999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Rotational Effect on thermoelastic Stoneley, Love and Rayleigh waves in Fibre-reinforced Anisotropic General Viscoelastic Media of Higher Order

2017-12-11 01:38:07AbdAllaAftabKhanandAboDahab
Computers Materials&Continua 2017年1期

A. M. Abd-Alla, Aftab Khan and S. M. Abo-Dahab

Rotational Effect on thermoelastic Stoneley, Love and Rayleigh waves in Fibre-reinforced Anisotropic General Viscoelastic Media of Higher Order

A. M. Abd-Alla1,2*, Aftab Khan3and S. M. Abo-Dahab1,4

In this paper, we investigated the propagation of the rmoelastic surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order ofnth order, including time rate of strain under the influence of rotation.The general surface wave speed is derived to study the effects of rotation and thermal on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. Our results for viscoelastic of order zero are well agreed to fibre-reinforced materials. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium. It is also observed that, surface waves cannot propagate in a fast rotating medium. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation on fibrereinforced anisotropic general viscoelastic media are very pronounced.

Fibre-reinforced, viscoelastic, surface waves, rotation, anisotropic,thermoelastic.

1 Introduction

These problems are based on the more realistic elastic model since thermoelastic waves are propagating on the surface of earth, moon and other planets which are rotating about an axis. Schoenberg and Censor (1973) were the first to study the propagation of plane harmonic waves in a rotating elastic medium where it is shown that the elastic medium becomes dispersive and anisotropic due to rotation. Later on, many researchers introduced rotation in different theories of thermoelasticity. Agarwal (1979) studied thermo-elastic plane wave propagation in an infinite non-rotating medium. The normal mode analysis was used to obtain the exact expression for the temperature distribution,the thermal stresses and the displacement components. The purpose of the present work is to show the thermal and rotational effects on the surface waves.Surface waves have been well recognized in the study of earthquake, seismology, geophysics and Geodynamics. A good amount of literaturefor surface waves is available(in Refs. Bullen (1965), Ewing and Jardetzky (1957), Rayleigh (1885), Stoneley (1924)). Acharya andSingupta(1978),Pal and Sengupta(1987)and Sengupta and Nath(2001) and his research collaborators have studied surface waves. These waves usually have greater amplitudes ascompared with body waves and travel more slowly than body waves. There are many types of surface waves but we only discussed Stoneley, Love andRayleigh waves.Earthquakeradiate seismic energy as both body and surface waves. These are also used for detecting cracks and other defects in materials. The idea of continuous self-reinforcement at every point of an elastic solid was introduced by Belfield et al. (1983). The superiority of fibre-reinforced composite materials over other structural materials attracted many authors to study different types of problems in this field. Fibre-reinforced composite structures are used due to their low weight and high strength. Two important components, namely concrete and steel of a reinforced medium are bound together as a single unit so that there can be no relative displacement between them i.e. they act together as a single anisotropic unit. The artificial structures on the surface of the earth are excited during an earthquake, which give rise to violent vibrations in some cases(Refs. (Acharya (2009), Samaland and Chattaraj (2011)). Engineers and architects are in search of such reinforced elastic materials for the structures that resist the oscillatory vibration. The propagation of waves depends upon the ground vibration and the physical properties of the material structure. Surface wave propagation in fiber reinforced media was discussed by various authors (Sing (2006), Kakar et al. (2013)). Abd-Alla et al.(2012)investigated the transient coupled thermoelasticity of an annular fin.Reflection of quasi-P and quasi-SV waves at the free and rigid boundaries of a fibrereinforced medium was also discussed by Chattopadhyay et al.(2012). Abd-Alla and Mahmoud(2011) investigated the magneto-thermoelastic problem in rotating non-homogeneous orthotropic hollow cylinder under the hyperbolic , heat conduction model.The extensive literature on the topic is now available and we can only mention a few recent interesting investigations in (Refs. Singh and Singh (2004),Abd-Alla (2013), Singh (2007), Abd-Alla (2011), Abo-Dahab et al. (2016), Alla et al.(2015), Kumar et al. (2016), Said and Othman (2016), Bakora and Tounsi(2015)).The temperature-rate dependent theory of thermoelasticity, which takes into account two relaxation times, was developed by Green and Lindsay (1972).Kumar et al. (2016) investigated the thermomechanical interaction transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with the combined effects of rotation. Marin (1996) studied the Lagrange identity method in thermoelasticity of bodies with microstructure. Marin (1995) presented the existence and uniqueness in thermoelasticity of micropolar bodies. Marin and Marinescu (1998) investigated the thermoelasticity of initially stressed bodies.Asymptotic equipartition of energies.

Theaim of this paper is to investigate the propagation ofthermoelastic surface wavesin a rotating fibre-reinforced viscoelasticanisotropic media of higher order. The general surface wave speed is derived to study the effectof rotation and thermal on surface waves.The wave velocity equations have been obtained for Stoneley waves, Rayleigh waves and Love waves, and are in well agreement with the corresponding classical result in the absence of viscosity, temperature, rotation as well as homogeneity of the material medium.The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreedto fibre-reinforced materials. It is also observed that the corresponding classical results follow from this analysis, in viscoelastic media of order zero, by neglecting reinforced parameters, rotational and thermal effects. Numerical results are given and illustrated graphically. It is important to note that Love wave remains unaffected by thermal and rotationaleffects.

2 Formulation of the problem

The constitutive relation of an anisotropic and elastic solid is expressed by the generalized Hooke’s law, which can be written as

If a body is rotating about an axis with a constant angular velocity ?then the equation of motioncan be written as follows((Abd-Alla et al. (2013)).

The equations (5) of motiontake the following form

From equation (2.3), we have

Thus the above set of equations (8-11) becomes (For convenience dashes are omitted)

3 Solution of the problem

Now our main objective to solve the eqs. (10), (12), (13) and (14).We seek the solution of(10), (12), (13), (14) in the following forms

Thusthe coupled equations (12-14)become

Substituting from Equation (15) into Equation (10), we obtain the following solution,

The above set of equations (17--19) can be written as

From aboveset of equations (21), we have

The auxiliary equation (23) becomes

A, B andC must be positive for real positive roots (m). If there is no thermal effect, then the above equation is quadratic inmand it is easy to solve. But in the case of thermoelastic, it is cubic.A, BandC must positively impose a necessary and sufficient condition upon the frequency of rotation of the medium. Through which a surface wave cannot propagate in a fast rotating medium. If there is no thermal effect then

This means that in a fast rotating medium, surface wave cannot propagate.

Hence we obtain the expressions of the displacement components, temperature distribution function and stresses as follows

Also it is found that

Similar expressions can be obtained for second medium and present them with dashes as follows

Also it is found that

In order to determine the secular equations, we have the following boundary conditions.

4 Boundary conditions

1) The displacement components between the mediums are continuous, i.e.

3) Thermal boundary conditions [19] gives

Boundary conditions imply the following equations

From the above equations containingEandF, we have

From equation (45), we get the velocity of surface waves in common boundary between two viscoelastic, fiber-reinforced solid media of Voigt type, where the viscosity is of general nth order involving time rate of change of strain.

5 Particular cases

5.1 Stoneley waves

It is the generalized form of Rayleigh waves in which we assume that the waves are propagated along the common boundary of two semi - infinite media M1 and M2.Therefore, equation (45) determines the wave velocity equation for Stoneley waves in the case of general viscoelastic, fibre- reinforced solid medal of nth order involving time rate of strain. Clearly from the equation (45), it follows that wave velocity of the Stoneley waves depends upon the parameters for fibre-reinforced of the material medium and the viscosity. Since the wave velocity equation (45) for Stoneley waves under the present circumstances does not contain ω explicitly, such types of waves are not dispersive like the classical one. In case of absence of parameters for fibre-reinforced and isotropic viscoelastic medium of 1st order involving time rate of change of strain is taken.Equation (45) is the secular equation for Stonely waves in a fibre reinforced viscoelastic media of orders. Fork=0, results are similar to Abd-Alla, et al. (2013)and Lotfy(2012). If rotational, thermal and fiber-reinforced parameters are ignored, then fork=0, the results are same as Stoneley (1924).

Then equation (45) reduces to,

Figure 1: Variation of the magnitude of the frequency equation coefficient for Stoneley waves velocity with respect to ?with variation of c,ωand k

Equation (46) gives the wave velocity equation of Stoneley waves in a viscoelastic medium of Voigt type where the viscosity is of Ist order involving time rate of change of strain which is completely in agreement with classical results given by Sengupta and Nath [9]. Further equation (46), of course, is in complete agreement with the corresponding classical result, when the effect of rotation, viscosity and parameters of fibre-reinforcement are ignored.

5.2 Love waves

To investigate the rotational effects on Love waves in a fibre reinforced viscoelastic media of higher order, we replace mediumM1by an infinitely extended horizontal plate of finite thickness d and bounded by two horizontal plane surfacesx2=0andx2=d. MediumMis semi infinite as in the general case.

The boundary conditions of Love wave are as follows

The displacement componentu3andτ12between the mediums is continuous, i.e.

This implies

For non trivial solution implies

This gives the wave velocity of Love waves propagating in a fiber-reinforced viscoelastic medium of orders. For k=0, the results are exactly same as in [23]. It is interesting to note that rotation and thermal does not affect the velocity of Love waves.

Figure 2: Variation of the magnitude of the frequency for Love waves with respect to with the variation of c,ωand k

5.3 Rayleigh waves

Rayleigh wave is a special case of the above general surface wave. In this case we consider a model where the mediumM1is replaced by vacuum. Since the boundary is adjacent to vacuum. It is free from surface traction. So the stress boundary condition in this case may be expressed as

Thus the above set of equations reduces to

An Einstein summation convention for repeated indices upon k is applied.

Eliminating the constantsM1,M2andM3we get the wave velocity equation for Rayleigh waves in the rotating thermoelastic fibre-reinforced viscoelastic media of order n asunder,

The Eq. (5.1) is the magnitude of the frequency equationfor Rayleigh wave for the medium M1. For k = 0, that is, our results are similar to Abd-Alla et. al. [18]. For a non-rotating media, we have to put?=0, then for k = 0 our results are same as that of[9]. If one ignores the fiber-reinforced parameters, then the results are same as Rayleigh[5].

Figure 3: Variation of the magnitude of the frequency and attenuation coefficient for Rayleigh waves with respect to ?with variation of c,ω,k,d

6 Numerical results and discussion

The following values of elastic constants are considered Chattopadhyay et al. (2002) and Singh (2006), for mediumsMandM1respectively.

Taking into consideration Green-Lindsay theory, the numerical technique outlined above was used to obtain secular equation, surface wavevelocity and attenuation coefficients under the effects of rotation in two models. For the sake ofbrevity, some computational results are being presented here.The variations are shown in Figs. 1-3 respectively.

7 Conclusions

The analysis of graphs permits us some concluding remarks.

1.The surface waves in a homogeneous, anisotropic, fibre-reinforced viscoelastic solid media under the rotation and higher orderkof nth order including time rate of strain are investigated.

2.Love waves do not depend on temperature; these are only affected by viscosity,rotation, frequency, higher orderkof net order, including time rate of strain, phase velocity and thicknessof the medium. In the absence of all fields, the dispersion equation is incomplete agreement with the corresponding classical result.

3.Rayleigh waves in a homogeneous, general thermo viscoelastic solid medium of higher order, including time rate of change of strain we find that the wave velocity equation,proves that there is a dispersion ofwaves due to the presence of rotation, temperature,frequency, phase velocity and viscosity. The results are incomplete agreement with the corresponding classical results in the absence of all fields.

4.The wave velocity equation of Stoneley waves is very similar to the corresponding problem in the classical theoryof elasticity. The dispersion of waves is due to the presence of rotation, phase velocity, frequency, temperatureand viscosity of the solid.Also, wave velocity equation of this generalized type of surface waves is incompleteagreement with the corresponding classical result in the absence of all fields.5.The results presented in this paper will be very helpful for researchers in geophysics,designers of new materials and the study of the phenomenon of rotation is also used to improve the conditions of oil extractions.

Schoenberg, M. and Censor, D.(1973)“Elastic waves in rotating media”, Quart. Appl.Math., 31, 115-125,

Agarwal, V. K.(1979) “On plane waves in generalized thermoelasticity”, Acta Mech.,31, 185-198.

Bullen, K. E.(1965) “An introduction to the theory of seismology”, London, Cambridge University press, 85-99.

Ewing, W. M. andJardetzky,W. S.(1957)“Elastic waves in layered media”, New York,Toronto, London, McGraw Hill Press F., 348- 350.

Rayleigh, L.(1885)“On wave propagation along the plane surface of an elastic solid”,Proc. London. Math. Soc., 17, 4-11.

Stoneley,R.(1924) “The elastic waves at the surface of separation of two solids”, Proc. R.Soc. London, A106, 416-420.

Acharya, D. P. and Sengupta, P. R.(1978)“Magneto-thermo-elastic surface waves in initially stressed conducting media”, Acta Geophys, Polon. A26, 299-311.

Pal, K. C. and Sengupta, P. R.(1987) “Surface waves in visco-elastic media of general type in the presence of thermal field and gravity”, Proc. Indian Natl. Sci. Acad, A53,353-372.

Sengupta, P. R. and Nath, S.(2001) “Surface waves in fibre-reinforced anisotropic elastic media”, S?dhan?, 26, 363-370.

Belfield, A. J., Rogers, T. G. and Spencer, A. J. M.(1983) “Stress in elastic plates reinforced by fibre lying in concentric circles”, J. Mech. Phys. Solids, 31, 25-54.

Acharya, D. P. and Roy, I.(2009) “Magneto-elastic Surface waves in electrically conducting fibre-reinforced anisotropic elastic media”, Bulletin. Academia Sinica, 4,333-352.

Samaland, S. K. and Chattaraj, R.(2011)“Surface wave propagation in fiber-reinforced anisotropic elastic layer between liquid saturated porous half space and Uniform Liquid Layer” ActaGeophysica, 59, 470-482.

Singh, B. (2006) “Wave propagation in thermally conducting linear fibre-reinforced composite materials”, Arch Appl. Mech., 75b, 513-520.

Kakar,R.,Kakar, S. and Kaur, K.(2013)“Rayleigh, Love and Stoneley waves in fibre-reinforced, anisotropic, viscoelastic media of higher order under gravity”,International Journal of Physical and Mathematical Sciences, 4, 53-61.

Abd-Alla, A.M., Mahmoud, S.R. andAbo-Dahab, S.M.(2012) “On problem of transient coupled thermoelasticity of an annular fin”, Meccanica, 47, 1295–1306.

Chattopadhyay,A., Venkateswarlu,R. L. andSaha,K S.(2002) “Reflection of quasi-P and quasi-SV waves at the free and rigid boundaries of a fibre-reinforced medium”,S?dhan? 27, 613-630

Singh, B.and Singh, S.J.(2004) “Reflection of plane waves at the free surface of a fibre-reinforced elastic half space”, S?dhan?, 29, 249-257

Abd-Alla, A. M., Abo-Dahab, S. M. and Al-Mullise,A.(2013)“Effects of rotation and gravity field on surface waves in Fiber-reinforced thermoelastic media under four theories”, Journal of Applied Mathematics, 2013, 1-20

Singh, B.(2007) “Wave propagation in an incompressible transversely isotropic fibre-reinforced elastic media”,Archive of Applied Mechanics,77, 253-258.

Abd-Alla, A. M., Abo-Dahab, S. M. and Hammad,H. A. H.(2011)“Propagation of Rayleigh waves in generalized magneto-thermoelastic orthotropic material under initial stress and gravity field”, Applied Mathematical Modelling, 35 2981-3000.

Abd-Alla,A.M. and Mahmoud, S.R.(2010) “Magneto-thermoelastic problem in rotation non-homogeneous orthotropic hollow cylinder under the hyperbolic heat conduction model”,Meccanica, 45,451-462.

Abo-Dahab, S.M., Abd-Alla, A.M. and Khan, A.(2016)“Rotational effect on Rayleigh,Love and Stoneley waves in non-homogeneous fibre-reinforced anisotropic general viscoelastic media of higher order” Structural Engineering and Mechanics, An international journal, 58, 181-197.

Abd-Alla, A.M., Abo-Dahab, S.M. and Bayones, F.S.(2015), “Wave propagation in fibre-reinforced anisotropic thermoelastic medium subjected to gravity field”, Struct. Eng.Mech., 53, 277-296.

Kumar, R., Sharma, N. and Lata, P.(2016) “Effects of Hall current in a transversely isotropic magnetothermoelastic with and without energy dissipation due to normal force”,Structural Engineering and Mechanics, An international journal, 57, 91-103.

Said, S.M. and Othman, M.I.A.(2016) “Wave propagation in a two-temperature fiber-reinforced magneto-thermoelastic medium with three-phase-lag model ” Structural Engineering and Mechanics, An international journal,, 57, 201- 220.

Bakora, A. and Tounsi, A.(2015) “Thermo-mechanical post-buckling behavior off thick functionally graded plates resting on elastic foundations”, Structural Engineering and Mechanics, An international journal, 56 (1), 85-106.

Green, A. E. and Lindsay,K. A.(1972) “Thermoelasticity”, Journal of Elasticity, 2, 1-7

Kumar, R., Sharma, N. and Lata, P.(2016) "Thermomechanical interactions transversely isotropic magnetothermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures" , 40,6560-6575.

Marin, M.(1996) "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32, 1229-1240.

Marin, M., (1995) "On existence and uniqueness in thermoelasticity of micropolar bodies", Opens overlay Opens overlay Comptes Rendus, Acad. Sci. Paris, Serie II, 321,475-480.

Marin, M. and Marinescu, C.(1998) "Thermoelasticity of initially stressed bodies.Asymptotic equipartition of energies", International Journal of Engineering Science,36,International Journal of Engineering Science, 36, 73-86.

1Math. Dept., Faculty of Science, Taif University 888, Saudi Arabia.

2Math. Dept., Faculty of Science, Sohag University, Egypt.

3Department of Mathematics, COMSATS, Institute of Information, Park Road, Chakshahzad, Islamabad,Pakistan.

4Math. Dept., Faculty of Science, SVU, Qena 83523, Egypt.

*Corresponding author: A.M.Abd-Alla, E-mail:mohmrr@yahoo.com

主站蜘蛛池模板: 精品日韩亚洲欧美高清a| 欧美性爱精品一区二区三区 | 色综合婷婷| 国产在线八区| 最新国产高清在线| 91精品专区国产盗摄| 免费在线一区| 成人在线第一页| 国产亚卅精品无码| 特级精品毛片免费观看| 久久久91人妻无码精品蜜桃HD| 欧美成人在线免费| 亚洲欧美成人网| 精品一区二区久久久久网站| 99精品在线视频观看| 国产h视频免费观看| 亚洲国产日韩在线成人蜜芽| 青青草91视频| 欧美激情视频二区三区| 日本道中文字幕久久一区| 亚洲a级毛片| 亚洲天堂久久| 在线精品视频成人网| 一级毛片高清| 亚洲无码在线午夜电影| 日本免费一区视频| 国产青榴视频在线观看网站| 欧美亚洲国产日韩电影在线| 青青青国产视频手机| 国产乱人乱偷精品视频a人人澡| 婷婷色中文网| 伊人丁香五月天久久综合 | 久久精品一品道久久精品| 欧美一级片在线| 免费可以看的无遮挡av无码| 狼友av永久网站免费观看| 久久精品中文字幕少妇| 国产无码高清视频不卡| 九色综合伊人久久富二代| 免费无码AV片在线观看中文| 亚洲成av人无码综合在线观看| 成年人福利视频| 911亚洲精品| 国产91线观看| 欧洲日本亚洲中文字幕| 97青草最新免费精品视频| 欧美自慰一级看片免费| 日本午夜网站| 九九香蕉视频| 不卡国产视频第一页| 亚洲动漫h| 国产乱肥老妇精品视频| 二级特黄绝大片免费视频大片| 91小视频在线观看| 成人在线综合| 国产午夜福利亚洲第一| 在线观看免费人成视频色快速| 一级毛片无毒不卡直接观看 | 青青操国产视频| 国产高清自拍视频| a毛片免费观看| 国产哺乳奶水91在线播放| 激情无码视频在线看| 日韩成人高清无码| 99re66精品视频在线观看| 亚洲欧美另类视频| 精品久久国产综合精麻豆| 夜色爽爽影院18禁妓女影院| 亚洲中文字幕手机在线第一页| 精品国产一区91在线| 久热99这里只有精品视频6| 色天天综合久久久久综合片| 久久综合九九亚洲一区 | www.狠狠| 亚洲综合经典在线一区二区| 日韩毛片免费观看| 欧美在线一二区| 一级毛片免费观看不卡视频| 久久视精品| 无码视频国产精品一区二区| 91欧美亚洲国产五月天| 色婷婷国产精品视频|