陳建平,余 苗,秦小明,諶素華,鐘賽意,*
(1.廣東海洋大學食品科技學院,廣東 湛江 524088;2.廣東省天然產物綠色加工與產品安全重點實驗室,廣東 廣州 510640; 3.江西省糧油質量監督檢驗中心,江西 南昌 330046)
環糊精功能化修飾納米銀負載姜黃素的制備及其抗腫瘤活性
陳建平1,2,余 苗3,秦小明1,諶素華1,鐘賽意1,*
(1.廣東海洋大學食品科技學院,廣東 湛江 524088;2.廣東省天然產物綠色加工與產品安全重點實驗室,廣東 廣州 510640; 3.江西省糧油質量監督檢驗中心,江西 南昌 330046)
采用納米銀材料制備負載姜黃素(curcumin,Cur)的β-環糊精(β-cyclodextrin,β-CD)功能化納米銀——Ag@β-CD@Cur,并進一步對其抗腫瘤活性進行測定。運用透射電子顯微鏡和納米粒度儀鑒定Ag@β-CD@Cur的表面形貌、粒徑大小和穩定性。運用倒置熒光顯微鏡和3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴鹽法檢測Ag@β-CD@Cur對人肝癌細胞HepG2形態和活性的影響,并進一步采用流式細胞術檢測細胞凋亡比例。實驗結果表明,所制備的Ag@β-CD@Cur是純度很高的單質銀,且大小均一、表面光滑,粒徑約為2 nm。同時,Ag@β-CD@Cur具有較好的穩定性,能在水中穩定存在30 d。經Ag@β-CD@Cur處理HepG2細胞24 h后,HepG2細胞的形態出現明顯的變圓、細胞核固縮等細胞凋亡特征,同時,細胞存活率從對照組的100%降低到24%,進一步的流式細胞術分析結果表明,細胞凋亡比例從對照組的2.5%增加到51.0%。實驗結果表明,納米化后的Cur具有較強的抗腫瘤活性效果,這為Cur在納米制劑的應用提供了一定的技術手段和理論數據參考。
姜黃素;β-環糊精;銀納米粒子;制備;抗腫瘤活性
姜黃素(curcumin,Cur)是從姜科姜黃屬植物姜黃根莖中提取的一種脂溶性酚類物質[1]。目前,在國內外的食品工業當中,姜黃素是一種重要的香料、色素和抗氧化劑,廣泛應用于咖哩、烤肉卷、芥菜醬、面食、糕點、糖果、罐頭、飲料、果酒、果汁及烹飪菜肴等[2-6]。研究表明,Cur的結構中含有酚羥基,在細胞膜發生脂質過氧化反應時,其酚羥基可以發生氧化反應,能有效終止自由基反應[4],因而其表現出諸多生理活性,比如抗氧化[7-8]、抗腫瘤[9-10]、抗炎[11-12]、防止衰老等。然而,由于Cur的水溶性差,存在于食品中的Cur被人體攝入后生物利用度較低,難以發揮應有的抗氧化和抗腫瘤等活性作用,極大地限制了它在抗腫瘤臨床方面的應用范圍及應用價值。
目前,已有研究證實,可以運用多種方法來提高Cur的生物利用度,比如,將Cur制備成納米粒子[13-14]、脂質體[15-16]、微球[17]、磷脂復合物[18]和各種Cur的結構衍生物等[19-20]。其中,納米技術是近年來發展的一種新型技術,納米銀(nano sliver,AgNPs)粒子作為一種新興的功能納米材料,在生物學領域有著廣泛的應用[21]。AgNPs是指粒徑在1~100 nm之間的金屬銀微粒,是金屬銀的一種特殊形態。AgNPs具有體積小、比表面積大、物理化學性質獨特、對人體細胞毒性低等優點,廣泛用作抗癌藥物的載藥體系[22-23]。然而,目前還未見有關采用AgNPs材料制備Cur納米粒子的研究報道。為此,本實驗采用AgNPs作為藥物載體對Cur進行負載制備Cur納米粒子并進一步考察其抗腫瘤活性。為了提高AgNPs的穩定性,本實驗首先采用β-環糊精(β-cyclodetrin,β-CD)對AgNPs進行功能化修飾,然后對Cur進行負載從而制備負載Cur的環糊精功能化銀納米粒子——Ag@β-CD@Cur,并對其抗腫瘤活性進行評價。研究結果對于指導Cur在臨床上的合理應用、優化給藥方案、改進藥物劑型以及質量控制等方面具有重要意義。
1.1 材料與試劑
Cur(質量分數≥99.9%)、碘化丙啶(propidium iodide,PI)染料 美國Sigma公司;β-CD(食品級) 山東新大精細化工有限公司產品;硝酸銀、VC、無水乙醇(均為分析純) 國藥集團化學試劑有限公司;3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴鹽(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide,MTT)、改良杜氏伊格爾培養基(Dulbecco’s modified eagle medium,DMEM)、胎牛血清、青霉素和鏈霉素 美國Hyclone公司;人肝癌細胞HepG2 美國ATCC公司。
1.2 儀器與設備
BP301S電子天平 德國Sartorius公司;Nano-ZS納米粒度儀 英國Malvern公司;TEANAI-10透射電子顯微鏡(transmission electron microscope,TEM) 荷蘭Philips公司;Centrifuge 5804R離心機 德國Eppendorf公司;倒置顯微鏡 日本Olympus公司;Versamax酶標儀美國Molecular Devices公司;FACS Aria流式細胞儀美國Waters公司。
1.3 方法
1.3.1 AgNPs的合成
AgNPs的合成參照文獻[23]。稱取AgNO3粉末16 mg溶于40 mL Milli-Q水中配成400 μg/mL AgNO3溶液。稱取16 mg VC溶于40 mL Milli-Q水中配成400 μg/mL VC儲備溶液。在磁力攪拌的條件下,取0.1 mL 400 μg/mL VC溶液逐滴加入到4 mL AgNO3(400 μg/mL)溶液中,攪拌2 h后,在水中透析24 h除去過量的VC和AgNO3。AgNPs溶液經超聲2 min后,用0.2 μm的多孔濾膜進行過濾制得AgNPs。最后,采用電感耦合等離子體原子發射光譜法(inductively coupled plasma-atomic emission spectrometry,ICP-AES)對AgNPs濃度進行測定。
1.3.2 Ag@β-CD及Ag@β-CD@Cur和Ag@Cur的制備
將0.1 mL VC儲備溶液逐滴加入到4 mL AgNO3溶液中,經磁力攪拌2 h后,加入3.792 mg β-CD,磁力攪拌6 h,然后經透析后獲取純化后的AgNPs負載體系。取上述溶液,于10 000 r/min離心10 min,去離子水洗3 遍,樣品冷凍干燥得到Ag@β-CD。
將0.1 mL VC儲備溶液逐滴加入到4 mL AgNO3溶液中,經磁力攪拌2 h后,加入3.792 mg β-CD和80 μL 1 mmol/L Cur,磁力攪拌6 h,然后經透析后獲取純化后的AgNPs負載體系。取上述溶液,于10 000 r/min離心10 min,去離子水洗3 遍,樣品冷凍干燥得到Ag@β-CD@Cur。
將0.1 mL VC儲備溶液逐滴加入到4 mL AgNO3溶液中,經磁力攪拌2 h后,加入80 μL 1 mmol/L Cur,磁力攪拌6 h,然后經透析后獲取純化后的AgNPs負載體系。取上述溶液,于10 000 r/min離心10 min,去離子水洗3 遍,樣品冷凍干燥得到Ag@Cur。
1.3.3 Ag@β-CD@Cur物理性質測定
1.3.3.1 TEM觀察Ag@β-CD@Cur形貌
將樣品Ag@β-CD@Cur均勻分散滴在銅網上,TEM測定樣品微粒的大小、形貌和均勻性。同時,采用能量色散X射線光譜儀(energy dispersive X-ray spectroscopy,EDX)掃描分析Ag@β-CD@Cur的元素組成。
1.3.3.2 納米粒度儀測定Ag@β-CD@Cur的粒徑及穩定性
用Nano-ZS納米粒度儀測定Ag@β-CD@Cur的粒徑變化及相應Zeta電位,與AgNPs和Ag@β-CD相比較。測試條件:入射光為氦氖激光,波長λ為633 nm,入射角為90°,測量穩定溫度為(25.0±0.1)℃。
1.3.4 Ag@β-CD@Cur抗腫瘤活性測定
1.3.4.1 細胞培養
HepG2細胞復蘇后培養在含10%胎牛血清、100 U/mL青霉素和50 U/mL鏈霉素的DMEM完全培養液中,于37 ℃、5% CO2的培養箱中培養,根據細胞的生長狀態傳代,取對數生長期細胞用于以下MTT實驗。
1.3.4.2 MTT法測定細胞存活率
細胞存活率的測定根據Chen Tianfeng[24]、Chen Jianping[25]等的方法進行操作。取對數生長期的細胞進行實驗,經細胞傳代后,調整細胞密度。將HepG2細胞以2×104個/孔接種于96 孔培養板,置于37 ℃、5% CO2的培養箱中培養24 h。向不同的96 孔板中分別加入2.5 μg/mL AgNPs工作液、Ag@β-CD工作液、Ag@Cur工作液、Ag@β-CD@Cur工作液處理HepG2細胞,以不添加工作液的細胞培養液作為對照組。經不同方式處理的HepG2細胞分別培養24 h后,采用倒置顯微鏡觀察細胞的形態變化。然后,往96 孔細胞培養板中加入5 mg/mL MTT,每孔20 μL,放入37 ℃培養箱中孵育4 h后除去上層清液,每孔加入150 μL二甲基亞砜,在搖床上振蕩10 min,待紫色結晶物充分溶解后,用酶標儀在570 nm波長處測定各孔OD值。以對照組的OD值為100%,計算不同處理組中的細胞存活率。

式中:ODi表示不同處理組的OD值;OD0表示對照組的OD值。
1.3.4.3 流式細胞術檢測細胞凋亡比例
細胞凋亡率的測定根據Su Jianyu等[26]的方法進行操作。取對數生長期的HepG2細胞,經消化離心、計數,接種到6 cm的培養皿中,細胞密度為6×104個/mL,培養箱中孵育24 h后,分別用2.5 μg/mL AgNPs工作液、Ag@β-CD工作液、Ag@Cur工作液、Ag@β-CD@Cur工作液處理HepG2細胞24 h,以不添加工作液的細胞培養液作為對照組。然后用0.25%胰蛋白酶消化收集細胞,用磷酸鹽緩沖液洗2 次,離心后得到的細胞用-20 ℃預冷的75%乙醇固定,吹打均勻后置于-20 ℃過夜,次日1 000×g離心5 min,倒掉上清液,加入500 μL PI染料,置于4 ℃中避光染色20 min后上機待測。流式細胞儀激發波長為488 nm,發射波長為630 nm,每個樣品至少分析10 000 個細胞,用軟件Multi Cycle分析細胞周期。
2.1 Ag@β-CD@Cur的鑒定

圖1 AgNPs(A)、Ag@β-CD(B)和Ag@β-CD@Cur(C)的TEM結果圖Fig. 1 TEM images of AgNPs (A), Ag@β-CD (B) and Ag@β-CD@Cur (C)
用TEM觀察所制備的Ag@β-CD@Cur,實驗結果如圖1所示。Ag@β-CD@Cur大小均一,粒徑約為2 nm,且表面光滑,說明Ag@β-CD@Cur是粒徑均勻的納米球。

圖2 Ag@β-CD@Cur的EDX元素分析Fig. 2 EDX analysis of Ag@β-CD@Cur
對Ag@β-CD@Cur表面元素進行分析。由圖2可知,Ag是主要元素,占了21%,而C、O分別占了18%和11%,后兩者很可能來自于β-CD和Cur,此外無其他元素的信號(所檢出Cu為銅網所致),表明Ag@β-CD@Cur純度很高。
對Ag@β-CD@Cur的穩定性進行分析后發現,Ag@β-CD@Cur在水溶液中保持穩定,在30 d內粒徑維持在2 nm左右,提示所合成的納米載藥體系是穩定的納米溶膠系統,有利于貯存和使用(圖3A)。對Ag@β-CD@Cur體系的Zeta電位分析結果(圖3B)顯示,AgNPs的Zeta電位為-15 mV,在納米粒子表面連接了β-CD后Ag@β-CD的Zeta電位變為50 mV。在體系中負載了Cur后,Ag@β-CD@Cur的Zeta電位減至36 mV,說明β-CD和Cur存在于AgNPs納米體系中。

圖3 Ag@β-CD@Cur穩定性Fig. 3 Stability of Ag@β-CD@Cur
2.2 Ag@β-CD@Cur的抗腫瘤活性

圖4 Ag@β-CD@Cur對HepG2細胞生長的影響Fig. 4 Effect of Ag@β-CD@Cur on the growth of HepG2 cells
從圖4A的倒置熒光顯微成像可以看出,對照組細胞均呈不規則多邊形貼壁生長,經過2.5 μg/mL AgNPs、2.5 μg/mL Ag@β-CD、2.5 μg/mL Ag@Cur和2.5 μg/mL Ag@β-CD@Cur處理HepG2細胞24 h后,HepG2細胞的生長狀態均受到了抑制。然而,相比AgNPs、Ag@β-CD和Ag@Cur,Ag@β-CD@Cur抑制HepG2細胞生長更明顯,表現為細胞形態出現了明顯的變化,細胞出現更多的變圓、細胞核固縮等細胞凋亡的生物學特征。為了驗證這一實驗結果,進一步采用MTT法檢測細胞的存活率,實驗結果如圖4B所示。當用2.5 μg/mL AgNPs和2.5 μg/mL Ag@β-CD處理HepG2細胞24 h后,其細胞存活率分別為80%和72%。而當2.5 μg/mL的Ag@Cur處理HepG2細胞24 h后,其細胞存活率降低到51%。然而,用2.5 μg/mL的Ag@β-CD@Cur處理HepG2細胞24 h后,其細胞存活率達到最低,為24%。這一實驗結果與觀察到的細胞形態的實驗結果(圖4A)相一致。由此可知,相比AgNPs、Ag@β-CD和Ag@Cur,Ag@β-CD@Cur表現出更強的抗腫瘤活性。
2.3 細胞凋亡比例

圖5 Ag@β-CD@Cur對HepG2細胞中細胞凋亡比例的影響Fig. 5 Effect of Ag@β-CD@Cur on the population of Sub-G1 cells in HepG2 cells
為了驗證MTT的結果,進一步采用細胞流式術檢測細胞凋亡比例,結果如圖5所示。當用2.5 μg/mL AgNPs和Ag@β-CD處理HepG2細胞24 h后,SubG1細胞凋亡比例分別從對照組的2.5%提高到12.6%和27.1%。而當2.5 μg/mL Ag@Cur處理HepG2細胞24 h后,SubG1細胞凋亡比例增加到34.7%。然而,相比Ag@Cur,用2.5 μg/mL的Ag@β-CD@Cur處理HepG2細胞24 h后,SubG1細胞凋亡比例為51.0%,這表明Ag@β-CD@Cur抑制腫瘤細胞增殖主要是通過誘導細胞凋亡而實現的。
原發性肝癌,俗稱“肝癌”,是世界上第5大常見的惡性腫瘤,且其死亡率高居所有癌癥中第3位[27]。目前,治療肝癌的常用化療藥物有表柔比星、絲裂霉素、5-氟尿嘧啶、順鉑等。近年來,大量研究表明,Cur對肝癌細胞具有較強的抑制效果[28]。然而,相比化療藥物,Cur對正常細胞卻表現出較低的毒副作用[29-30]。這為Cur作為一種理想的抗癌藥物提供了可能,然而由于其水溶性低,限制了其在臨床方面的應用。本實驗通過銀納米技術提高了Cur的水溶性,發現Ag@Cur能夠很好地溶解在水中,并且,在水中能夠穩定存在30 d,這為Cur的臨床應用提供了可能。同時,Ag@β-CD@Cur處理HepG2細胞后,能極顯著抑制HepG2細胞的生長(P<0.01),且抑制率達到了76%(由于細胞存活率僅為24%),且SubG1細胞凋亡比例達到了51%,表明Ag@β-CD@Cur具有較強的抗腫瘤活性效果。然而,關于Ag@β-CD@Cur抑制HepG2細胞增殖及誘導其細胞凋亡的機制還有待于進一步的研究。
[1] AMMON H P, WAHL M A. Pharmacology of curcuma longa[J].Planta Medica, 1991, 57(1): 1-7. DOI:10.1055/s-2006-960004.
[2] KARUNAGARAN D, RASHMI R, KUMAR T R. Induction of apoptosis by curcumin and its implications for cancer therapy[J]. Current Cancer Drug Targets, 2005, 5(2): 117-129.DOI:10.2174/1568009053202081.
[3] ZHANG C Y, ZHANG L, YU H X, et al. Curcumin inhibits invasion and metastasis in K1 papillary thyroid cancer cells[J]. Food Chemistry,2013, 139(1/2/3/4): 1021-1028. DOI:10.1016/j.foodchem.2013.02.016.
[4] CHEN J P, LI L, SU J Y, et al. Enhancing effect of natural borneol on the cellular uptake of demethoxycurcumin and their combined induction of G2/M arrest in HepG2 cells via ROS generation[J].Journal of Functional Foods, 2015, 17(17): 103-114. DOI:10.1016/j.jff.2015.05.013.
[5] GOEL A, KUNNUMARKKARA A B, AGGARWAL B B. Curcumin as “Curecumin”: from kitchen to clinic[J]. Biochemical Pharmacology,2008, 75(4): 787-809. DOI:10.1016/j.bcp.2007.08.016.
[6] 袁鵬, 陳瑩, 肖發, 等. 姜黃素的生物活性及在食品中的應用[J]. 食品工業科技, 2012, 33(14): 371-375. DOI:10.13386/j.issn1002-0306.2012.14.052.
[7] TVRDá E, TU?IMOVá E, KOVá?IK A, et al. Curcumin has protective and antioxidant properties on bull spermatozoa subjected to induced oxidative stress[J]. Animal Reproduction Science, 2016, 172:10-20. DOI:10.1016/j.anireprosci.2016.06.008.
[8] AKYUZ S, TURANY F, GURBUZLER L, et al. The antiinflammatory and antioxidant effects of curcumin in middle ear infection[J]. Journal of Craniofacial Surgery, 2016, 27(5): e494-e497.DOI:10.1097/Scs.0000000000002810.
[9] WU G Q, CHAI K Q, ZHU X M, et al. Anti-cancer effects of curcumin on lung cancer through the inhibition of EZH2 and NOTCH1[J]. Oncotarget, 2016, 7(18): 26535-26550. DOI:10.18632/oncotarget.8532.
[10] GAO W, CHAN J Y, WEI W I, et al. Anti-cancer effects of curcumin on head and neck cancers[J]. Anti-Cancer Agents in Medicinal Chemistry,2012, 12(9): 1110-1116. DOI:10.2174/187152012803529736.
[11] JACOB J N, BADYAL D K, BALA S, et al. Evaluation of the in vivo anti-inflammatory and analgesic and in vitro anti-cancer activities of curcumin and its derivatives[J]. Natural Product Communications,2013, 8(3): 359-362.
[12] HEEBA G H, MAHMOUD M E, EI HANAFY A A, et al.Anti-inflammatory potential of curcumin and quercetin in rats:role of oxidative stress, heme oxygenase-1 and TNF-alpha[J].Toxicology and Industrial Health, 2014, 30(6): 551-560.DOI:10.1177/0748233712462444.
[13] HU S Q, WANG T R, FERNANDEZ M L, et al. Development of tannic acid cross-linked hollow zein nanoparticles as potential oral delivery vehicles for curcumin[J]. Food Hydrocolloids, 2016, 61:821-831. DOI:10.1016/j.foodhyd.2016.07.006.
[14] ABDEL-WAHHAB M A, SALMAN A S, IBRAHIM M I M,et al. Curcumin nanoparticles loaded hydrogels protects against aflatoxin B-1-induced genotoxicity in rat liver[J]. Food and Chemical Toxicology, 2016, 94: 159-171. DOI:10.1016/j.fct.2016.06.005.
[15] APIRATIKUL N, PENGLONG T, SUKSEN K, et al. In vitro delivery of curcumin with cholesterol-based cationic liposomes[J]. Russian Journal of Bioorganic Chemistry, 2013, 39(4): 444-450. DOI:10.1134/S1068162013030035.
[16] CHEN Y, WU Q Q, ZHANG Z H, et al. Preparation of curcuminloaded liposomes and evaluation of their skin permeation and pharmacodynamics[J]. Molecules, 2012, 17(5): 5972-5987.DOI:10.3390/molecules17055972.
[17] LI X Y, CHEN T K, XU L, et al. Preparation of curcumin micelles and the in vitro and in vivo evaluation for cancer therapy[J]. Journal of Biomedical Nanotechnology, 2014, 10(8): 1458-1468. DOI:10.1166/jbn.2014.1840.
[18] MAITI K, MUKHERJEE K, GANTAIT A, et al. Curcuminphospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats[J]. International Journal of Pharmaceutics, 2007, 330(1/2): 155-163. DOI:10.1016/j.ijpharm.2006.09.025.
[19] JIANG S H, WANG C L, CHEN Z Q, et al. Antioxidant properties of the extract and subfractions from old leaves of Toona sinensis roem(Meliaceae)[J]. Journal of Food Biochemistry, 2009, 33(3): 425-441.DOI:10.1111/j.1745-4514.2009.00226.x.
[20] PRASAD S, TYAGI A K, AGGARWAL B B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice[J]. Cancer Research and Treatment,2014, 46(1): 2-18. DOI:10.4143/crt.2014.46.1.2.
[21] ANAND P, KUNNUMAKKARA A B, NEWMAN R A, et al.Bioavailability of curcumin: problems and promises[J]. Molecular Pharmaceutics, 2007, 4(6): 807-818. DOI:10.1021/mp700113r.
[22] 張燕, 王強斌. 銀納米粒子的生物醫學應用研究進展[J]. 生物物理學報, 2010, 26(8): 673-679.
[23] ZHU B, LI Y H, LIN Z F, et al. Silver nanoparticles induce HepG2 cells apoptosis through ROS-mediated signaling pathways[J].Nanoscale Research Letters, 2016, 11(1): 1-8. DOI:10.1186/s11671-016-1419-4.
[24] CHEN Tianfeng, ZHENG Wenjie, WONG Yumshing, et al.Mitochondria-mediated apoptosis in human breast carcinoma MCF-7 cells induced by a novel selenadiazole derivative[J].Biomedicine & Pharmacotherapy, 2008, 62(2): 77-84. DOI:10.1016/j.biopha.2007.12.002.
[25] CHEN Jianping, LI Lin, SU Jianyu, et al. Synergistic apoptosisinducing effects on A375 human melanoma cells of natural borneol and curcumin[J]. PLoS ONE, 2013, 9(6): 1-9. DOI:10.1371/journal.pone.0101277.
[26] SU Jianyu, LAI Haoqiang, CHEN Jianping, et al. Natural borneol, a monoterpenoid compound, potentiates selenocystine-induced apoptosis in human hepatocellular carcinoma cells by enhancement of cellular uptake and activation of ros-mediated DNA damage[J]. PLoS ONE,2013, 8(5): 1-11. DOI:10.1371/journal.pone.0063502.
[27] DARVESH A S, AGGARWAL B B, BISHAYEE A. Curcumin and liver cancer: a review[J]. Current Pharmaceutical Biotechnology, 2012,13(1): 218-228. DOI:10.2174/138920112798868791.
[28] WANG M, RUAN Y X, CHEN Q, et al. Curcumin induced HepG2 cell apoptosis-associated mitochondrial membrane potential and intracellular free Ca2+concentration[J]. European Journal of Pharmacology, 2011, 650(1): 41-47. DOI:10.1016/j.ejphar.2010.09.049.
[29] SYNG-AI C, KUMARI A L, KHAR A. Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2[J]. Molecular Cancer Therapeutics, 2004, 3(9): 1101-1108.
[30] KUNWAR A, BARIK A, MISHRAI B, et al. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells[J]. Biochimica et Biophysica Acta-General Subjects, 2008,1780(4): 673-679. DOI:10.1016/j.bbagen.2007.11.016.
Preparation and Anticancer Activity of Cyclodextrin-Functionalized Curcumin-Loaded Silver Nanoparticles
CHEN Jianping1,2, YU Miao3, QIN Xiaoming1, CHEN Suhua1, ZHONG Saiyi1,*
(1. College of Food and Technology, Guangdong Ocean University, Zhanjiang 524088, China; 2. Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; 3. Grain and Edible Oil Products Quality’s Supervision and Inspection Center in Jiangxi Province, Nanchang 330046, China)
In this study, cyclodextrin-functionalized curcumin-loaded silver nanoparticles (Ag@β-CD@Cur) were prepared with silver nanomaterials and its anticancer activity was also studied. The surface morphology, particle size and stability of Ag@β-CD@Cur were detected by transmission electronic microscopy and Zetasizer Nano. Moreover, the effect of Ag@β-CD@Cur on morphological and viability changes of HepG2 cells were detected by phase-contrast microscopy and(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Moreover, the population of apoptotic cells was detected by flow cytometric analysis. The experimental results showed that Ag@β-CD@Cur was obtained as highly pure,uniformly sized silver nanoparticles with a smooth surface. The average size of Ag@β-CD@Cur was 2 nm. Moreover,Ag@β-CD@Cur had good stability in water for 30 days. After treatment of HepG2 cells with Ag@β-CD@Cur for 24 h,apoptosis characteristics appeared such as cell swelling and cell nuclei pyknosis. At the same time, the cell viability reduced to 24% of the control group. Further flow cytometric analysis showed that the population of apoptotic cells increased from 2.5% (control) to 51.0%. The results demonstrated that after nanoparticlization, curcumin has stronger anticancer activity,which will provide a technical means and theoretical data for curcumin nano-formulation.
curcumin; β-cyclodextrin; silver nanoparticles; preparation; anticancer activity
10.7506/spkx1002-6630-201721006
TS201.2
A
1002-6630(2017)21-0038-05
2016-09-28
國家自然科學基金青年科學基金項目(21602034);廣東省自然科學基金博士啟動項目(2016A30310332);廣東省公益研究與能力建設項目(2015A020209166);廣東省天然產物綠色加工與產品安全重點實驗室開放基金項目(201617)
陳建平(1986—),男,講師,博士,研究方向為天然產物活性物質及其生物利用。E-mail:cjp516555989@126.com
*通信作者:鐘賽意(1979—),男,副教授,博士,研究方向為天然產物活性物質及其生物利用。E-mail:zsylxc@126.com
陳建平, 余苗, 秦小明, 等. 環糊精功能化修飾納米銀負載姜黃素的制備及其抗腫瘤活性[J]. 食品科學, 2017, 38(21):38-42.
10.7506/spkx1002-6630-201721006. http://www.spkx.net.cn
CHEN Jianping, YU Miao, QIN Xiaoming, et al. Preparation and anticancer activity of cyclodextrin-functionalized curcumin-loaded silver nanoparticles[J]. Food Science, 2017, 38(21): 38-42. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-201721006. http://www.spkx.net.cn