999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

由聯苯四羧酸配體構筑的一維錳髤和二維銅髤配位聚合物的合成、晶體結構及磁性質

2017-12-13 10:52:08陳金偉溫炳松曹芳利邱文達成曉玲
無機化學學報 2017年12期
關鍵詞:結構

陳金偉 溫炳松 曹芳利 邱文達 黎 彧*, 成曉玲*,

由聯苯四羧酸配體構筑的一維錳髤和二維銅髤配位聚合物的合成、晶體結構及磁性質

陳金偉1溫炳松2曹芳利2邱文達3黎 彧*,3成曉玲*,2

(1廣東輕工職業技術學院輕化工技術學院,廣州 510300)
(2廣東工業大學輕工化工學院,廣州 510006)
(3廣東輕工職業技術學院生態環境技術學院,廣州 510300)

采用水熱方法,用 2 種聯苯四羧酸配體(2,4-H4bpta 和 3,5-H4bpta)和 4,4′-聯吡啶(4,4′-bipy)或 2,2′-聯吡啶(2,2′-bipy)分別與 MnCl2·4H2O 和 CuCl2·H2O 反應,合成了一個具有一維雙螺旋鏈結構的配位聚合物[Mn(μ3-2,4-H2bpta)(4,4′-bipy)2]n(1)和一個二維層狀配位聚合物{[Cu(μ4-3,5-bpta)0.5(2,2′-bipy)(H2O)]·H2O}n(2),并對其結構和磁性質進行了研究。結構分析結果表明2個配合物分別屬于單斜晶系,P21/c和C2/c空間群。配合物1具有一維雙螺旋鏈結構,而且這些一維鏈通過O-H…N氫鍵作用進一步形成了二維超分子網絡。而配合物2具有二維層狀結構。研究表明,配合物1中相鄰錳離子間存在鐵磁相互作用。

配位聚合物;氫鍵;四羧酸配體;磁性

In recent years,a high interest has been focused on the design and construction of the coordination polymers due to their potential applications,architectures,and topologies[1-5].Many factors such as the coordination requirements of the metal centers,the structural characteristics of the ligand,the solvent system,and pH value can play the key role in the construction of the coordination networks[6-12].The selection of the special ligands is very important in the construction of these coordination polymers.

Multi-carboxylate biphenyl ligands have been certified to be of great significance as constructors due to their strong coordination abilities in various modes,which could satisfy different geometric requirements of metal centers[8-17].In order to extend our research in this field,we chose two biphenyl tetracarboxylic acid ligands,biphenyl-2,2′,4,4′-tetracarboxylic acid (2,4-H4bpta)and biphenyl-3,3′,5,5′-tetracarboxylic acid(3,5-H4bpta)to construct novel coordination polymers.Both H4bpta ligands possesses the following features:(1)they have four carboxyl groups that may be completely or partially deprotonated,inducing rich coordination modes and allowing interesting structures with higher dimensionalities; (2)they can act as hydrogen-bond acceptor as well as donor,depending upon the degree of deprotonation; (3)two sets of carboxyl groups separated can form different dihedral angles through the rotation of C-C single bonds;thus,it may ligate metal centers in different orientation.

Taking into account these factors,we herein report the syntheses,crystal structures,and magnetic properties of two Mn髤 and Cu髤 coordination polymers constructed from H4bpta.

1 Experimental

1.1 Reagents and physical measurements

All chemicals and solvents were of AR grade and used without further purification.Carbon,hydrogen and nitrogen were determined using an Elementar Vario EL elementalanalyzer.IR spectra were recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer.Thermogravimetric analysis(TGA)data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10 ℃·min-1.Magnetic susceptibility data were collected in the 2~300 K temperature range with a Quantum Design SQUID Magnetometer MPMS XL-7 with a field of 0.1 T.A correction was made for the diamagnetic contribution prior to data analysis.

1.2 Synthesis of[Mn(μ3-2,4-H2bpta)(4,4′-bipy)2]n(1)

A mixture of MnCl2·4H2O (0.040 g,0.20 mmol),2,4-H4bpta (0.066 g,0.2 mmol),4,4′-bipy (0.031 g,0.2 mmol),NaOH (0.016 g,0.40 mmol),and H2O(10 mL)was stirred at room temperature for 15 min,and then sealed in a 25 mL Teflon-lined stainless steel vessel,and heated at 160℃for 3 days,followed by cooling to room temperature at a rate of 10 ℃·h-1.Yellow block-shaped crystalsof1 wereisolated manually,and washed with distilled water.Yield:35%(based on 2,4-H4bpta).Anal.Calcd.for C36H24MnN4O8(%):C 62.16,H 3.48,N 8.06;Found(%):C 61.93,H 3.44,N 8.11.IR (KBr,cm-1):1 672m,1 624w,1 598s,1 572s,1 533m,1 489w,1 424m,1 377w,1 303m,1 277w,1 246w,1 216w,1 164w,1 120w,1 064w,1 042w,999w,972w,899w,851w,808m,773w,730w,691w,656w,626w,569w,543w.

1.3 Synthesis of{[Cu(μ4-3,5-bpta)0.5(2,2′-bipy)(H2O)]·H2O}n(2)

The synthesis of 2 is similar with that of 1 except that CuCl2·H2O(0.030 g,0.20 mmol),3,5-H4bpta(0.033 g,0.1 mmol),2,2′-bipy(0.031 g,0.2 mmol)were used instead of MnCl2,2,4-H4bpta and 4,4′-bipy.Blue block-shaped crystals of 2 were isolated manually,and washed with distilled water.Yield:65%(based on 3,5-H4bpta).Anal.Calcd. for C18H15CuN2O6(%):C 51.61,H 3.61,N 6.69;Found(%):C 51.78,H 3.58,N 6.65.IR (KBr,cm-1):3 647w,3 307w,1 604w,1 569s,1 493w,1 472w,1 448w,1 402m,1 356s,1 311w,1 250w,1 174w,1 114w,1 073w,1 052w,1 027w,896w,769m,712w,652w,541w.The complexes are insoluble in water and common organic solvents,such as methanol,ethanol,acetone,and DMF.

1.4 Structure determinations

The data of two single crystals with dimensions of 0.20 mm×0.16 mm×0.16 mm (1)and 0.25 mm×0.22 mm×0.21 mm(2)was collected at 293(2)K on a Bruker SMART APEX Ⅱ CCD diffractometer with Mo Kα radiation(λ=0.071 073 nm).The structures were solved by direct methods and refined by full matrix leastsquare on F2using the SHELXTL-2014 program[18].All non-hydrogen atoms were refined anisotropically.All the hydrogen atoms(except the ones bound to water molecules)were positioned geometrically and refined using a riding model.The hydrogen atoms of water moleculeswerelocated bydifferencemapsand constrained to ride on their parent O atoms.A summary of the crystallography data and structure refinements for 1 and 2 is given in Table 1.The selected bond lengths and angles for complexes 1 and 2 are listed in Table 2.Hydrogen bond parameters of complexes 1 and 2 are given in Table 3.

CCDC:1560401,1;1560402,2.

Table 1 Crystal data for complexes 1 and 2

Table 2 Selected bond distances(nm)and bond angles(°)for complexes 1 and 2

Table 3 Hydrogen bond parameters of complexes 1 and 2

2 Results and discussion

2.1 Description of the structure

2.1.1 [Mn(μ3-2,4-H2bpta)(4,4′-bipy)2]n(1)

Scheme 1 Coordination modes of 2,4-H2bpta2-/3,5-bpta4-ligands in complexes 1 and 2

Single-crystal X-ray diffraction analysis reveals that complex 1 crystallizes in the monoclinic space group C2/c.Its asymmetric unit contains one crystallographically unique Mn髤ion (half occupancy),a half of μ3-2,4-H2bpta2-block and one 4,4′-bipy moiety.As depicted in Fig.1,the six-coordinated Mn1 atom displays a distorted octahedral {MnN2O4}geometry filled by four O atoms from four different μ3-2,4-H2bpta2-blocks and two N atoms from two 4,4′-bipy ligands.The lengths of the Mn-O bonds range from 0.215 5(2)to 0.218 2(2)nm,whereas the Mn-N distances are 0.231 2(2)nm;these bonding parameters are comparable to those found in other reported Mn髤complexes[8,13-14].In 1,the 2,4-H2bpta2-ligand acts as a μ3-linker(modeⅠ,Scheme 1),in which two deprotonated carboxylate groups show the μ2-η1∶η1bidentate mode.The dihedral angle between two phenyl rings in the 2,4-H2bpta2-is 66.14°.The 4,4′-bipy ligand adopts a terminal coordination mode,and its pyridyl rings are not coplanar showing the dihedral angle of 20.13°.The carboxylate groups of 2,4-H2bpta2-ligands bridge alternately neighboring Mn髤atoms in a syn-anti coordination fashion to form an infinite right-handed or left-handed helical Mn-O-C-O-Mn chains with the Mn…Mn separation of 0.499 7(2)nm(Fig.2).Two types of these helical chains are interconnected to each other through the Mn髤centers to produce double-helix chains.These are further extended into a 2D supramolecular network via the O-H…N hydrogenbonding interactions(Fig.3 and Table 3).

Fig.1 Drawing of the asymmetric unit of complex 1 with 30%probability thermal ellipsoids

Fig.2 View of a 1D double-helix chain parallel to the ac plane

Fig.3 Perspective of 2D supramolecular network parallel to the ac plane in 1

2.1.2 {[Cu(μ4-3,5-bpta)0.5(2,2′-bipy)(H2O)]·H2O}n(2)

The asymmetric unitof2 consistsofone crystallographically distinct Cu髤ion,a half of one μ4-3,5-bpta4-block,one 2,2′-bipy ligand,one coordinated and one lattice water molecule.As shown in Fig.4,the Cu1 atom is five-coordinated and adopts a distorted quadrangular pyramid {CuN2O3}geometry completed by two carboxylate O atoms from two distinct μ4-3,5-bpta4-blocks and one O atom from the water ligand as well as two N atoms from one 2,2′-bipy ligand.The Cu-O distances range from 0.195 1(4)to 0.228 8(3)nm,whereas the Cu-N distances vary from 0.199 2(5)to 0.200 1(5)nm;these bonding parameters are comparable to those observed in other Cu髤complexes[13,16-17].In 2,the 3,5-bpta4-block acts as a μ4-spacer(modeⅡ,Scheme 1),in which all carboxylate groups exhibit the μ1-η1∶η0monodentate modes.In the 3,5-bpta4-,two benzene rings are coplanar.The carboxylate groups of the 3,5-bpta4-ligands multiply bridge the adjacent Cu髤ions to form a 2D sheet(Fig.5).

Fig.4 Drawing of the asymmetric unit of complex 2 with 30%probability thermal ellipsoids

Fig.5 Two-dimensional metal-organic framework along the a axis in complex 2

2.2 TGA analysis

To determine the thermal stability of complexes 1 and 2,their thermal behaviors were investigated under nitrogen atmosphere by thermogravimetric analysis(TGA).As shown in Fig.6,The TGA curve of 1 indicates that the complex is stable up to 346℃,and then decompose upon further heating.The TGA curve of 2 reveals that one lattice and one coordinated water molecule is released between 40 and 120℃(Obsd.8.1%;Calcd.8.5%),and the dehydrated solid begins to decompose at 250℃.

Fig.6 TGA plots of complexes 1 and 2

2.3 Magnetic properties

Variable-temperature magnetic susceptibility studies were carried out on powder sample of complex 1 in the 2~300 K temperature range.As shown in Fig.7,the room temperature value of χMT(4.41 cm3·mol-1·K)is close to that expected for one magnetically isolated high-spin Mn髤 ions (4.38 cm3·mol-1·K,S=5/2,g=2.0).When the temperature is lowered,the χMT values increase slowly until about 50 K,then increase quickly to 7.39 cm3·mol-1·K at 2.0 K.Between 2 and 300 K,the magnetic susceptibilities can be fitted to the Curie-Weiss law with C=4.50 cm3·mol-1·K and θ=3.80 K.These results indicate a ferromagnetic interaction between the adjacent Mn髤centers in complex 1.We tried to fit the magnetic data of 1 using the following expression for a 1D Mn髤chain[19]:

Fig.7 Temperature dependence of χMT(○)and 1/χM(□)for complex 1

Using this rough model,the susceptibilities were simulated,leading to J=+2.87 cm-1,g=2.03.The positive J parameter indicates that a weak ferromagnetic exchange coupling exists between the adjacent Mn髤 centers in 1,which is agreement with positive θ value.According to the structure of 1(Fig.2),there is one magnetic exchange pathway within the chain through two syn-anti carboxylate bridges,which could be responsible for the observed ferromagnetic exchange.

3 Conclusions

In summary,two new coordination polymers,namely[Mn(μ3-2,4-H2bpta)(4,4′-bipy)2]n(1)and{[Cu(μ4-3,5-bpta)0.5(2,2′-bipy)(H2O)]·H2O}n(2),have been synthesized under hydrothermal conditions. The complexes feature the 1D double-helix chain and 2D sheet structures,respectively.Magnetic studies show a ferromagnetic coupling between the adjacent Mn髤centers.

[1]Catala L,Mallah T.Acc.Chem.Res.,2017,50:805-813

[2]He C B,Liu D M,Lin W B.Chem.Rev.,2015,115:11079-11108

[3]Li J R,Sculley J,Zhou H C.Chem.Rev.,2012,112:869-932

[4]Cui Y,Yue Y,Qian G,et al.Chem.Rev.,2012,112:1126-1162

[5]Kuppler R J,Timmons D.J,Fang Q R,et al.Coord.Chem.Rev.,2009,253:3042-3066

[6]Ji P F,Manna K,Lin Z,et al.J.Am.Chem.Soc.,2016,138:12234-12242

[7]Manna P,Das S K.Cryst.Growth Des.,2015,15:1407-1421

[8]Gu J Z,Gao Z Q,Tang Y.Cryst.Growth Des.,2012,12:3312-3323

[9]Gu J Z,Wu J,Lü D Y,et al.Dalton Trans.,2013,42:4822-4830

[10]Li Q Q,Zhang W Q,Ren C Y,et al.CrystEngComm,2016,18:3358-3371

[11]Huang Y Q,Chen H Y,Li Z G,et al.Inorg.Chim.Acta,2017,466:71-77

[12]Huang Y Q,Wan Y,Chen H Y,et al.New J.Chem.,2016,40:7587-7595

[13]Gu J Z,Liang X X,Cui Y H,et al.CrystEngComm,2017,19:117-128

[14]Li S D,Lu L P,Su F.Chin.J.Struct.Chem.,2016,35:1920-1928

[15]GU Jin-Zhong(顧金忠),GAO Zhu-Qing(高竹青),DOU Wei(竇偉),et al.Chinese J.Inorg.Chem.(無機化學學報),2009,25(5):920-923

[16]Su F,Lu L P,Feng S S,et al.Dalton Trans.,2015,44:7213-7222

[17]Tian H,Wang K,Jia Q X,et al.Cryst.Growth Des.,2011,11:5167-5170

[18]Spek A L.Acta Crystallogr.Sect.C,2015,C71:9-18

[19]Mahata P,Natarajan S,Panissod P,et al.J.Am.Chem.Soc.,2009,131:10140-10150

Syntheses,Crystal Structures and Magnetic Properties of 1D Manganese髤and 2D Copper髤Coordination Polymers Constructed from Biphenyl Tetracarboxylic Acid

CHEN Jin-Wei1WEN Bing-Song2CAO Fang-Li2QIU Wen-Da3LI Yu*,3CHEN Xiao-Ling*,2
(1School of Light Chemical Engineering,Guangdong Industry Polytechnic,Guangzhou 510300,China)
(2School of Chemical Engineering and Light Industry,Guangdong University of Techlonogy,Guangzhou 510006,China)
(3School of Eco-Environmental Engineering,Guangdong Industry Polytechnic,Guangzhou 510300,China)

One-dimensional manganese髤 and two-dimensional copper髤 coordination polymers,namely[Mn(μ3-2,4-H2bpta)(4,4′-bipy)2]n(1)and{[Cu(μ4-3,5-bpta)0.5(2,2′-bipy)(H2O)]·H2O}n(2),have been constructed hydrothermally using 2,4-H4bpta(2,4-H4bpta=biphenyl-2,2′,4,4′-tetracarboxylic acid),3,5-H4bpta(3,5-H4bpta=biphenyl-3,3′,5,5′-tetracarboxylic acid),4,4′-bipy(4,4′-bipy=4,4′-bipyridine)or 2,2′-bipy(2,2′-bipy=2,2′-bipyridine),and manganese or copper chlorides.Single-crystal X-ray diffraction analyses reveal that the two complexes crystallize in the monoclinic system,space group P21/c or C2/c.In complex 1,the carboxylate groups of 2,4-H2bpta2-ligands bridge alternately neighboring Mn髤ions to form a double-helix chain.Adjacent chains are assembled to a 2D supramolecular network through O-H…N hydrogen bond.Complex 2 shows a 2D sheet.Magnetic studies for complex 1 demonstrate a ferromagnetic coupling between the adjacent Mn髤centers.CCDC:1560401,1;1560402,2.

coordination polymer;hydrogen bonding;tetracarboxylic acid;magnetic properties

O614.121;O614.71+1

A

1001-4861(2017)12-2322-07

10.11862/CJIC.2017.229

2017-07-06。收修改稿日期:2017-08-23。

廣東省高等職業院校珠江學者崗位計劃(2015)、廣東省自然科學基金(No.2016A030313761)、廣東輕院珠江學者人才類項目(No.RC2015-001)、生物無機與合成化學教育部重點實驗室開放基金(2016)和教育部職業教育高分子專業教學資源庫項目(2015-17)資助。

*通信聯系人。 E-mail:liyuletter@163.com,ggcxl@163.com

猜你喜歡
結構
DNA結構的發現
《形而上學》△卷的結構和位置
哲學評論(2021年2期)2021-08-22 01:53:34
論結構
中華詩詞(2019年7期)2019-11-25 01:43:04
新型平衡塊結構的應用
模具制造(2019年3期)2019-06-06 02:10:54
循環結構謹防“死循環”
論《日出》的結構
縱向結構
縱向結構
我國社會結構的重建
人間(2015年21期)2015-03-11 15:23:21
創新治理結構促進中小企業持續成長
現代企業(2015年9期)2015-02-28 18:56:50
主站蜘蛛池模板: 尤物国产在线| 在线观看国产精品日本不卡网| 国产免费精彩视频| 亚洲美女操| h视频在线观看网站| 亚洲天堂.com| 国产男女免费视频| 九色免费视频| 中文字幕在线播放不卡| 精品自窥自偷在线看| 免费一极毛片| 四虎影视国产精品| 国产欧美视频在线观看| 另类欧美日韩| 欧美一区二区三区欧美日韩亚洲| 国产精品理论片| 国产亚洲欧美另类一区二区| 噜噜噜综合亚洲| 久夜色精品国产噜噜| 91探花国产综合在线精品| 精品少妇人妻av无码久久| 欧美爱爱网| 欧美高清国产| 亚洲色图综合在线| 欧美国产综合色视频| 99久久性生片| 欧美一级黄色影院| 中日韩一区二区三区中文免费视频| 日韩免费毛片视频| 日本在线欧美在线| 女高中生自慰污污网站| 亚洲永久色| 草逼视频国产| 日韩国产另类| 日韩高清中文字幕| 国产精女同一区二区三区久| 国产在线98福利播放视频免费| 扒开粉嫩的小缝隙喷白浆视频| 久久国产精品娇妻素人| 无码国产偷倩在线播放老年人 | 亚洲网综合| 成人福利在线视频| 国产网站免费| 日本午夜精品一本在线观看 | 日本久久网站| 欧美在线黄| 亚洲精品制服丝袜二区| 999国产精品永久免费视频精品久久 | 午夜视频免费试看| 99激情网| 在线观看国产精品第一区免费| 色婷婷亚洲十月十月色天| 亚洲国产日韩在线观看| 国产91丝袜| 国产精品制服| 2021国产精品自产拍在线| 国产欧美视频在线| 日本91在线| 久久精品午夜视频| 欧美日韩国产高清一区二区三区| 白丝美女办公室高潮喷水视频 | 日本高清免费不卡视频| 中文字幕亚洲电影| 国产一级妓女av网站| 一区二区三区成人| 精品人妻无码中字系列| 日本久久久久久免费网络| 国产精品99r8在线观看| 日韩小视频在线播放| 五月天综合网亚洲综合天堂网| 四虎永久免费地址在线网站| 亚洲中文字幕无码mv| 一区二区三区高清视频国产女人| 欧美97色| 日本精品视频| 国产在线精品香蕉麻豆| 亚卅精品无码久久毛片乌克兰| 高清国产在线| 亚洲国产成人精品无码区性色| 国产欧美日韩免费| 91午夜福利在线观看| 国产人人射|