劉小媛 高佩玲,2? 楊大明 張晴雯 張宇航
(1 山東理工大學農業工程與食品科學學院,山東淄博 255049)
(2 山東理工大學資源與環境工程學院,山東淄博 255049)
(3 中國農業科學院農業環境與可持續發展研究所,北京 100086)
咸淡水間歇組合灌溉對鹽堿耕地土壤水鹽運移特性的影響*
劉小媛1高佩玲1,2?楊大明1張晴雯3張宇航1
(1 山東理工大學農業工程與食品科學學院,山東淄博 255049)
(2 山東理工大學資源與環境工程學院,山東淄博 255049)
(3 中國農業科學院農業環境與可持續發展研究所,北京 100086)
為探明土壤水鹽在咸淡水間歇組合灌溉條件下的運移情況,采用室內一維垂直積水入滲試驗,以全淡水和微咸水直接灌溉作為對照,設置了四種間歇時間,分別為 0、30、60、120 min,三種咸淡水組合比例,分別為 2∶1、1∶1、1∶2,進行咸淡水間歇組合灌溉。結果表明:在同一入滲時間,間歇組合灌溉的累積入滲量大于淡水灌溉,與微咸水直接灌溉差異較小;累積入滲量(I)與濕潤鋒運移深度(Zf)的決定系數R2均大于 0.99,I和Zf呈良好的線性關系;間歇組合灌溉的土壤含水率、灌水均勻度均遠遠大于淡水灌溉,但間歇組合灌溉的灌水均勻度隨著淡水所占灌水定額比例的增加而減小;在 5~45 cm作物根系密集區,土壤整體脫鹽,但間歇組合灌溉土壤脫鹽率顯著高于微咸水直接灌溉,與淡水灌溉差異較小;不同間歇時間、組合比例對土壤脫鹽率的影響均達到顯著性水平。
間歇組合灌溉;灌水均勻度;一維垂直積水入滲試驗;脫鹽率
黃河三角洲地區自然資源豐富,開發前景廣闊,是我國重要的經濟開發區[1]。該地區土地資源優勢明顯,其未開發利用土地資源達 54.07 萬hm2[2],但土壤鹽漬化程度較高,鹽漬化土地面積高達44.29 萬hm2,占全區耕地總面積的52.5%。目前,對于鹽堿地改良已由早期的淡水漫灌洗鹽的方式逐步發展為以節約淡水資源為主的微咸水灌溉方式[3-6]。已有研究表明[7],利用微咸水進行灌溉能夠促進土壤顆粒的紊凝作用和團聚性,使土壤大孔隙增加,入滲性能增強。但是,微咸水中含有Na+,如果土壤中 Na+含量過多,會造成土壤顆粒松散,破壞土壤結構,使土壤積鹽[8-10]。因此,合理開發利用微咸水資源,使之成為能被農業生產所利用的新水源,不僅可以緩解該地區水資源供需矛盾,還可改良鹽堿耕地。可持續開發利用微咸水資源的關鍵是降低作物根系土層的鹽分含量,為作物提供良好的土壤水鹽環境。間歇灌溉,又稱波涌灌溉,是按照一定的時間間隔周期性供水的一種新的節水灌溉方式,具有節水、保肥、提高灌水均勻性等優點[11]。國內外學者對間歇灌溉的入滲機理進行了廣泛的研究,邵俊昌[12]通過室內土柱實驗,分析了微咸水間歇灌溉對土壤水鹽分布的影響,結果表明,在不同周期數、循環率的條件下,土壤入滲特性有所差異。雪靜等[13]通過室內土柱實驗,發現微咸水間歇灌溉具有增加濕潤深度的特點。汪志榮等[14]分析了Green-Ampt 模型在連續和間歇入滲條件下的適用性,并建立了兩者的聯系,模型擬合精度較高。畢遠杰等[15]通過室內土柱實驗,研究了淡水與微咸水連續與間歇入滲特性的差異,結果表明,淡水間歇入滲減滲,微咸水間歇入滲增滲。上述研究初步揭示了間歇灌溉的理論基礎,對于間歇灌溉的實際應用具有重要意義。但前人的研究多集中在非鹽堿土壤在淡水或者微咸水灌溉條件下的間歇入滲機理,而對于鹽堿土壤在間歇組合灌溉條件下的入滲機理研究較少。
本文以地處黃河三角洲地區的山東省濱州市濱城區的中度鹽堿化土壤為研究對象,將間歇灌溉和先咸后淡組合灌溉相結合,在室內進行一維垂直積水入滲試驗,分析對比不同間歇時間、咸淡水組合比例對中度鹽堿土壤水鹽再分布規律的影響,以期為黃河三角洲地區鹽堿耕地合理利用微咸水灌溉提供理論依據和技術支撐。
試驗用土取自山東省濱州市濱城區的小麥耕地,土壤類型為鹽化潮土。取土深度為80 cm,每隔20 cm分層取擾動土和原狀土,原狀土取回后立即測定土壤容重和田間持水率,分別為1.39 g cm-3和 28.62%;擾動土經過風干、碾壓、篩分(2 mm篩)、均勻混合后制備成室內試驗土樣。利用激光粒度儀(Mastersizer3000,英國)測定其土壤顆粒組成,并按照國際制土壤質地分類標準分類,砂粒、粉粒和黏粒體積分數分別為20.26%、76.78%和2.96%,屬于粉砂質壤土。土壤初始含水率為2.00%,土壤全鹽量為2.381 g kg-1,屬于中度鹽堿化土壤。
試驗用水中淡水使用的是蒸餾水,礦化度為0 g L-1;3 g L-1的微咸水根據研究區潛層地下微咸水的鹽分組成特點,在室內利用NaHCO3、Na2SO4、CaCl2、MgCl2和NaCl室內配制而成,含量分別為783、602、377、644和596 mg L-1。
灌水定額M根據下式計算得:

式中,H為土壤計劃濕潤層深度,由于當地的地下水位較高,且為鹽堿化較嚴重的地區,故計劃濕潤層深度不易超過60 cm[16],故H取60 cm;θmax為土壤計劃濕潤層所允許的最大含水率(占干土重),一般為田間持水率,取28.62%;θ0為土壤計劃濕潤層初始含水率(占干土重),取2.00%;γ土、γ水分別為土壤干容重和水的密度,取1.39 g cm-3和1 g cm-3。由式(1)計算得到一次實驗的灌水定額為22.2 cm。
試驗裝置由試驗土柱和馬氏瓶兩部分組成(圖1)。試驗土柱采用內徑為8 cm,高為90 cm的有機玻璃制成,土柱兩側每隔5 cm開一直徑為15 mm的對稱圓形取樣口(距土柱上沿10 cm以下);利用馬氏瓶供水,其截面積為50.24 cm2,高為50 cm,供水水頭控制在1.5~2.0 cm。土柱與馬氏瓶外壁標有刻度,用于觀測馬氏瓶水位和濕潤鋒運移深度。

圖1 試驗裝置圖Fig. 1 Experiment device diagram
以全淡水和微咸水直接灌溉作為對照,設置了四種間歇時間,分別為0 min、30 min、60 min、120 min;三種咸淡水組合比例,分別為2∶1、1∶1、1∶2,進行間歇組合灌溉。在試驗過程中,將灌水定額分成兩份,第一份為微咸水,第二份為淡水,單輪入滲結束,間歇一定的時間后,進行下一輪入滲,具體的微咸水與淡水灌溉水量如表1所示。為了保證試驗數據的可靠性,每個處理重復三次。
試驗土樣按土壤容重1.39 g cm-3分層(5 cm)裝,共16層。填裝完畢后,在土表放置一張與土柱內截面積相同的帶孔濾紙以防止灌水時對表土的沖刷。在試驗過程中用秒表計時,按照先密后疏的原則記錄濕潤鋒運移深度和馬氏瓶水位。當灌水定額入滲結束后,立即從土表至濕潤鋒處每隔5 cm提取土樣,用烘干法測定土壤含水率,利用電導率儀(DDS-11A,上海)測定水土比為5∶1的土壤溶液電導率,并利用土壤含鹽量與土壤浸提液電導率之間的關系,將電導率轉化為含鹽量,具體的轉化公式為:

表1 間歇組合灌溉下灌溉水量試驗方案Table 1 Experimental scheme of irrigation water amount under intermittent combined irrigation(ICI)

式中,y為土壤含鹽量,g kg-1;ED5∶1為25℃下水土比為5∶1的土壤浸提液電導率,mS cm-1。
采用Microsoft Office Excel 2010進行數據整理,Origin9.0軟件繪圖,SPSS22.0進行數據分析,采用單因素方差分析(One-way ANOVA)和最小顯著差異(LSD)法比較不同土層間和處理間土壤脫鹽率的差異。
2.1.1 對累積入滲量的影響 為了對比分析間歇組合灌溉模式對土壤累積入滲量的影響,點繪不同組合比例、間歇時間下土壤累積入滲量隨入滲時間的變化曲線,見圖2a、圖2b。由圖2a、圖2b 可知,入滲初期,所有處理的累積入滲量增長速度較快,入滲中后期,增幅變緩。在同一入滲歷時,間歇組合灌溉的累積入滲量大于淡水,與微咸水直接灌溉差異較小。圖2a表明,在同一入滲時間下,累積入滲量隨微咸水灌水份額的增加而增加;灌溉定額入滲結束的時間隨淡水份額的增加而增加。圖2b表明,在相同入滲時間,累積入滲量大小順序依次為:間歇組合灌溉0 min > 間歇組合灌溉30 min >間歇組合灌溉60 min >間歇組合灌溉120 min。這主要由于停水時間越長,致密層形成的越充分,越穩定,土壤導水率減小,累積入滲量減小。
2.1.2 對濕潤鋒運移深度的影響 在一維垂直積水入滲過程中,水分在土體內運移,土壤被濕潤部分隨著入滲時間的增加而增大。對于不同的咸淡水間歇組合灌溉模式,濕潤鋒推進速度隨入滲時間的變化不同。圖2 c、圖2d 表示不同組合比例、間歇時間濕潤鋒運移深度的變化規律,由圖2c、圖2d可以看出,入滲初期,濕潤鋒運移速度較快,各個處理間的曲線基本重合,隨著時間的延長,濕潤鋒運移深度與入滲時間的變化曲線斜率發生不同程度的減小,且各個處理間的差距越來越大。對比圖2a、圖2b可知,其與累積入滲量隨入滲時間的變化規律基本一致,為了定量分析兩者的關系,利用線性方程進行擬合:

式中,I為累積入滲量,
cm;Zf為濕潤鋒運移深度,cm;A為擬合系數。
由表2可知,累積入滲量與濕潤鋒運移深度的決定系數R2均大于0.99,I和Zf的線性關系成立。在同一間歇時間下,擬合系數A的變化規律表現為咸∶淡=2∶1>咸∶淡=1∶1>咸∶淡=1∶2。對于咸∶淡=2∶1,隨著間歇時間的增加,擬合系數A增加,而對于咸∶淡=1∶1,咸∶淡=1∶2,擬合系數A隨著間歇時間的增加呈現先增大后減小的趨勢。
土壤水分入滲是指水分通過地表或入滲界面進入土壤的過程[17]。入滲結束后,農田土壤水分分布情況決定了作物對其吸收利用的程度和土壤水分的有效性[18]。不同組合比例、間歇時間土壤含水率隨土層的變化情況見圖3。由圖3可以看出,在土壤上層(5~10 cm),淡水灌溉的土壤含水率最大;在土壤中下層(10~50 cm),間歇組合灌溉的土壤含水率遠遠大于淡水灌溉,與微咸水直接灌溉差異較小,說明間歇組合灌溉有利于提高中下層土壤的持水能力。由圖3a可知,在同一土層深度,土壤含水率變化規律為:咸∶淡=2∶1>咸∶淡=1∶1 >咸∶淡=1∶2,即土壤含水率與咸水所占灌溉定額比例大小呈正比。由圖3b可知,在土壤的表層和下層,土壤含水率表現為:間歇組合灌溉0 min>間歇組合灌溉30 min >間歇組合灌溉60 min >間歇組合灌溉120 min;而對于中層土壤,間歇組合灌溉0 min土壤含水率最低,但仍遠高于淡水灌溉。故在實際灌溉中,苗期使用間歇組合灌溉0 min、生育旺期使用間歇組合灌溉30 min進行灌溉,更有益于提高農田水資源利用效率,使大部分水分貯存在土壤有效深度內,有利于作物的吸收利用。

表2 間歇組合灌溉模式下累積入滲量與濕潤鋒運移深度的擬合系數Table 2 Fitted parameters of cumulative infiltration and downward depth of wetting front relative to ICI mode

圖3 間歇組合灌溉土壤含水率隨土層深度的變化規律Fig. 3 Variation of soil water content with soil depth under ICI
為了更加全面地分析間歇組合灌溉對土壤含水率的影響,引入衡量灌水質量的重要指標灌水均勻度Ed
[19-21],計算公式如下:

式中,Zi為各層的土壤含水率,%;Z—為土壤含水率的平均值,%;N為取樣層數。
由表3可知,間歇組合灌溉的灌水均勻度均高于全淡水灌溉。在間歇組合灌溉模式下,灌水均勻度與間歇時間的關系不明顯,如在組合比例為1∶1條件下,間歇時間由0 min提高至30 min、60 min、120 min時,均勻度基本穩定在0.96左右。灌水均勻度隨著淡水所占灌水定額比例的增加而減小,造成這種現象的原因可能是,利用微咸水進行灌溉能改善土壤結構,增強土壤持水能力,但當微咸水入滲量減小時,土壤結構形成不充分,故對土壤含水率的分布情況影響不明顯。
為了進一步研究間歇組合灌溉對土壤鹽分的淋洗效果,引入土壤脫鹽率來進行說明。土壤脫鹽率的計算方法如下:


表3 間歇組合灌溉土壤灌水均勻度Table 3 Irrigation uniformity under ICI
式中,S1為土壤初始含鹽量,g kg-1;S2為灌后土壤含鹽量,g kg-1。不同間歇組合灌溉模式土壤各層次的脫鹽率如表4所示。
由表4可知,對于所有處理,在5~45 cm作物根系密集區,土壤整體脫鹽,但間歇組合灌溉土壤脫鹽率顯著高于微咸水直接灌溉,與淡水灌溉差異較小。咸淡水組合比例對土壤脫鹽率的影響差異較顯著,淡水所占灌水定額比例越高,脫鹽效果越好,越有利于為作物提供良好的土壤水鹽環境。間歇組合灌溉對各土層土壤脫鹽率的顯著性分析結果表明,不同間歇時間、組合比例對土壤脫鹽率的影響均達到顯著水平,說明間歇組合灌溉參數對土壤鹽分的運移具有重要影響。由土壤脫鹽率平均值顯著性分析結果可知,在間歇時間為0 min、120 min時,組合比例1∶1與1∶2之間的差異不顯著,1∶2與2∶1間差異較顯著;在間歇時間為30 min、60 min時,所有處理之間的差異均不顯著;微咸水直接灌溉條件下土壤脫鹽率平均值顯著低于其他處理。

表4 間歇組合灌溉模式下的土壤各層次脫鹽率Table 4 Soil desalinization rate of different depth relative to ICI mode(%)
利用微咸水灌溉不僅可以使作物增產,而且可改良鹽堿土壤[22-24]。基于此,有學者提出了集咸淡水組合灌溉模式、間歇灌溉方式、作物輪作等一體化的微咸水灌溉調控技術。咸淡水組合灌溉應用于輕度鹽堿化土壤能夠有效提高土壤脫鹽效果,但淡咸咸組合灌溉模式是最合理的入滲模式[25]。在非鹽堿化土壤,淡淡咸組合灌溉模式有利于土壤脫鹽,而咸淡淡能夠有效地淋洗小麥主根區的土壤鹽分[26]。在濱海鹽土區,由于土壤含鹽量較高、有機質和速效養分含量較低,先用咸水灌溉達到穩定狀態,再采用淡水灌溉方式淋洗,效果最好,其脫鹽速度最快,脫鹽率最高[27],與本試驗結果基本一致。但本試驗結果與吳忠東等[25]、米迎賓等[26]研究結果區別較大,產生這種差異的原因可能主要是:與非鹽堿化土壤相比,鹽堿化土壤中離子含量豐富,與微咸水中的離子發生交換吸附作用,使土壤結構發生改變,改善了土壤的入滲性能。
間歇灌溉是一項新型的田間節水灌溉技術,主要包括周期數、間歇時間等技術參數。畢遠杰等[15]探究了微咸水與淡水間歇入滲特性的差異,結果表明,隨著間歇時間的增加,微咸水間歇灌溉的增滲效果變強。劉靜妍等[28]研究表明,與連續灌溉相比,間歇灌溉土壤水分分布更均勻,且間歇灌溉未從本質上改變濕潤鋒運移深度與累積入滲量的線性函數關系,與本試驗結果基本一致。產生這種現象的主要原因可能是:①在間歇灌溉中,灌水是間斷式的,土壤經受灌水濕潤與停水落干的交替過程,土壤顆粒重分布,土壤表層的物理結構、性狀發生改變,使土壤糙率減小,創造了新的水流界面,提高了灌水均勻性;②表層土壤容重增加,使地表形成致密層,土壤孔隙減少,導水率減小,入滲速率降低,這為節水、提高灌水效率和改善灌水質量起到了重要作用。
土壤鹽分的分布易受土壤含水率、土壤結構、灌溉水質等多種因素的影響,咸淡水間歇灌溉可以改善土壤水鹽環境,對作物的生長產生影響。嚴亞龍等[29]研究發現,周期數對土壤鹽分含量分布有一定影響,間歇時間對土壤鹽分含量無顯著影響,而本研究發現,在間歇組合灌溉條件下,間歇時間對土壤脫鹽率的影響均達到顯著水平。吳忠東和王全九[30]研究表明,與連續灌溉相比,間歇灌溉有效降低了土壤鹽分局部累積的發生,保證了土壤的可持續利用,與本研究結果基本一致。本研究還發現,間歇組合灌溉對作物根系密集區(0~45 cm)的鹽分具有淋洗作用,形成低鹽區,不會對作物產生鹽害。同時,咸淡水組合比例對土壤脫鹽率具有重要影響,淡水所占灌水定額比例越高,脫鹽效果越好,越有利于為作物提供良好的土壤水鹽環境。故在實際灌溉中,應根據作物的耐鹽度和作物根系活動層選擇合適的間歇組合灌溉參數,將土壤鹽分對作物的脅迫損害降至最低。
綜上所述,利用咸淡水間歇組合灌溉模式,更有利于為作物提供良好的土壤水鹽環境。由于時間與條件所限,本試驗僅在室內條件下進行,所得結論有一定的局限性,需要大田試驗驗證。為了獲得鹽堿地作物高產優質效果,今后應綜合考慮土壤鹽分、pH及土壤鹽分離子等重要參考指標,全面系統地研究它們對作物產量和品質的影響。
室內土柱試驗下,在同一入滲歷時,間歇組合灌溉累積入滲量、濕潤鋒運移深度均大于淡水灌溉,與微咸水灌溉差異較小,且在間歇組合灌溉條件下,累積入滲量、濕潤鋒運移深度均隨淡水份額的增加、間歇時間的減小而增大。在整個入滲過程中,濕潤鋒運移深度與累積入滲量呈線性關系。間歇組合灌溉能夠顯著提高每層土壤的含水率,且土壤含水率分布更均勻。在5~45 cm作物根系密集區,間歇組合灌溉脫鹽效果更好,更能為作物提供良好的生長環境。
[1] 劉國平. 黃河三角洲濱海鹽漬土改良措施. 山東農業大學學報(社會科學版),2009,11(3):68—69 Liu G P. Improvement measures of coastal saline soil in the Yellow River Delta(In Chinese). Journal of Shandong Agricultural University(Social Science Edition),2009,11(3):68—69
[2] 王洪彬. 滄州地區利用地下微咸水灌溉分析. 水科學與工程技術,1998(4):4—5 Wang H B. Analysis of underground brackish water irrigation in Cangzhou region(In Chinese). Water Sciences and Engineering Technology,1998(4):4—5
[3] 王全九,徐益敏,王金棟,等. 咸水與微咸水在農業灌溉中的應用. 灌溉排水學報,2002,21(4):73—77 Wang Q J,Xu Y M,Wang J D,et al. Application of saline and slight saline water for farmland irrigation(In Chinese). Journal of Irrigation and Drainage,2002,21(4):73—77
[4] 王全九,單魚洋. 微咸水灌溉與土壤水鹽調控研究進展. 農業機械學報,2015,46(12):117—126 Wang Q J,Shan Y Y. Review of research development on water and soil regulation with brackish water irrigation(In Chinese). Transactions of the Chinese Society of Agricultural Machinery,2015,46(12):117—126
[5] Al-Ghamdi A A. Recycling of reverse osmosis reject streams in brackish water desalination plants using fixed bed column softener. Energy Procedia,2017,107:205—211
[6] Gebreyohannes T,Smedt F D,Walraevens K,et al.Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin,Tigray,Ethiopia. Journal of Hydrology,2013,499:110—123
[7] 王全九,畢遠杰,吳忠東. 微咸水灌溉技術與土壤水鹽調控方法. 武漢大學學報(工學版),2009,42(5):559—564 Wang Q J,Bi Y J,Wu Z D. Irrigation technique of saline water and regulation and control method of soil water and salt(In Chinese). Engineering Journal of Wuhan University,2009,42(5):559—564
[8] 吳忠東,王全九. 入滲水礦化度對土壤入滲特征和離子遷移特性的影響. 農業機械學報,2010,41(7):64—69,75 Wu Z D,Wang Q J. Effect on both soil infiltration characteristics and ion mobility features by mineralization degree of infiltration water(In Chinese). Transactions of the Chinese Society of Agricultural Machinery,2010,41(7):64—69,75
[9] 蘇瑩,王全九,葉海燕,等. 咸淡輪灌土壤水鹽運移特征研究. 灌溉排水學報,2005,24(1):50—53 Su Y,Wang Q J,Ye H Y,et al. Research of soil water and salt transport feature for alternative irrigation of fresh and saline water(In Chinese). Journal of Irrigation and Drainage,2005,24(1):50—53
[10] 王雪,樊貴盛. Na+含量對土壤入滲能力影響的試驗研究. 太原理工大學學報,2009,40(4):391—394 Wang X,Fan G S. Experimental study on the influence of sodium ion content on infiltration capability of soils(In Chinese). Journal of Taiyuan University of Technology,2009,40(4):391—394
[11] 王文焰. 波涌灌溉試驗研究與應用. 西安:西北工業大學出版社,1994 Wang W Y. Research and application of surge irrigation experiment(In Chinese). Xi’an:Northwestern Polytechnical University Press,1994
[12] 邵俊昌. 間歇供水對微咸水土壤入滲與水鹽分布特性的影響研究. 吉林水利,2015(8):11—15 Shao J C. Study on the influence of intermittent irrigation on the characteristics of water-salt distribution(In Chinese). Jilin Water Resources,2015(8):11—15
[13] 雪靜,王全九,畢遠杰. 微咸水間歇供水土壤入滲特征. 農業工程學報,2009,25(5):14—19 Xue J,Wang Q J,Bi Y J. Soil infiltration properties with slight saline water intermittent application(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2009,25(5):14—19
[14] 汪志榮,王文焰,王全九,等. 渾水波涌灌溉入滲機制及其Green-Ampt 模型. 水利學報,1998(10):45—49 Wang Z R,Wang W Y,Wang Q J,et al. The Green-Ampt model and infiltration characteristics of surge flow irrigation for muddy water(In Chinese). Journal of Hydraulic Engineering,1998(10):45—49
[15] 畢遠杰,王全九,雪靜. 淡水與微咸水入滲特性對比分析. 農業機械學報,2010,41(7):70—75 Bi Y J,Wang Q J,Xue J. Infiltration characteristic contrast analysis of fresh water and saline water(In Chinese). Transactions of the Chinese Society of Agricultural Machinery,2010,41(7):70—75
[16] 郭元裕. 農田水利學. 第3版. 北京:中國水利水電出版社,1997 Guo Y Y. Irrigation and drainage engineering(In Chinese). 3rd ed. Beijing:China Water amp; Power Press,1997
[17] 樊貴盛. 非飽和土壤介質水分入滲問題的試驗研究. 北京:中國水利水電出版社,2012 Fan G S. Experimental study on water infiltration of unsaturated soil(In Chinese). Beijing:China Wateramp; Power Press,2012
[18] 王乃江,高佩玲,趙連東,等. 咸淡水分配比例對鹽堿土壤水分入滲特征與脫鹽效果的影響. 水土保持學報,2016,30(6):100—105 Wang N J,Gao P L,Zhao L D,et al. Influence of distribution properties between brackish and fresh water on water infiltration characteristics and desalting effect in Saline-Alkali soil(In Chinese). Journal of Soil and Water Conservation,2016,30(6):100—105
[19] 羅春艷,牛文全. 滴頭堵塞率及堵塞位置對灌水均勻度的影響. 干旱地區農業研究,2014(2):196—200 Luo C Y,Niu W Q. Influence of emitter clogged ratio and clogged location to the irrigation uniformity(In Chinese). Agricultural Research in the Arid Areas,2014(2):196—200
[20] 趙東彬,仵峰,宰松梅,等. 不同灌水方式下灌水均勻度評價. 人民黃河,2011(3):76—78 Zhao D B,Wu F,Zai S M,et al. Evaluation of irrigation uniformity under different irrigation patterns(In Chinese). Yellow River,2011(3):76—78
[21] 張林,吳普特,范興科,等. 低壓滴灌灌水均勻度試驗研究. 西北農林科技大學學報(自然科學版),2009,37(12):207—212 Zhang L,Wu P T,Fan X K,et al. Experimental research on drip irrigation uniformity at low-pressure(In Chinese). Journal of Northwest A amp; F University(Natural Science Edition),2009,37(12):207—212
[22] 張越,楊勁松,姚榮江. 咸水凍融灌溉對重度鹽漬土壤水鹽分布的影響. 土壤學報,2016,53(2):388—400 Zhang Y,Yang J S,Yao R J. Effects of saline ice water irrigation on distribution of moisture and salt content in coastal saline soil(In Chinese). Acta Pedologica Sinica,2016,53(2):388—400
[23] 韓建均,楊勁松,姚榮江,等. 蘇北灘涂區水鹽調控措施對土壤鹽漬化的影響研究. 土壤,2012,44(4):658—664 Han J J,Yang J S,Yao R J,et al. Effects of adjustment measure of water-salinity on soil salinization in the coastal area of North Jiangsu Province(In Chinese). Soils,2012,44(4):658—664
[24] 王全九,張繼紅,譚帥. 微咸水入滲下施加PAM土壤水鹽運移特性研究. 土壤學報,2016,53(4):1056—1064 Wang Q J,Zhang J H,Tan S. Effects of PAM on characteristics of water and salt movement in soil under brackish water infiltration(In Chinese). Acta Pedologica Sinica,2016,53(4):1056—1064
[25] 吳忠東,王衛華,張照錄,等. 咸淡組合淋洗對土壤水鹽分布特征的影響. 排灌機械工程學報,2014,32(12):1085—1090 Wu Z D,Wang W H,Zhang Z L,et al. Effect of infiltrated by fresh and saline water alternately on watersalt distribution properties(In Chinese). Journal of Drainage and Irrigation Machinery Engineering,2014,32(12):1085—1090
[26] 米迎賓,屈明,楊勁松,等. 咸淡水輪灌對土壤鹽分和作物產量的影響研究. 灌溉排水學報,2010,29(6):83—86 Mi Y B,Qu M,Yang J S,et al. Effects of rotational irrigation with saline water on soil salinity and crop yield(In Chinese). Journal of Irrigation and Drainage,2010,29(6):83—86
[27] 王艷,吳勇,廉曉娟,等. 不同灌水方式淋洗下濱海鹽土的水鹽運移特征. 中國農學通報,2012,28(32):258—263 Wang Y,Wu Y,Lian X J,et al. Water and salt transporting features of coastal saline soil with leaching by different irrigation methods(In Chinese). Chinese Agricultural Science Bulletin,2012,28(32):258—263
[28] 劉靜妍,畢遠杰,孫西歡,等. 交替供水條件下土壤入滲特性與水鹽分布特征研究. 灌溉排水學報,2015,34(4):55—60 Liu J Y,Bi Y J,Sun X H,et al. Characteristics of soil infiltration and water-salt distribution under alternate irrigation(In Chinese). Journal of Irrigation and Drainage,2015,34(4):55—60
[29] 嚴亞龍,畢遠杰,郭向紅,等. 微咸水間歇供水方式土壤水鹽分布分析. 節水灌溉,2015(6):39—42,46 Yan Y L,Bi Y J,Guo X H,et al. Analysis on soil water and salt distribution of saline water intermittent water supply mode(In Chinese). Water Saving Irrigation,2015(6):39—42,46
[30] 吳忠東,王全九. 微咸水波涌畦灌對土壤水鹽分布的影響. 農業機械學報,2010,41(1):53—58 Wu Z D,Wang Q J. Effect of saline water surge flow border irrigation on soil water-salt distribution(In Chinese). Transactions of the Chinese Society of Agricultural Machinery,2010,41(1):53—58
(責任編輯:陳榮府)
Effects of Intermittent Combined Irrigation on the Characteristics of Soil Water and Salt Movement in Farm Land of Salt-affected Soil
LIU Xiaoyuan1GAO Peiling1,2?YANG Daming1ZHANG Qingwen3ZHANG Yuhang1
(1 Institute of Agriculture Engineering and Food Science,Shandong University of Technology,Zibo,Shandong 255049,China)
(2 Institute of Resources and Environment Engineering,Shandong University of Technology,Zibo,Shandong 255049,China)
(3 Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences,Beijing 100086,China)
【Objective】Researchers in the Salt Soil Laboratory of the USA(United States Department of Agriculture,1954)and ASCE(American Society of Civil Engineers,1990)have brought forth a series of advice aiming at ameliorating salt-affected soils. Amelioration of salt-affected soils requires for the first priority removal of excessive soluble salt. However,in actual productive application,the only method available for reducing soluble salt content in the root zone of the crop is to wash the salt off the soil with fresh water. Owing to shortage of fresh water resources,the use of brackish water as replacement has aroused extensive attention. Reasonable exploitation of brackish water can not only improve crop production,but also ameliorate salt-affected soils. To explore characteristics of soil and water movement in the fields under intermittent combined irrigation(ICI),a lab experiment was conducted in an attempt to provide certain theoretical basis and technical support for reasonable use of brackish water in moderately salt-affected soil.【Method】The experimental system consisted of soil columns and Mariotte bottles. The latter was used to supply water with a constant water head of 1.5~2 cm. The one-dimension vertical water infiltration experiment was designed to have four treatments in terms of interval in intermittent irrigation,i.e. 0 min,30 min,60 min and 120 min and five treatments in terms of combination of the irrigation water,i.e. simple fresh water(F),simple brackish water(B),2∶1(brackish and fresh water),1∶1(brackish and fresh water)and 1∶2(brackish and fresh water). During the experiment,wetting front movement and cumulative infiltration was monitored. At the end of the experiment,soil samples were extracted at the soil extraction port as quickly as possible to avoid the effect of water redistribution inside the cylinder,and soil water content was measured with the oven-drying method and electrical conductivity of the soil solution with a conductivity meter.【Result】Cumulative infiltration was relatively high during the initial stage of infiltration,and dropped drastically with the experiment going on. Measurements done at the same time show that the treatments of ICI were all higher than Treatments F,but differed slightly from Treatment B in cumulative infiltration,and among the treatments of ICI,the same in quantity of water supply,cumulative infiltration increased with the ratio of brackish water. And the infiltration lasted longer when the ratio of fresh water was higher. Cumulative infiltration was in good linear relationship with wetting front movement(R2>0.99). Determination of soil water content at the same soil depth shows that the treatments of ICI exhibited an order of ICI 2∶1(Brackish water :Fresh water)> ICI 1∶1 > ICI 1∶2,indicating that soil water content was positively related proportional to ratio of brackish water. Treatments ICI were all higher than Treatment F in irrigation uniformity,which was negatively related to ratio of fresh water. In the 5~45 cm crop root zone,soil desalinization rate was significantly higher in Treatments ICI than in Treatment B,and varied sharply between the treatments. The higher the proportion of fresh water,the higher the soil desalinization rate,the more favorable the salt-water environment for the crop to grow in. Significance tests of the effects of Treatments ICI on soil desalinization rate show that all the treatments reached significant levels,regardless of combination ratio and length of interval,indicating that the parameters of ICI have important on soil salt movement.【Conclusion】Intermittent combined irrigation is more conducive than other irrigation modes to the formation of a good soil water-salt environment for crops to grow. In actual productive application,a proper combination(fresh water and brackish water ratio and interval)should be designed and used in the light of crop salt tolerance and depth of the main root system active zone,so as to minimize damage of salt stress to crops.
Intermittent combined irrigation;Irrigation uniformity;One-dimension vertical water infiltration experiments;Soil desalinization rate
S275.8
A
10.11766/trxb201705090207
* 國家水體污染控制與治理科技重大專項(2015ZX07203-007)、國家自然科學基金項目(41402208)和山東省自然科學基金項目(ZR2016EEM34)資助 Supported by the National Major Science and Technology Program for Water Pollution Control and Treatment(No.2015ZX07203-007),the National Natural Science Foundation of China(No.41402208)and the Natural Science Foundation of Shandong Province(No.ZR2016EEM34)
? 通訊作者 Corresponding author,E-mail:gaoplxj@163.com
劉小媛(1991—),女,山東青島人,碩士,主要從事農業水土工程研究。E-mail:402983329@qq.com
2017-05-09;
2017-07-23;優先數字出版日期(www.cnki.net):2017-08-18