通流量預(yù)測方法與理論研究大多運(yùn)用人工智能技術(shù)。一般從一種理論和算法的提出到其實(shí)際應(yīng)用會(huì)有一定滯后性。近幾年提出的RVM模型、信息向量機(jī)、協(xié)同算法、因素神經(jīng)網(wǎng)絡(luò)算法等先進(jìn)人工智能技術(shù),在短時(shí)交通流量預(yù)測方面的應(yīng)用研究方興未艾。

表4 短時(shí)交通流量預(yù)測方法對比
2)多交通參數(shù)協(xié)整理論的研究。協(xié)整理論是一種新興建模技術(shù),該理論從分析時(shí)間序列的非平穩(wěn)性入手,探求非平穩(wěn)變量間蘊(yùn)含的長期均衡關(guān)系[58]。同一時(shí)間尺度下采集交通參數(shù)之間的隨機(jī)誤差具有一定協(xié)整特性,在短時(shí)交通流量預(yù)測中,考慮速度、密度、占有率等交通參數(shù)與交通流量的協(xié)整關(guān)系可在一定程度上提高預(yù)測精度。因此,多交通參數(shù)協(xié)整理論在短時(shí)交通流量預(yù)測方面的理論研究勢必成為未來研究的熱點(diǎn)。
3)大數(shù)據(jù)驅(qū)動(dòng)下基于多源異構(gòu)數(shù)據(jù)來源的道路網(wǎng)短時(shí)交通參數(shù)態(tài)勢估計(jì)。大數(shù)據(jù)是復(fù)雜網(wǎng)絡(luò)科學(xué)、人類動(dòng)力學(xué)蓬勃發(fā)展的基礎(chǔ),而復(fù)雜網(wǎng)絡(luò)科學(xué)和人類動(dòng)力學(xué)的發(fā)展又為交通工程提供嶄新的建模途徑[59]。在基于出租車GPS及計(jì)價(jià)器狀態(tài)數(shù)據(jù)、公交車輛車載GPS數(shù)據(jù)、道路定點(diǎn)檢測器數(shù)據(jù)、車輛牌照檢測數(shù)據(jù)、移動(dòng)通信信令數(shù)據(jù)、公交IC卡數(shù)據(jù)等多源交通大數(shù)據(jù)驅(qū)動(dòng)下,基于多源異構(gòu)數(shù)據(jù)來源的道路網(wǎng)短時(shí)交通參數(shù)態(tài)勢估計(jì)已成為交通預(yù)測的重要研究領(lǐng)域,也是交通大數(shù)據(jù)的重要研究方向之一。
近幾年來,隨著人工智能技術(shù)、地理信息系統(tǒng)、大數(shù)據(jù)采集與處理技術(shù)等在城市交通系統(tǒng)中的廣泛應(yīng)用,為城市交通運(yùn)行態(tài)勢的動(dòng)態(tài)感知、城市交通狀態(tài)的智能識(shí)別等提供了理論依據(jù),同時(shí)使得實(shí)現(xiàn)城市交通系統(tǒng)智能化調(diào)控成為可能。短時(shí)交通流量預(yù)測是實(shí)現(xiàn)具有預(yù)見性以及主動(dòng)性動(dòng)態(tài)交通管理的基礎(chǔ)與前提,同樣也是緩解城市交通擁堵的基礎(chǔ)性工作之一。因此,短時(shí)交通流量預(yù)測方法的未來研究勢必與實(shí)現(xiàn)城市交通系統(tǒng)智能化調(diào)控緊密結(jié)合。
[1]戴帥,劉金廣,朱建安,等.中國城市機(jī)動(dòng)化發(fā)展情況及政策分析[J].城市交通,2015 ,13(2):42-56. DAI Shuai,LIU Jinguang,ZHU Jian′an,et al.Urban motorization development and policy in china[J].Urban Transport of China,2015,13 (2): 42-56.
[2]李瑞敏,何群,李帥.中國機(jī)動(dòng)車保有量發(fā)展趨勢分析[J].城市交通,2013,11(5):69-75. LI Ruimin,HE Qun,LI Shuai.Analyses of automobile ownership development trend in China[J].Urban Transport of China,2013,11 (5): 69-75.
[3]劉有軍,田聰.不同路網(wǎng)形態(tài)下城市交通擁堵特性分析[J].中國公路學(xué)報(bào),2013,26(1):163-169. LIU Youjun,TIAN Cong.Analysis of dynamic characteristics of urban traffic congestion based on specificity of network configuration[J].China Journal of Highway and Transport,2013,26 (1): 163-169.
[4]賈順平,周洋帆,張思佳.交通擁堵收費(fèi)的經(jīng)濟(jì)意義與社會(huì)條件分析[J].交通運(yùn)輸系統(tǒng)工程與信息,2014,14(1):14-19. JIA Shunping,ZHOU Yangfan,ZHANG Sijia.The economic value and social condition analysis of congestion pricing[J].Journal of Transportation Systems Engineering and Information Technology,2014,14 (1): 14-19.
[5]韋凌翔,陳紅,王龍飛,等.誘發(fā)道路交通事故的關(guān)鍵因子分析方法研究[J].交通信息與安全,2015,33(1):84-89. WEI Lingxiang,CHEN Hong,WANG Longfei,et al.Analysis of key factors leading to road traffic accidents[J].Journal of Transport Information and Safety,2015,33 (1): 84-89.
[6]姚智勝.基于實(shí)時(shí)數(shù)據(jù)的道路網(wǎng)短時(shí)交通流預(yù)測理論與方法研究[D].北京:北京交通大學(xué),2007. YAO Zhisheng.Research on theorise and methods of short-term traffic flow forecasting of road network based on real-time data[D].Beijing: Beijing Jiaotong University,2007.
[7]OH H,AHN S.A full-duplex relay based hybrid transmission mechanism for the MIMO-capable cooperative intelligent transport system[J].International Journal of Distributed Sensor Networks,2015,501:1-11.
[8]蔡志理,孫豐瑞,韋凌翔,等.基于車聯(lián)網(wǎng)技術(shù)的車路協(xié)同系統(tǒng)設(shè)計(jì)[J].山東交通學(xué)院學(xué)報(bào),2011,19(4):17-23. CAI Zhili,SUN Fengrui,WEI Lingxiang,et al.Design of cooperative vehicle-infrastructure system based on mobility internet technologies[J].Journal of Shandong Jiaotong University,2011,19 (4): 17-23.
[9]曹鳳萍.城市道路交通參數(shù)短時(shí)多步預(yù)測方法研究[D].長春:吉林大學(xué),2008. CAO Fengping.Study on the methods of traffic parameters short-term and multi-steps prediction for urban road[D].Changchun: Jilin University,2008.
[10]李穎宏,劉樂敏,王玉全.基于組合預(yù)測模型的短時(shí)交通流預(yù)測[J].交通運(yùn)輸系統(tǒng)工程與信息,2013,6(2):34-41. LI Yinghong,LIU Lemin,WANG Yuquan.Short-term traffic flow prediction based on combination of predictive models[J].Journal of Transportation Systems Engineering and Information Technology,2013,6 (2): 34-41.
[11]MAI T,GHOSH B,WILSON S.Short-term traffic-flow forecasting with auto-regressive moving average models[J].Proceedings of the ICE-Transport,2013,167(4):232-239.
[12]楊兆升,王媛,管青.基于支持向量機(jī)方法的短時(shí)交通流量預(yù)測方法[J].吉林大學(xué)學(xué)報(bào)(工學(xué)版),2006,10(6):881-884. YANG Zhaosheng,WANG Yuan,GUAN Qing.Short-term traffic flow prediction method based on SVM[J].Journal of Jilin University(Engineering and Technology Edition),2006,10 (6): 881-884.
[13]王凡.基于支持向量機(jī)的交通流預(yù)測方法研究[D].大連:大連理工大學(xué),2010. WANG Fan.Research on methods of traffic flow forecasting based on SVM[D].Dalian: Dalian University of Technology,2010.
[14]劉靜,關(guān)偉.交通流預(yù)測方法綜述[J].公路交通科技,2004,21(3):82-85. LIU Jing,GUAN Wei.A summary of traffic flow forecasting methods[J].Journal of Highway and Transportation Research and Development,2004,21 (3): 82-85.
[15]AKAIKE H.Canonical correlation analysis of time series and the use of an information criterion[J].Mathematics in Science and Engineering,1976,126: 27-96.
[16]DAVIS G A,NIHAN N L.Using time-series designs to estimate changes in freeway level of service,despite missing data[J].Transportation Research Part A: General,1984,18(5):431-438.
[17]WILLIAMS B M,HOEL L A.Modelling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results[J].Journal of Transportation Engineering,2003,129(6):664-672.
[18]孫湘海,劉潭秋.基于 SARIMA 模型的城市道路短期交通流預(yù)測研究[J].公路交通科技,2008,25(1):129-133. SUN Xianghai,LIU Tanqiu.Study on urban road short-term traffic flow forecasting based on SARIMA time series model[J].Journal of Highway and Transportation Research and Development,2008,25 (1): 129-133.
[19]陳岳明,蕭德云.基于跳轉(zhuǎn)模型的路網(wǎng)交通流預(yù)測[J].控制與決策,2009,24(8):1177-1180. CHEN Yueming,XIAO Deyun.Traffic network flow forecasting based on switching model[J].Control and Decision,2009,24 (8): 1177-1180.
[20]OKUTANI I,STEPHANEDES Y J.Dynamic prediction of traffic volume through Kalman filtering theory[J].Transportation Research Part B: Methodological,1984,18(1):1-11.
[21]楊兆升,朱中.基于卡爾曼濾波理論的交通流量實(shí)時(shí)預(yù)測模型[J].中國公路學(xué)報(bào),1999,12(3):63-67. YANG Zhaosheng,ZHU Zhong.A real-time volume prediction model based on the kalman filtering theory[J].China Journal of Highway and Transport,1999,12 (3): 63-67.
[22]戴施華,周欣榮.Kalman 濾波理論在短時(shí)交通預(yù)測上的應(yīng)用[J].哈爾濱商業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,21(6): 728-730. DAI Shihua,ZHOU Xinrong.Application of Kalman filtering theory on prediction of short-term traffic volume[J] Journal of Harbin University of Commerce(Natural Sciences Edition),2005,21 (6): 728-730.
[23]YOON B,CHANG H.Potentialities of data-driven nonparametric regression in urban signalized traffic flow forecasting[J].Journal of Transportation Engineering,2014,140(7):14-27.
[24]SMITH B L,DEMETSKY M J.Traffic flow forecasting: Comparison of modeling approaches[J].Journal of Transportation Engineering,1997,123(4): 261-266.
[25]JIANG X,ADELI H.Dynamic wavelet neural network model for traffic flow forecasting[J].Journal of Transportation Engineering,2005,131(10):771-779.
[26]ZHENG W,LEE D H,SHI Q.Short-term freeway traffic flow prediction: Bayesian combined neural network approach[J].Journal of Transportation Engineering,2006,132(2):114-121.
[27]ABDI J,MOSHIRI B.Application of temporal difference learning rules in short-term traffic flow prediction[J].Expert Systems,2015,32(1): 49-64.
[28]李琦,姜桂艷.悉尼自適應(yīng)交通控制系統(tǒng)線圈數(shù)據(jù)短時(shí)多步預(yù)測雙層模型[J].吉林大學(xué)學(xué)報(bào)(工學(xué)版),2013,43(4):854-860. LI Qi,JIANG Guiyan.Bi-level model of multi-step forecasting for short-term data of loop in sydney coordinated adaptive traffic system[J].Journal of Jilin University(Engineering and Technology Edition),2013,43 (4): 854-860.
[29]WU C H,HO J M,LEE D T.Travel-time prediction with support vector regression[J].IEEE Transactions on Intelligent Transportation Systems,2004,5(4): 276-281.
[30]姚智勝,邵春福,高永亮.基于支持向量回歸機(jī)的交通狀態(tài)短時(shí)預(yù)測方法研究[J].北京交通大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,30(3):19-22. YAO Zhisheng,SHAO Chunfu,GAO Yongliang.Research on methods of short-term traffic forecasting based on support vector regression[J].Journal of Beijing Jiaotong University(Natural Science Edition),2006,30 (3): 19-22.
[31]HUANG M L.Intersection traffic flow forecasting based on ν-GSVR with a new hybrid evolutionary algorithm[J].Neurocomputing,2015,147: 343-349.
[32]賀國光,馬壽峰,李宇.基于小波分解與重構(gòu)的交通流短時(shí)預(yù)測法[J].系統(tǒng)工程理論與實(shí)踐,2002,22(9): 101-106. HE Guoguang,MA Shoufeng,LI Yu.Study on the short-term forecasting for traffic flow based on wavelet analysis[J].Systems Engineering-Theory & Practice,2002,22(9): 101-106.
[33]XIAO H,SUN H,RAN B,et al.Fuzzy-neural network traffic prediction framework with wavelet decomposition[J].Transportation Research Record: Journal of the Transportation Research Board,2003 (1836):16-20.
[34]陳淑燕,王煒,瞿高峰.短時(shí)交通量時(shí)間序列的小波分析-模糊馬爾柯夫預(yù)測方法[J].東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,35(4):637-640. CHEN Shuyan,WANG Wei,QU Gaofeng.Short-term traffic flow time series forecasting based on wavelet analyses-fuzzy markov prediction model[J].Journal of Southeast University(Natural Science Edition),2005,35 (4): 637-640.
[35]賀國光,馬壽峰,李宇.基于小波分解與重構(gòu)的時(shí)間序列預(yù)測法[J].自動(dòng)化學(xué)報(bào),2002,28(6): 1012-1014. HE Guoguang,MA Shoufeng,LI Yu.A study on forecasting for time series based on wavelet analysis[J] .Acta Automatica Sinica,2002,28 (6): 1012-1014.
[36]DENDRINOS D S.Traffic-flow dynamics: A search for chaos[J].Chaos,Solitons & Fractals,1994,4(4):605-617.
[37]SAMANT A,ADELI H.Feature extraction for traffic incident detection using wavelet transform and linear discriminant analysis[J].Computer-Aided Civil and Infrastructure Engineering,2000,15(4): 241-250.
[38]宗春光,宋靖雁,任江濤,等.基于相空間重構(gòu)的短時(shí)交通流預(yù)測研究[J].公路交通科技,2003,20(4):71-75. ZONG Chunguang,SONG Jingyan,REN Jiangtao,et al.Short-term traffic flow forecasting research based on phrase space reconstruction[J].Journal of Highway and Transportation Research and Development,2003,20 (4): 71-75.
[39]FORBES G J,HALL F L.The applicability of catastrophe theory in modelling freeway traffic operations[J].Transportation Research Part A:General,1990,24(5):335-344.
[40]ACHA-DAZA J A,HALL F L.Application of catastrophe theory to traffic flow variables[J].Transportation Research Part B:Methodological,1994,28(28):235-250.
[41]王曉,雋志才,樸基男,等.局部比較的變點(diǎn)統(tǒng)計(jì)理論及其在交通流突變研究中的應(yīng)用[J].公路交通科技,2002,19(6):112-115. WANG Xiao,JUAN Zhicai,PIAO Jinan,et al.A statistical theory of change-point with local comparison and its application in studing traffic flow breakdown[J].Journal of Highway and Transportation Research and Development,2002,19 (6): 112-115.
[42]唐鐵橋,黃海軍.用燕尾突變理論來討論交通流預(yù)測[J].數(shù)學(xué)研究,2005,38(1):112-116. TANG Tieqiao,HUANG Haijun.The discussion of traffic flow forecast by using swallowtail catastrophe theory[J].Journal of Mathematical Study,2005,38 (1): 112-116.
[43]馬壽峰,賀國光,劉豹.智能交通系統(tǒng)中短時(shí)交通流預(yù)測系統(tǒng)的研究[J].預(yù)測,2004,23(2): 28-34. MA Shoufeng,HE Guoguang,LIU Bao.The study on a forecasting system for short-term traffic flow in ITS[J].Forecast,2004,23 (2): 28-34.
[44]李奎,王堅(jiān).基于微觀仿真的快速路短時(shí)交通流預(yù)測[J].安徽理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,28(4):47-52. LI Kui,WANG Jian.Freeway short-time traffic-flow forecast based on micro-simulation[J].Journal of Anhui University of Science and Technology(Natural Science),2008,28(4): 47-52.
[45]馬云龍,王堅(jiān),任子暉.基于微觀仿真的快速路短時(shí)交通流預(yù)測研究[J].系統(tǒng)仿真學(xué)報(bào),2008,21(4):4501-4503. MA Yunlong,WANG Jian,REN Zihui.Research on short-term traffic flow prediction based on microcosmic simulation[J].Journal of System Simulation,2008,21 (4): 4501-4503.
[46]李一龍.基于動(dòng)態(tài)規(guī)劃的城市交通流預(yù)測與分配[J].交通運(yùn)輸系統(tǒng)工程與信息,2009,9(3):135-139. LI Yilong.Urban traffic flow prediction and assignment with dynamic programming[J].Journal of Transportation Systems Engineering and Information Technology ,2009,9 (3): 135-139.
[47]VOORT M V D,DOUGHERTY M,WATSON S.Combining kohonen maps with arima time series models to forecast traffic flow[J].Transportation Research Part C:Emerging Technologies,1996,4(5):307-318.
[48]譚滿春,馮犖斌,徐建閩.基于 ARIMA 與人工神經(jīng)網(wǎng)絡(luò)組合模型的交通流預(yù)測[J].中國公路學(xué)報(bào),2007,20(4): 118-121. TAN Manchun,FENG Nianbin,XU Jianmin.Traffic flow prediction based on hybrid ARIMA and ANN model[J].China Journal of Highway and Transport,2007,20 (4): 118-121.
[49]PARK B.Hybrid neuro-fuzzy application in short-term freeway traffic volume forecasting[J].Journal of the Transportation Research Board,2002,1802(1802):190-196.
[50]任沙浦,沈國江.短時(shí)交通流智能混合預(yù)測技術(shù)[J].浙江大學(xué)學(xué)報(bào)(工學(xué)版),2010 (8): 1473-1478. REN Shapu,SHEN Guojiang.Intelligent hybrid forecasting technique for short-term traffic[J].Journal of Zhejiang University(Engineering Science),2010 (8): 1473-1478.
[51]ABDULHAI B,PORWAL H,RECKER W.Short-term traffic flow prediction using neuro-genetic algorithms[J].Intelligent Transportation Systems Journal,2002,7(1): 3-41.
[52]郭郴生,劉偉銘,姜山.基于遺傳神經(jīng)網(wǎng)絡(luò)的道路交通量預(yù)測[J].廣西交通科技,2003,28(2):24-26. GUO Chensheng,LIU Weiming,JIANG Shan.Forecast on volume of traffic based on hereditary neural net[J] Guangxi Communication Science & Technology,2003,28 (2): 24-26.
[53]劉潔,魏連雨,楊春風(fēng).基于遺傳-神經(jīng)網(wǎng)絡(luò)的交通量預(yù)測[J].長安大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,23(1):68-70. LIU Jie,WEI Lianyu,YANG Chunfeng.Traffic prediction based on genetic-neural network[J].Journal of Chang′an University(Natural Science Edition),2003,23 (1): 68-70.
[54]徐鵬,姜鳳茹.基于蟻群優(yōu)化支持向量機(jī)的短時(shí)交通流量預(yù)測[J].計(jì)算機(jī)應(yīng)用與軟件,2013,30(3):250-254. XU Peng,JIANG Fengru.Short-term traffic flow prediction based on SVM optimesed by ACO[J].Computer Applications and Software,2013,30 (3): 250-254.
[55]秦鳴,楊高飛,鄧明君,等.基于二次指數(shù)降噪法和優(yōu)化 Kalman 濾波的短時(shí)交通組合預(yù)測[J].北華大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,16(6):814-817. QIN Ming,YANG Gaofei,DENG Mingjun,et al.Short-term traffic flow forecasting based on exponential smoothing and Kalman filter[J].Journal of Beihua University(Natural Science),2015,16 (6): 814-817.
[56]沈國江,王嘯虎,孔祥杰.短時(shí)交通流量智能組合預(yù)測模型及應(yīng)用[J].系統(tǒng)工程理論與實(shí)踐,2011,31(3):561-568. SHEN Guojiang,WANG Xiaohu,KONG Xiangjie.Short-term traffic volume intelligent hybrid forecasting model and its application[J].Systems Engineering-Theory & Practice,2011,31 (3): 561-568.
[57]王建,鄧衛(wèi),趙金寶.基于改進(jìn)型貝葉斯組合模型的短時(shí)交通流量預(yù)測[J].東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,42(1):162-167. WANG Jian,DENG Wei,ZHAO Jinbao.Short-term freeway traffic flow prediction based on improved bayesian combined model[J].Journal of Southeast University (Natural Science),2012,42 (1): 162-167.
[58]WANG Guofeng,LIU Chang,CUI Yinhu,et al.Tool wear monitoring based on cointegration modelling of multisensory information[J].International Journal of Computer Integrated Manufacturing,2014,27(5):479-487.
[59]王璞,黃智仁,龔航.大數(shù)據(jù)時(shí)代的交通工程[J].電子科技大學(xué)學(xué)報(bào),2013,42(6):806-816. WANG Pu,HUANG Zhiren,GONG Hang.Transportation engineering in the big data era[J].Journal of University of Electronic Science and Technology of China,2013,42 (6): 806-816.
PredictionMethodofShort-TimeTrafficFlow
WEILingxiang1,2,CHENHong2*,WANGYonggang2,CAIZhili3,ZHONGDongqing1,LIYuhua1
(1.SchoolofMaterialEngineering,YanchengInstituteofTechnology,Yancheng224051,China; 2.SchoolofHighway,Chang′anUniversity,Xi′an710064,China;3.SchoolofTransportation&LogisticsEngineering,ShandongJiaotongUniversity,Jinan250023,China)
The short-term traffic flow is one of the basic parameters of short-term traffic parameters,the change pattern can visually reflect the traffic trend in the investigated road section or area,which can supply travelers with efficient road selection information.The characteristics and application of short-term traffic flow prediction methods based on the statistical analysis model,artificial intelligence model,nonlinear theory,traffic simulation and combined prediction model and in view of the random fluctuation characteristics of the short-term traffic flow,this paper points out that the single traffic parameter prediction method is difficult to greatly improve the prediction accuracy and effect,the prediction method based on the combined prediction model is bound to have the broad application foreground and practical significance,and the research field in the short-term traffic flow prediction method is the possible future development trend.
urban traffic; short-term traffic flow; forecasting; intelligent transport system(ITS)
U491.111.2
:A
:1672-0032(2017)03-0022-08
(責(zé)任編輯:楊秀紅)
2016-09-26
陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃面上項(xiàng)目(2016JM5036);陜西省交通科技項(xiàng)目(15-42R);陜西省交通運(yùn)輸廳項(xiàng)目(15-39R)
韋凌翔(1991—),男,山東曲阜人,工學(xué)碩士,鹽城工學(xué)院助教,主要研究方向?yàn)榻煌沙掷m(xù)發(fā)展戰(zhàn)略研究、交通數(shù)據(jù)挖掘與建模,E-mail:sdjtwlx@126.com.
*通訊作者:陳紅(1963—),女,湖南湘潭人,教授,工學(xué)博士,主要研究方向?yàn)榻煌ㄟ\(yùn)輸規(guī)劃與管理,E-mail:hongchen82@126.com.
10.3969/j.issn.1672-0032.2017.03.004