999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

喹啉-8-甲醛乙酰腙鋅/鎘配合物的晶體結構及熒光性質

2018-02-01 06:56:22許志紅吳偉娜劉樹陽
無機化學學報 2018年2期
關鍵詞:實驗室化學

許志紅 吳偉娜 劉樹陽 寇 凱 王 元

(1許昌學院化學化工學院,化學生物傳感與檢測重點實驗室,許昌 461000)

(2河南理工大學化學化工學院,河南省煤炭綠色轉化重點實驗室,焦作 454000)

Schiff bases are an important class of ligands in coordination chemistry and have been found extensive application in different fields[1-2].As one of the most promising systems,the relevant semicarbazones and thiosemicarbazonesinvolve condensed heterocycle,especially quinoline,have been paid much attention due to their potentially biological activities[3-6].However,acylhydrazones,as their structurally analogous,have been paid much less attention[7-8].Recently,several quinoline based acylhydrazone chemosensors for the fluorescent detection of metal ions have been reported in the literature,most of which function by coordination reaction with ions[9-11].Nevertheless,the crystal structures of corresponding complexes are relatively scarce[11].

Our previous work also shows that the acylhydrazone ligand HL (Scheme 1),namely N-(quinolin-8-yl)methylene)acetohydrazide is an excellent fluorescent probe for the detection for Znギ ions[11].Therefore,in this paper,three Znギ and Cdギ complexes with HL have been synthesized and structural determined by single-crystalX-ray diffraction.In addition,the fluorescence properties of the complexes in CH3CN solution were investigated.

Scheme 1 Synthesis route of HL

1 Experimental

1.1 Materials and measurements

Solvents and starting materials for synthesis were purchased commercially and used as received.Elemental analysis was carried out on an Elemental Vario EL analyzer.The IR spectra (ν=4 000~400 cm-1)were determined by the KBr pressed disc method on a Bruker V70 FT-IR spectrophotometer.The UV spectra were recorded on a PurkinjeGeneralTU-1800 spectrophotometer.Fluorescence spectra were determined on a Varian CARY Eclipse spectrophotometer,in the measurementsofemission and excitation spectra the pass width is 5 nm.

1.2 Preparations of complexes 1~3

As shown in Scheme 1,the ligand HL was produced by condensation of 8-formylquinoline and acethydrazide in ethanol at room temperature according to the literature method[11].The complexes 1~3 were generated by reaction of the ligand HL (5 mmol)with equimolar of ZnSO4,CdCl2and CdI2in methanol solution (10 mL)at room temperature for 1 h,respectively.Crystals suitable for X-ray diffraction analysis were obtained by evaporating the corresponding reaction solutions at room temperature.

1:Colorless plates.Anal.Calcd.for C12H15N3O7SZn(%):C:35.09;H:3.68;N:10.23.Found(%):C:34.75;H:3.85;N:9.94.FT-IR (cm-1):ν(C=O)1 655,ν(C=N)1 592,ν(C=N)pyrazine1 560.

2:Colorless blocks.Anal.Calcd.For C12H11N3O Cl2Cd(%):C:36.35;H:2.80;N:10.60.Found (%):C:36.42;H:3.05;N:10.37.FT-IR (cm-1):ν(C=O)1 654,ν(C=N)1 590,ν(C=N)pyrazine1 558.

3:Colorless blocks.Anal.Calcd.For C12H11N3OI2Cd(%):C:24.87;H:1.91;N:7.25.Found(%):C:25.00;H:2.18;N:7.02.FT-IR (cm-1):ν(C=O)1 646,ν(C=N)1 586,ν(C=N)pyrazine1 555.

1.3 X-ray crystallography

The X-ray diffraction measurement for complexes 1~3 were performed on a Bruker SMART APEX ⅡCCD diffractometer equipped with a graphite monochromatized Mo Kα radiation (λ=0.071 073 nm)by using φ-ω scan mode at 296(2)K.Semi-empirical absorption correction was applied to the intensity data using the SADABS program[12].The structures were solved by direct methods and refined by full matrix least-square on F2using the SHELX-97 program[13].All non-hydrogen atoms were refined anisotropically.All the H atoms were positioned geometrically and refined using a riding model.Details of the crystal parameters,data collection and refinements for complexes 1~3 are summarized in Table 1.

CCDC:1562151,1;1562152,2;1562153,3.

Table 1 Crystal data and structure refinement for complexes 1~3

2 Results and discussion

2.1 Crystal structures description

The diamond drawings of complexes 1~3 are shown in Fig.1.Selected bond distances and angles are listed in Table 2.As shown in Fig.1a,1 contains one discrete cationic Znギcomplex and one crystal water molecule in the asymmetric unit.The center Znギionwith a distorted octahedron geometry is coordinated by one neutral hydrazone with ONN donor set,one coordinated water molecule and two O atoms from two independent μ2-bridged sulfate anions,thus forming one dimension chain-like framework along b axis.In addition,in the solid state,the chains were further linked into a 2D supramolecular network by intermolecular N-H…O and O-H…O hydrogen bonds(Fig.1d and Table 3).

Table 2 Selected bond lengths(nm)and angles(°)in complexes 1~3

Continued Table 2

Fig.1 Diamond drawing of 1~3 (a~c)with 30%thermal ellipsoids;Extended 2D supramolecular structure in complex 1 (d);Chain-like structures in complex 2 (e,along c axis)and 3 (f)formed by hydrogen bonds (shown in dashed line),respectively

Table 3 Hydrogen bonds information for complexes 1~3

Similarly,the hydrazone HL acts as a neutral tridentate ligand in complexes 2 and 3 (Fig.1b and 1c).Coordinated by two additional halide anions(chloride for 2,while iodide for 3),the Cdギ ion adopts a distorted square pyramid coordination geometry (τ=0.348 and 0.345 for complex 2 and 3,respectively)[7].In the crystal,intermolecular N-H…Cl or N-H…I hydrogen bonds link the complex molecules of 2 or 3 into one dimension chains (Fig.1e and 1f).

2.2 IR spectra

The FT-IR spectral region for both complexes is more or less similar due to the similar coordination modes of the ligands.The ν(C=O),ν(C=N)imineand ν(C=N)quinolinebands are at 1 673,1 615 and 1 584 cm-1,respectively.They shift to lower frequency values in the complexes,indicating that the carbonyl O,imine N and quinoline N atoms take part in the coordination[7-8,14-15].It is in accordance with the crystal structure study.

2.3 UV spectra

The UV spectra of the ligand HL,complexes 1~3 in CH3CN solution (c=1×10-5mol·L-1)were measured at room temperature (Fig.2).The spectra of HL features two main band located around 230 nm (ε=35 288 L·mol-1·cm-1)and 320 nm (ε=16 955 L·mol-1·cm-1),which could be assigned to characteristic π-π*transition of quinoline and imine units,respe-ctively[8].Both bands have no shift while with absorption intensity change in the spectra of complexes 1~3 (ε1=34 327,16 575 L·mol-1·cm-1;ε2=30 131,14 854 L·mol-1·cm-1;ε3=38 244,14 870 L·mol-1·cm-1).This fact supports the neutral mode of the ligand HL in three complexes[7].

2.4 Fluorescence spectra

The fluorescence spectra of the ligand HL and complexes 1~3 have been studied in CH3CN solution(c=1 ×10-5mol·L-1)at room temperature.The free Schiff base ligand HL exhibits almost none fluorescenceemission when excited at320 nm,primarily due to C=N isomerization.However,complexes 1 and 2 show remarkable peaks at about 428 and 408 nm under the same tested condition,respectively.Obviously,binding with Zn2+/Cd2+inhibits the isomerization of C=N,thereby increasing the fluorescence intensity through the CHEF mechanism[9-11].In addition,it should be noted that complex 3 gives similar emission as the free ligand because of the heavy atom effect of the coordinated iodide anions.

Fig.3 Fluorescence emission spectra of the ligand HL,complexes 1~3 in CH3CN solution at room temperature

[1]Alagesan L,Bhuvanesh N S P,Dharmaraj N.Dalton Trans.,2013,42:7210-7223

[2]Ye X P,Zhu T F,Wu W N,et al.Inorg.Chem.Commun.,2014,47:60-62

[3]Bourosh P N,Revenko M D,Stratulat E F,et al.Russ.J.Inorg.Chem.,2014,59:545-557

[4]Revenko M D,Bourosh P N,Stratulat E F,et al.Russ.J.Inorg.Chem.,2010,55:1387-1397

[5]MAO Pan-Dong(毛盼東),YAN Ling-Ling(閆玲玲),WANG Wen-Jing(王文靜),et al.Chinese J.Inorg.Chem.(無機化學學報),2016,32(3):555-560

[6]MAO Pan-Dong(毛盼東),HAN Xue-Feng(韓學峰),LI Shan-Shan(李珊珊),et al.Chinese J.Inorg.Chem.(無機化學學報),2017,33(4):692-698

[7]LI Xiao-Jing(李曉靜),WU Wei-Na(吳偉娜),XU Zhou-Qing( 徐 周 慶 ),et al.Chinese J.Inorg.Chem.(無 機 化 學 學 報 ),2015,31(11):2265-2271

[8]CHANG Hui-Qin(常慧琴),YUAN Zhi-Ze(原知則),LAI Xiao-Qing(賴曉晴),et al.Chinese J.Inorg.Chem.(無機化學學報),2016,32(11):2058-2062

[9]Liu H,Dong Y,Zhang B,et al.Sens.Actuators B,2016,234:616-624

[10]Ponnuvel K,Kumar M,Padmini V.Sens.Actuators B,2016,227:242-247

[11]Wu W N,Mao P D,Wang Y,et al.Spectrochim.Acta A,2018,188:324-331

[12]Sheldrick G M.SADABS,University of G?ttingen,Germany,1996.

[13]Sheldrick G M.SHELX-97,Program for the Solution and the Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

[14]Huang Y Q,Zhao W,Chen J G,et al.Z.Anorg.Allg.Chem.,2012,638:679-682

[15]Huang Y Q,Wan Y,Chen H Y,et al.New J.Chem.,2016,40:7587-7595

猜你喜歡
實驗室化學
電競實驗室
電子競技(2020年4期)2020-07-13 09:18:06
電競實驗室
電子競技(2020年2期)2020-04-14 04:40:38
電競實驗室
電子競技(2019年22期)2019-03-07 05:17:26
電競實驗室
電子競技(2019年21期)2019-02-24 06:55:52
電競實驗室
電子競技(2019年20期)2019-02-24 06:55:35
電競實驗室
電子競技(2019年19期)2019-01-16 05:36:09
奇妙的化學
奇妙的化學
奇妙的化學
奇妙的化學
主站蜘蛛池模板: 欧美精品导航| 99视频全部免费| 在线看免费无码av天堂的| 日本精品视频| 2020国产精品视频| 四虎国产精品永久在线网址| 中文字幕无码中文字幕有码在线| 麻豆精品在线播放| 久久99国产精品成人欧美| 97久久精品人人做人人爽| 九月婷婷亚洲综合在线| 操操操综合网| 97人妻精品专区久久久久| 18禁不卡免费网站| 亚洲三级a| 亚洲人成网7777777国产| 黄色免费在线网址| 精品99在线观看| 免费看av在线网站网址| 亚洲免费人成影院| 色呦呦手机在线精品| 亚洲精品亚洲人成在线| 999精品在线视频| 色综合中文| 亚洲国产AV无码综合原创| 九九这里只有精品视频| 欧美国产菊爆免费观看| 国产精品极品美女自在线网站| 欧美日韩一区二区在线免费观看| 亚洲资源站av无码网址| 欧美成一级| 中文字幕资源站| 国产极品美女在线| 香蕉久久国产精品免| 国产在线观看一区精品| 欧美 亚洲 日韩 国产| 亚洲最猛黑人xxxx黑人猛交| 亚洲欧洲日本在线| 亚洲天堂成人在线观看| 好吊色妇女免费视频免费| 在线观看国产精品第一区免费 | 国产精品视频白浆免费视频| 亚洲女人在线| 日韩东京热无码人妻| 色综合手机在线| 久久无码高潮喷水| 又粗又大又爽又紧免费视频| 久久无码高潮喷水| 中国一级毛片免费观看| 国产精品污污在线观看网站| 亚洲高清中文字幕| 九九热视频精品在线| 国产欧美高清| 欧美一级特黄aaaaaa在线看片| 综合色88| 在线观看国产精美视频| 精品成人一区二区| 久久这里只有精品免费| 制服丝袜 91视频| 国产地址二永久伊甸园| 亚洲综合网在线观看| 国产第一页屁屁影院| 不卡午夜视频| 亚洲AV人人澡人人双人| 成人在线观看不卡| 中文精品久久久久国产网址 | 国产在线精品人成导航| www.亚洲国产| 蝴蝶伊人久久中文娱乐网| 欧美日韩久久综合| 国产成人免费手机在线观看视频 | 五月婷婷综合色| 欧美综合区自拍亚洲综合绿色| 97se亚洲| 一级黄色欧美| 国产精品一线天| 亚洲国产精品无码AV| 99re在线免费视频| 免费观看三级毛片| 国产亚洲高清在线精品99| 日韩黄色大片免费看| 亚洲欧美日本国产综合在线|