999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

由聯苯四羧酸配體構筑的一維錳髤和二維銅髤配位聚合物的合成、晶體結構及磁性質

2017-12-13 10:52:08陳金偉溫炳松曹芳利邱文達成曉玲
無機化學學報 2017年12期
關鍵詞:結構

陳金偉 溫炳松 曹芳利 邱文達 黎 彧*, 成曉玲*,

由聯苯四羧酸配體構筑的一維錳髤和二維銅髤配位聚合物的合成、晶體結構及磁性質

陳金偉1溫炳松2曹芳利2邱文達3黎 彧*,3成曉玲*,2

(1廣東輕工職業技術學院輕化工技術學院,廣州 510300)
(2廣東工業大學輕工化工學院,廣州 510006)
(3廣東輕工職業技術學院生態環境技術學院,廣州 510300)

采用水熱方法,用 2 種聯苯四羧酸配體(2,4-H4bpta 和 3,5-H4bpta)和 4,4′-聯吡啶(4,4′-bipy)或 2,2′-聯吡啶(2,2′-bipy)分別與 MnCl2·4H2O 和 CuCl2·H2O 反應,合成了一個具有一維雙螺旋鏈結構的配位聚合物[Mn(μ3-2,4-H2bpta)(4,4′-bipy)2]n(1)和一個二維層狀配位聚合物{[Cu(μ4-3,5-bpta)0.5(2,2′-bipy)(H2O)]·H2O}n(2),并對其結構和磁性質進行了研究。結構分析結果表明2個配合物分別屬于單斜晶系,P21/c和C2/c空間群。配合物1具有一維雙螺旋鏈結構,而且這些一維鏈通過O-H…N氫鍵作用進一步形成了二維超分子網絡。而配合物2具有二維層狀結構。研究表明,配合物1中相鄰錳離子間存在鐵磁相互作用。

配位聚合物;氫鍵;四羧酸配體;磁性

In recent years,a high interest has been focused on the design and construction of the coordination polymers due to their potential applications,architectures,and topologies[1-5].Many factors such as the coordination requirements of the metal centers,the structural characteristics of the ligand,the solvent system,and pH value can play the key role in the construction of the coordination networks[6-12].The selection of the special ligands is very important in the construction of these coordination polymers.

Multi-carboxylate biphenyl ligands have been certified to be of great significance as constructors due to their strong coordination abilities in various modes,which could satisfy different geometric requirements of metal centers[8-17].In order to extend our research in this field,we chose two biphenyl tetracarboxylic acid ligands,biphenyl-2,2′,4,4′-tetracarboxylic acid (2,4-H4bpta)and biphenyl-3,3′,5,5′-tetracarboxylic acid(3,5-H4bpta)to construct novel coordination polymers.Both H4bpta ligands possesses the following features:(1)they have four carboxyl groups that may be completely or partially deprotonated,inducing rich coordination modes and allowing interesting structures with higher dimensionalities; (2)they can act as hydrogen-bond acceptor as well as donor,depending upon the degree of deprotonation; (3)two sets of carboxyl groups separated can form different dihedral angles through the rotation of C-C single bonds;thus,it may ligate metal centers in different orientation.

Taking into account these factors,we herein report the syntheses,crystal structures,and magnetic properties of two Mn髤 and Cu髤 coordination polymers constructed from H4bpta.

1 Experimental

1.1 Reagents and physical measurements

All chemicals and solvents were of AR grade and used without further purification.Carbon,hydrogen and nitrogen were determined using an Elementar Vario EL elementalanalyzer.IR spectra were recorded using KBr pellets and a Bruker EQUINOX 55 spectrometer.Thermogravimetric analysis(TGA)data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10 ℃·min-1.Magnetic susceptibility data were collected in the 2~300 K temperature range with a Quantum Design SQUID Magnetometer MPMS XL-7 with a field of 0.1 T.A correction was made for the diamagnetic contribution prior to data analysis.

1.2 Synthesis of[Mn(μ3-2,4-H2bpta)(4,4′-bipy)2]n(1)

A mixture of MnCl2·4H2O (0.040 g,0.20 mmol),2,4-H4bpta (0.066 g,0.2 mmol),4,4′-bipy (0.031 g,0.2 mmol),NaOH (0.016 g,0.40 mmol),and H2O(10 mL)was stirred at room temperature for 15 min,and then sealed in a 25 mL Teflon-lined stainless steel vessel,and heated at 160℃for 3 days,followed by cooling to room temperature at a rate of 10 ℃·h-1.Yellow block-shaped crystalsof1 wereisolated manually,and washed with distilled water.Yield:35%(based on 2,4-H4bpta).Anal.Calcd.for C36H24MnN4O8(%):C 62.16,H 3.48,N 8.06;Found(%):C 61.93,H 3.44,N 8.11.IR (KBr,cm-1):1 672m,1 624w,1 598s,1 572s,1 533m,1 489w,1 424m,1 377w,1 303m,1 277w,1 246w,1 216w,1 164w,1 120w,1 064w,1 042w,999w,972w,899w,851w,808m,773w,730w,691w,656w,626w,569w,543w.

1.3 Synthesis of{[Cu(μ4-3,5-bpta)0.5(2,2′-bipy)(H2O)]·H2O}n(2)

The synthesis of 2 is similar with that of 1 except that CuCl2·H2O(0.030 g,0.20 mmol),3,5-H4bpta(0.033 g,0.1 mmol),2,2′-bipy(0.031 g,0.2 mmol)were used instead of MnCl2,2,4-H4bpta and 4,4′-bipy.Blue block-shaped crystals of 2 were isolated manually,and washed with distilled water.Yield:65%(based on 3,5-H4bpta).Anal.Calcd. for C18H15CuN2O6(%):C 51.61,H 3.61,N 6.69;Found(%):C 51.78,H 3.58,N 6.65.IR (KBr,cm-1):3 647w,3 307w,1 604w,1 569s,1 493w,1 472w,1 448w,1 402m,1 356s,1 311w,1 250w,1 174w,1 114w,1 073w,1 052w,1 027w,896w,769m,712w,652w,541w.The complexes are insoluble in water and common organic solvents,such as methanol,ethanol,acetone,and DMF.

1.4 Structure determinations

The data of two single crystals with dimensions of 0.20 mm×0.16 mm×0.16 mm (1)and 0.25 mm×0.22 mm×0.21 mm(2)was collected at 293(2)K on a Bruker SMART APEX Ⅱ CCD diffractometer with Mo Kα radiation(λ=0.071 073 nm).The structures were solved by direct methods and refined by full matrix leastsquare on F2using the SHELXTL-2014 program[18].All non-hydrogen atoms were refined anisotropically.All the hydrogen atoms(except the ones bound to water molecules)were positioned geometrically and refined using a riding model.The hydrogen atoms of water moleculeswerelocated bydifferencemapsand constrained to ride on their parent O atoms.A summary of the crystallography data and structure refinements for 1 and 2 is given in Table 1.The selected bond lengths and angles for complexes 1 and 2 are listed in Table 2.Hydrogen bond parameters of complexes 1 and 2 are given in Table 3.

CCDC:1560401,1;1560402,2.

Table 1 Crystal data for complexes 1 and 2

Table 2 Selected bond distances(nm)and bond angles(°)for complexes 1 and 2

Table 3 Hydrogen bond parameters of complexes 1 and 2

2 Results and discussion

2.1 Description of the structure

2.1.1 [Mn(μ3-2,4-H2bpta)(4,4′-bipy)2]n(1)

Scheme 1 Coordination modes of 2,4-H2bpta2-/3,5-bpta4-ligands in complexes 1 and 2

Single-crystal X-ray diffraction analysis reveals that complex 1 crystallizes in the monoclinic space group C2/c.Its asymmetric unit contains one crystallographically unique Mn髤ion (half occupancy),a half of μ3-2,4-H2bpta2-block and one 4,4′-bipy moiety.As depicted in Fig.1,the six-coordinated Mn1 atom displays a distorted octahedral {MnN2O4}geometry filled by four O atoms from four different μ3-2,4-H2bpta2-blocks and two N atoms from two 4,4′-bipy ligands.The lengths of the Mn-O bonds range from 0.215 5(2)to 0.218 2(2)nm,whereas the Mn-N distances are 0.231 2(2)nm;these bonding parameters are comparable to those found in other reported Mn髤complexes[8,13-14].In 1,the 2,4-H2bpta2-ligand acts as a μ3-linker(modeⅠ,Scheme 1),in which two deprotonated carboxylate groups show the μ2-η1∶η1bidentate mode.The dihedral angle between two phenyl rings in the 2,4-H2bpta2-is 66.14°.The 4,4′-bipy ligand adopts a terminal coordination mode,and its pyridyl rings are not coplanar showing the dihedral angle of 20.13°.The carboxylate groups of 2,4-H2bpta2-ligands bridge alternately neighboring Mn髤atoms in a syn-anti coordination fashion to form an infinite right-handed or left-handed helical Mn-O-C-O-Mn chains with the Mn…Mn separation of 0.499 7(2)nm(Fig.2).Two types of these helical chains are interconnected to each other through the Mn髤centers to produce double-helix chains.These are further extended into a 2D supramolecular network via the O-H…N hydrogenbonding interactions(Fig.3 and Table 3).

Fig.1 Drawing of the asymmetric unit of complex 1 with 30%probability thermal ellipsoids

Fig.2 View of a 1D double-helix chain parallel to the ac plane

Fig.3 Perspective of 2D supramolecular network parallel to the ac plane in 1

2.1.2 {[Cu(μ4-3,5-bpta)0.5(2,2′-bipy)(H2O)]·H2O}n(2)

The asymmetric unitof2 consistsofone crystallographically distinct Cu髤ion,a half of one μ4-3,5-bpta4-block,one 2,2′-bipy ligand,one coordinated and one lattice water molecule.As shown in Fig.4,the Cu1 atom is five-coordinated and adopts a distorted quadrangular pyramid {CuN2O3}geometry completed by two carboxylate O atoms from two distinct μ4-3,5-bpta4-blocks and one O atom from the water ligand as well as two N atoms from one 2,2′-bipy ligand.The Cu-O distances range from 0.195 1(4)to 0.228 8(3)nm,whereas the Cu-N distances vary from 0.199 2(5)to 0.200 1(5)nm;these bonding parameters are comparable to those observed in other Cu髤complexes[13,16-17].In 2,the 3,5-bpta4-block acts as a μ4-spacer(modeⅡ,Scheme 1),in which all carboxylate groups exhibit the μ1-η1∶η0monodentate modes.In the 3,5-bpta4-,two benzene rings are coplanar.The carboxylate groups of the 3,5-bpta4-ligands multiply bridge the adjacent Cu髤ions to form a 2D sheet(Fig.5).

Fig.4 Drawing of the asymmetric unit of complex 2 with 30%probability thermal ellipsoids

Fig.5 Two-dimensional metal-organic framework along the a axis in complex 2

2.2 TGA analysis

To determine the thermal stability of complexes 1 and 2,their thermal behaviors were investigated under nitrogen atmosphere by thermogravimetric analysis(TGA).As shown in Fig.6,The TGA curve of 1 indicates that the complex is stable up to 346℃,and then decompose upon further heating.The TGA curve of 2 reveals that one lattice and one coordinated water molecule is released between 40 and 120℃(Obsd.8.1%;Calcd.8.5%),and the dehydrated solid begins to decompose at 250℃.

Fig.6 TGA plots of complexes 1 and 2

2.3 Magnetic properties

Variable-temperature magnetic susceptibility studies were carried out on powder sample of complex 1 in the 2~300 K temperature range.As shown in Fig.7,the room temperature value of χMT(4.41 cm3·mol-1·K)is close to that expected for one magnetically isolated high-spin Mn髤 ions (4.38 cm3·mol-1·K,S=5/2,g=2.0).When the temperature is lowered,the χMT values increase slowly until about 50 K,then increase quickly to 7.39 cm3·mol-1·K at 2.0 K.Between 2 and 300 K,the magnetic susceptibilities can be fitted to the Curie-Weiss law with C=4.50 cm3·mol-1·K and θ=3.80 K.These results indicate a ferromagnetic interaction between the adjacent Mn髤centers in complex 1.We tried to fit the magnetic data of 1 using the following expression for a 1D Mn髤chain[19]:

Fig.7 Temperature dependence of χMT(○)and 1/χM(□)for complex 1

Using this rough model,the susceptibilities were simulated,leading to J=+2.87 cm-1,g=2.03.The positive J parameter indicates that a weak ferromagnetic exchange coupling exists between the adjacent Mn髤 centers in 1,which is agreement with positive θ value.According to the structure of 1(Fig.2),there is one magnetic exchange pathway within the chain through two syn-anti carboxylate bridges,which could be responsible for the observed ferromagnetic exchange.

3 Conclusions

In summary,two new coordination polymers,namely[Mn(μ3-2,4-H2bpta)(4,4′-bipy)2]n(1)and{[Cu(μ4-3,5-bpta)0.5(2,2′-bipy)(H2O)]·H2O}n(2),have been synthesized under hydrothermal conditions. The complexes feature the 1D double-helix chain and 2D sheet structures,respectively.Magnetic studies show a ferromagnetic coupling between the adjacent Mn髤centers.

[1]Catala L,Mallah T.Acc.Chem.Res.,2017,50:805-813

[2]He C B,Liu D M,Lin W B.Chem.Rev.,2015,115:11079-11108

[3]Li J R,Sculley J,Zhou H C.Chem.Rev.,2012,112:869-932

[4]Cui Y,Yue Y,Qian G,et al.Chem.Rev.,2012,112:1126-1162

[5]Kuppler R J,Timmons D.J,Fang Q R,et al.Coord.Chem.Rev.,2009,253:3042-3066

[6]Ji P F,Manna K,Lin Z,et al.J.Am.Chem.Soc.,2016,138:12234-12242

[7]Manna P,Das S K.Cryst.Growth Des.,2015,15:1407-1421

[8]Gu J Z,Gao Z Q,Tang Y.Cryst.Growth Des.,2012,12:3312-3323

[9]Gu J Z,Wu J,Lü D Y,et al.Dalton Trans.,2013,42:4822-4830

[10]Li Q Q,Zhang W Q,Ren C Y,et al.CrystEngComm,2016,18:3358-3371

[11]Huang Y Q,Chen H Y,Li Z G,et al.Inorg.Chim.Acta,2017,466:71-77

[12]Huang Y Q,Wan Y,Chen H Y,et al.New J.Chem.,2016,40:7587-7595

[13]Gu J Z,Liang X X,Cui Y H,et al.CrystEngComm,2017,19:117-128

[14]Li S D,Lu L P,Su F.Chin.J.Struct.Chem.,2016,35:1920-1928

[15]GU Jin-Zhong(顧金忠),GAO Zhu-Qing(高竹青),DOU Wei(竇偉),et al.Chinese J.Inorg.Chem.(無機化學學報),2009,25(5):920-923

[16]Su F,Lu L P,Feng S S,et al.Dalton Trans.,2015,44:7213-7222

[17]Tian H,Wang K,Jia Q X,et al.Cryst.Growth Des.,2011,11:5167-5170

[18]Spek A L.Acta Crystallogr.Sect.C,2015,C71:9-18

[19]Mahata P,Natarajan S,Panissod P,et al.J.Am.Chem.Soc.,2009,131:10140-10150

Syntheses,Crystal Structures and Magnetic Properties of 1D Manganese髤and 2D Copper髤Coordination Polymers Constructed from Biphenyl Tetracarboxylic Acid

CHEN Jin-Wei1WEN Bing-Song2CAO Fang-Li2QIU Wen-Da3LI Yu*,3CHEN Xiao-Ling*,2
(1School of Light Chemical Engineering,Guangdong Industry Polytechnic,Guangzhou 510300,China)
(2School of Chemical Engineering and Light Industry,Guangdong University of Techlonogy,Guangzhou 510006,China)
(3School of Eco-Environmental Engineering,Guangdong Industry Polytechnic,Guangzhou 510300,China)

One-dimensional manganese髤 and two-dimensional copper髤 coordination polymers,namely[Mn(μ3-2,4-H2bpta)(4,4′-bipy)2]n(1)and{[Cu(μ4-3,5-bpta)0.5(2,2′-bipy)(H2O)]·H2O}n(2),have been constructed hydrothermally using 2,4-H4bpta(2,4-H4bpta=biphenyl-2,2′,4,4′-tetracarboxylic acid),3,5-H4bpta(3,5-H4bpta=biphenyl-3,3′,5,5′-tetracarboxylic acid),4,4′-bipy(4,4′-bipy=4,4′-bipyridine)or 2,2′-bipy(2,2′-bipy=2,2′-bipyridine),and manganese or copper chlorides.Single-crystal X-ray diffraction analyses reveal that the two complexes crystallize in the monoclinic system,space group P21/c or C2/c.In complex 1,the carboxylate groups of 2,4-H2bpta2-ligands bridge alternately neighboring Mn髤ions to form a double-helix chain.Adjacent chains are assembled to a 2D supramolecular network through O-H…N hydrogen bond.Complex 2 shows a 2D sheet.Magnetic studies for complex 1 demonstrate a ferromagnetic coupling between the adjacent Mn髤centers.CCDC:1560401,1;1560402,2.

coordination polymer;hydrogen bonding;tetracarboxylic acid;magnetic properties

O614.121;O614.71+1

A

1001-4861(2017)12-2322-07

10.11862/CJIC.2017.229

2017-07-06。收修改稿日期:2017-08-23。

廣東省高等職業院校珠江學者崗位計劃(2015)、廣東省自然科學基金(No.2016A030313761)、廣東輕院珠江學者人才類項目(No.RC2015-001)、生物無機與合成化學教育部重點實驗室開放基金(2016)和教育部職業教育高分子專業教學資源庫項目(2015-17)資助。

*通信聯系人。 E-mail:liyuletter@163.com,ggcxl@163.com

猜你喜歡
結構
DNA結構的發現
《形而上學》△卷的結構和位置
哲學評論(2021年2期)2021-08-22 01:53:34
論結構
中華詩詞(2019年7期)2019-11-25 01:43:04
新型平衡塊結構的應用
模具制造(2019年3期)2019-06-06 02:10:54
循環結構謹防“死循環”
論《日出》的結構
縱向結構
縱向結構
我國社會結構的重建
人間(2015年21期)2015-03-11 15:23:21
創新治理結構促進中小企業持續成長
現代企業(2015年9期)2015-02-28 18:56:50
主站蜘蛛池模板: 97久久超碰极品视觉盛宴| 国产无套粉嫩白浆| av一区二区三区在线观看| 毛片一级在线| 国产乱码精品一区二区三区中文 | 久久这里只精品国产99热8| 色欲国产一区二区日韩欧美| 青青操视频在线| 中文字幕亚洲精品2页| 9999在线视频| 55夜色66夜色国产精品视频| 国产成人综合网| 国内精品久久久久久久久久影视| 中文字幕永久在线看| 国产成人三级在线观看视频| 99久久人妻精品免费二区| 亚洲二三区| a在线观看免费| 国产精品综合色区在线观看| 日韩av资源在线| 国产国拍精品视频免费看| 国内精品免费| 成人福利在线观看| 日本在线欧美在线| 国产高清精品在线91| 91热爆在线| 国产日韩丝袜一二三区| 久久精品女人天堂aaa| 91国内外精品自在线播放| 国产丝袜第一页| 国产精品视频导航| www.亚洲一区| 亚洲视频影院| 51国产偷自视频区视频手机观看| 国产极品粉嫩小泬免费看| 中文字幕在线看| 成AV人片一区二区三区久久| 欧美午夜网| 亚洲天堂久久新| 一本大道东京热无码av| 97国内精品久久久久不卡| 无码aaa视频| 97免费在线观看视频| 亚洲网综合| 成人免费黄色小视频| 精品无码一区二区在线观看| 亚洲精品不卡午夜精品| 日韩精品高清自在线| P尤物久久99国产综合精品| 九九热精品在线视频| 国产精品密蕾丝视频| 国产人成乱码视频免费观看| 国产成人亚洲欧美激情| 亚洲一区毛片| 日本免费新一区视频| 亚洲成AV人手机在线观看网站| 日韩性网站| 亚洲欧美色中文字幕| 99ri精品视频在线观看播放| 午夜老司机永久免费看片| 人妻21p大胆| 免费在线成人网| 亚洲黄色视频在线观看一区| 亚洲妓女综合网995久久| 亚洲成a人片| 久久免费视频6| 在线国产毛片| 国产理论一区| 国产91九色在线播放| 亚洲成人精品在线| 国产精品精品视频| 熟女日韩精品2区| 好吊色国产欧美日韩免费观看| 国产成人精品日本亚洲77美色| 国产在线精彩视频论坛| 国产原创自拍不卡第一页| 欧美精品综合视频一区二区| 欧美一区二区丝袜高跟鞋| 国产黄色免费看| 色噜噜狠狠色综合网图区| 国产Av无码精品色午夜| www.亚洲一区二区三区|