999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

喹啉-8-甲醛乙酰腙鋅/鎘配合物的晶體結(jié)構(gòu)及熒光性質(zhì)

2018-02-01 06:56:22許志紅吳偉娜劉樹(shù)陽(yáng)
關(guān)鍵詞:實(shí)驗(yàn)室化學(xué)

許志紅 吳偉娜 劉樹(shù)陽(yáng) 寇 凱 王 元

(1許昌學(xué)院化學(xué)化工學(xué)院,化學(xué)生物傳感與檢測(cè)重點(diǎn)實(shí)驗(yàn)室,許昌 461000)

(2河南理工大學(xué)化學(xué)化工學(xué)院,河南省煤炭綠色轉(zhuǎn)化重點(diǎn)實(shí)驗(yàn)室,焦作 454000)

Schiff bases are an important class of ligands in coordination chemistry and have been found extensive application in different fields[1-2].As one of the most promising systems,the relevant semicarbazones and thiosemicarbazonesinvolve condensed heterocycle,especially quinoline,have been paid much attention due to their potentially biological activities[3-6].However,acylhydrazones,as their structurally analogous,have been paid much less attention[7-8].Recently,several quinoline based acylhydrazone chemosensors for the fluorescent detection of metal ions have been reported in the literature,most of which function by coordination reaction with ions[9-11].Nevertheless,the crystal structures of corresponding complexes are relatively scarce[11].

Our previous work also shows that the acylhydrazone ligand HL (Scheme 1),namely N-(quinolin-8-yl)methylene)acetohydrazide is an excellent fluorescent probe for the detection for Znギ ions[11].Therefore,in this paper,three Znギ and Cdギ complexes with HL have been synthesized and structural determined by single-crystalX-ray diffraction.In addition,the fluorescence properties of the complexes in CH3CN solution were investigated.

Scheme 1 Synthesis route of HL

1 Experimental

1.1 Materials and measurements

Solvents and starting materials for synthesis were purchased commercially and used as received.Elemental analysis was carried out on an Elemental Vario EL analyzer.The IR spectra (ν=4 000~400 cm-1)were determined by the KBr pressed disc method on a Bruker V70 FT-IR spectrophotometer.The UV spectra were recorded on a PurkinjeGeneralTU-1800 spectrophotometer.Fluorescence spectra were determined on a Varian CARY Eclipse spectrophotometer,in the measurementsofemission and excitation spectra the pass width is 5 nm.

1.2 Preparations of complexes 1~3

As shown in Scheme 1,the ligand HL was produced by condensation of 8-formylquinoline and acethydrazide in ethanol at room temperature according to the literature method[11].The complexes 1~3 were generated by reaction of the ligand HL (5 mmol)with equimolar of ZnSO4,CdCl2and CdI2in methanol solution (10 mL)at room temperature for 1 h,respectively.Crystals suitable for X-ray diffraction analysis were obtained by evaporating the corresponding reaction solutions at room temperature.

1:Colorless plates.Anal.Calcd.for C12H15N3O7SZn(%):C:35.09;H:3.68;N:10.23.Found(%):C:34.75;H:3.85;N:9.94.FT-IR (cm-1):ν(C=O)1 655,ν(C=N)1 592,ν(C=N)pyrazine1 560.

2:Colorless blocks.Anal.Calcd.For C12H11N3O Cl2Cd(%):C:36.35;H:2.80;N:10.60.Found (%):C:36.42;H:3.05;N:10.37.FT-IR (cm-1):ν(C=O)1 654,ν(C=N)1 590,ν(C=N)pyrazine1 558.

3:Colorless blocks.Anal.Calcd.For C12H11N3OI2Cd(%):C:24.87;H:1.91;N:7.25.Found(%):C:25.00;H:2.18;N:7.02.FT-IR (cm-1):ν(C=O)1 646,ν(C=N)1 586,ν(C=N)pyrazine1 555.

1.3 X-ray crystallography

The X-ray diffraction measurement for complexes 1~3 were performed on a Bruker SMART APEX ⅡCCD diffractometer equipped with a graphite monochromatized Mo Kα radiation (λ=0.071 073 nm)by using φ-ω scan mode at 296(2)K.Semi-empirical absorption correction was applied to the intensity data using the SADABS program[12].The structures were solved by direct methods and refined by full matrix least-square on F2using the SHELX-97 program[13].All non-hydrogen atoms were refined anisotropically.All the H atoms were positioned geometrically and refined using a riding model.Details of the crystal parameters,data collection and refinements for complexes 1~3 are summarized in Table 1.

CCDC:1562151,1;1562152,2;1562153,3.

Table 1 Crystal data and structure refinement for complexes 1~3

2 Results and discussion

2.1 Crystal structures description

The diamond drawings of complexes 1~3 are shown in Fig.1.Selected bond distances and angles are listed in Table 2.As shown in Fig.1a,1 contains one discrete cationic Znギcomplex and one crystal water molecule in the asymmetric unit.The center Znギionwith a distorted octahedron geometry is coordinated by one neutral hydrazone with ONN donor set,one coordinated water molecule and two O atoms from two independent μ2-bridged sulfate anions,thus forming one dimension chain-like framework along b axis.In addition,in the solid state,the chains were further linked into a 2D supramolecular network by intermolecular N-H…O and O-H…O hydrogen bonds(Fig.1d and Table 3).

Table 2 Selected bond lengths(nm)and angles(°)in complexes 1~3

Continued Table 2

Fig.1 Diamond drawing of 1~3 (a~c)with 30%thermal ellipsoids;Extended 2D supramolecular structure in complex 1 (d);Chain-like structures in complex 2 (e,along c axis)and 3 (f)formed by hydrogen bonds (shown in dashed line),respectively

Table 3 Hydrogen bonds information for complexes 1~3

Similarly,the hydrazone HL acts as a neutral tridentate ligand in complexes 2 and 3 (Fig.1b and 1c).Coordinated by two additional halide anions(chloride for 2,while iodide for 3),the Cdギ ion adopts a distorted square pyramid coordination geometry (τ=0.348 and 0.345 for complex 2 and 3,respectively)[7].In the crystal,intermolecular N-H…Cl or N-H…I hydrogen bonds link the complex molecules of 2 or 3 into one dimension chains (Fig.1e and 1f).

2.2 IR spectra

The FT-IR spectral region for both complexes is more or less similar due to the similar coordination modes of the ligands.The ν(C=O),ν(C=N)imineand ν(C=N)quinolinebands are at 1 673,1 615 and 1 584 cm-1,respectively.They shift to lower frequency values in the complexes,indicating that the carbonyl O,imine N and quinoline N atoms take part in the coordination[7-8,14-15].It is in accordance with the crystal structure study.

2.3 UV spectra

The UV spectra of the ligand HL,complexes 1~3 in CH3CN solution (c=1×10-5mol·L-1)were measured at room temperature (Fig.2).The spectra of HL features two main band located around 230 nm (ε=35 288 L·mol-1·cm-1)and 320 nm (ε=16 955 L·mol-1·cm-1),which could be assigned to characteristic π-π*transition of quinoline and imine units,respe-ctively[8].Both bands have no shift while with absorption intensity change in the spectra of complexes 1~3 (ε1=34 327,16 575 L·mol-1·cm-1;ε2=30 131,14 854 L·mol-1·cm-1;ε3=38 244,14 870 L·mol-1·cm-1).This fact supports the neutral mode of the ligand HL in three complexes[7].

2.4 Fluorescence spectra

The fluorescence spectra of the ligand HL and complexes 1~3 have been studied in CH3CN solution(c=1 ×10-5mol·L-1)at room temperature.The free Schiff base ligand HL exhibits almost none fluorescenceemission when excited at320 nm,primarily due to C=N isomerization.However,complexes 1 and 2 show remarkable peaks at about 428 and 408 nm under the same tested condition,respectively.Obviously,binding with Zn2+/Cd2+inhibits the isomerization of C=N,thereby increasing the fluorescence intensity through the CHEF mechanism[9-11].In addition,it should be noted that complex 3 gives similar emission as the free ligand because of the heavy atom effect of the coordinated iodide anions.

Fig.3 Fluorescence emission spectra of the ligand HL,complexes 1~3 in CH3CN solution at room temperature

[1]Alagesan L,Bhuvanesh N S P,Dharmaraj N.Dalton Trans.,2013,42:7210-7223

[2]Ye X P,Zhu T F,Wu W N,et al.Inorg.Chem.Commun.,2014,47:60-62

[3]Bourosh P N,Revenko M D,Stratulat E F,et al.Russ.J.Inorg.Chem.,2014,59:545-557

[4]Revenko M D,Bourosh P N,Stratulat E F,et al.Russ.J.Inorg.Chem.,2010,55:1387-1397

[5]MAO Pan-Dong(毛盼東),YAN Ling-Ling(閆玲玲),WANG Wen-Jing(王文靜),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32(3):555-560

[6]MAO Pan-Dong(毛盼東),HAN Xue-Feng(韓學(xué)峰),LI Shan-Shan(李珊珊),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2017,33(4):692-698

[7]LI Xiao-Jing(李曉靜),WU Wei-Na(吳偉娜),XU Zhou-Qing( 徐 周 慶 ),et al.Chinese J.Inorg.Chem.(無(wú) 機(jī) 化 學(xué) 學(xué) 報(bào) ),2015,31(11):2265-2271

[8]CHANG Hui-Qin(常慧琴),YUAN Zhi-Ze(原知?jiǎng)t),LAI Xiao-Qing(賴(lài)曉晴),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32(11):2058-2062

[9]Liu H,Dong Y,Zhang B,et al.Sens.Actuators B,2016,234:616-624

[10]Ponnuvel K,Kumar M,Padmini V.Sens.Actuators B,2016,227:242-247

[11]Wu W N,Mao P D,Wang Y,et al.Spectrochim.Acta A,2018,188:324-331

[12]Sheldrick G M.SADABS,University of G?ttingen,Germany,1996.

[13]Sheldrick G M.SHELX-97,Program for the Solution and the Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

[14]Huang Y Q,Zhao W,Chen J G,et al.Z.Anorg.Allg.Chem.,2012,638:679-682

[15]Huang Y Q,Wan Y,Chen H Y,et al.New J.Chem.,2016,40:7587-7595

猜你喜歡
實(shí)驗(yàn)室化學(xué)
電競(jìng)實(shí)驗(yàn)室
電競(jìng)實(shí)驗(yàn)室
電競(jìng)實(shí)驗(yàn)室
電競(jìng)實(shí)驗(yàn)室
電競(jìng)實(shí)驗(yàn)室
電競(jìng)實(shí)驗(yàn)室
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
主站蜘蛛池模板: 91视频国产高清| 国产在线小视频| 国产亚洲高清在线精品99| 婷婷六月综合| 在线观看精品国产入口| 亚洲色欲色欲www网| 精品国产免费观看| 精品国产中文一级毛片在线看| 国产福利免费视频| 久久久久无码精品| 亚洲精品男人天堂| 亚洲欧美另类日本| 久久77777| 一本一道波多野结衣av黑人在线| 福利在线一区| 久久a级片| 东京热一区二区三区无码视频| 国产00高中生在线播放| 97国产精品视频人人做人人爱| 婷婷六月色| 欧美日韩激情| 国产97区一区二区三区无码| 精久久久久无码区中文字幕| 亚洲精品高清视频| 国产激情国语对白普通话| 亚洲日本在线免费观看| 永久在线精品免费视频观看| 久热re国产手机在线观看| 国产精品亚洲天堂| 极品私人尤物在线精品首页| 欧美一区中文字幕| 一级做a爰片久久毛片毛片| 伊人AV天堂| 国产色爱av资源综合区| 欧美日本中文| 欧美yw精品日本国产精品| 中文字幕久久波多野结衣| 国产a v无码专区亚洲av| 欧洲熟妇精品视频| 亚洲欧洲日产国产无码AV| 精品国产香蕉在线播出| 国产精品女同一区三区五区 | 国产啪在线| 国产午夜一级毛片| 亚洲VA中文字幕| 国产成人a在线观看视频| 国产欧美日本在线观看| 久久国产拍爱| 免费啪啪网址| 久久综合丝袜长腿丝袜| 亚洲精品无码专区在线观看| 国产成人1024精品| 欧美福利在线观看| 999国内精品视频免费| 色香蕉影院| 东京热高清无码精品| 成人字幕网视频在线观看| 国内精品久久久久鸭| 亚洲成a人在线播放www| 国产成人精品亚洲77美色| 国产自视频| 国产无码精品在线| 欧洲成人免费视频| 日本午夜影院| 99久久国产精品无码| 老司国产精品视频91| 国产成年无码AⅤ片在线| 久久不卡精品| 国产福利小视频高清在线观看| 另类重口100页在线播放| 成年看免费观看视频拍拍| 亚洲中文字幕97久久精品少妇| 91区国产福利在线观看午夜| 亚洲综合亚洲国产尤物| 无码AV日韩一二三区| 青青青视频蜜桃一区二区| 中文字幕亚洲乱码熟女1区2区| 亚洲Av综合日韩精品久久久| 999福利激情视频| 精品亚洲欧美中文字幕在线看| 欧美色99| 性色一区|