柴天佑
自動化技術在人類生產、生活與管理進程中起到了不可替代的作用.自動化技術廣泛應用于制造業(yè),使以機械裝備制造等為代表的離散工業(yè)制造過程和以石油、冶金、材料等重要原材料工業(yè)和電力等能源工業(yè)為代表的流程工業(yè)過程實現(xiàn)了自動化,顯著提高了產品質量和生產效率.自動化技術廣泛應用于制造企業(yè)的經(jīng)營管理和生產管理中,使企業(yè)的資源計劃和制造過程管理的效率顯著提高,成為提高企業(yè)競爭力的核心技術[1?2].自動化技術在航空、航天、軌道交通、汽車、海洋運載工具的導航、制導與控制、機器人的控制與運動軌跡的規(guī)劃中發(fā)揮著不可取代的作用[3].
正如文獻[4]所指出的,處處可見作為自動化技術的重要組成部分的控制技術,控制技術在幾乎所有的主要技術革命中都發(fā)揮了重要作用.例如,從蒸汽機到高鐵、輔助駕駛汽車、高性能飛機,從火箭到航天器,從有線電話到手機,從照相機到神經(jīng)影像,從敏捷制造到機器人,從醫(yī)療設備到遠視手術等,控制技術在上述技術革命中對提升系統(tǒng)性能如速度、效率、可靠性和穩(wěn)定性以及減少能源消耗、成本和廢物排放等方面發(fā)揮了不可取代的作用.
當前,發(fā)達國家將智能制造作為提升制造業(yè)整體競爭力的核心高技術.美國智能制造領導聯(lián)盟提出了實施21世紀“智能過程制造”的技術框架和路線[5].德國針對離散制造業(yè)提出了以智能制造為主導的第四次工業(yè)革命發(fā)展戰(zhàn)略,即“工業(yè)4.0”計劃[6].英國宣布“英國工業(yè)2050戰(zhàn)略”,日本和韓國先后提出“I-Japan戰(zhàn)略”和“制造業(yè)創(chuàng)新3.0戰(zhàn)略”.面對第四次工業(yè)革命帶來的全球產業(yè)競爭格局的新調整,為搶占未來產業(yè)競爭制高點,我國宣布實施“中國制造2025”.
智能制造的關鍵是實現(xiàn)制造流程智能化,這就需要將人工智能技術與制造流程的控制系統(tǒng)、管理系統(tǒng)和制造流程的物理資源深度融合與協(xié)同.迄今為止,人工智能技術還沒有統(tǒng)一的、明確的界定.文獻[7]指出,AI(Artificial intelligence)不是單一技術,而是應用于特定任務的技術集合.文獻[8]指出,雖然對AI的界定并不明確且隨時間推移不斷變化,但AI的研究和應用多年來始終秉持一個核心目標,即使人的智能行為實現(xiàn)自動化或復制.人工智能技術的涵義是通過機器智能延伸和增強人類的感知、認知、決策、執(zhí)行等功能,增強人類認識世界與改造世界的能力,完成人類無法完成的特定任務或比人類更有效地完成特定任務.
2016年10月,美國白宮發(fā)布了《美國國家人工智能研究與發(fā)展策略規(guī)劃》,謀劃美國未來的人工智能發(fā)展.2017年7月,中國國務院印發(fā)《新一代人工智能發(fā)展規(guī)劃》,人工智能正式成為我國國家戰(zhàn)略.2018年3月1日,美國國際戰(zhàn)略研究所發(fā)布報告《美國機器智能國家戰(zhàn)略報告》,提出了機器智能技術對國防、經(jīng)濟、社會等方面的廣泛影響和發(fā)展戰(zhàn)略.
美國國家情報委員會在2030年全球趨勢(Global Trend 2030)中,從經(jīng)濟、社會發(fā)展角度提出了未來四大重要技術,其中,自動化和制造技術為第二大重要技術;華盛頓郵報網(wǎng)站(2013.5.24)給出了驅動未來經(jīng)濟的12種顛覆性技術,其中,知識性工作的自動化列為第二種顛覆性技術.由此可見,自動化科學與技術已經(jīng)成為社會經(jīng)濟發(fā)展、國家安全、使人類生活變得越來越美好的不可取代的技術.
然而,自動化科學與技術,特別是控制科學與技術,沒有像通訊和計算機技術那樣得到社會的理解和支持.為此,國外學者組織了多次專題討論會,出版了研究報告,旨在論證系統(tǒng)與控制是大多數(shù)應用領域中信息和通信技術的核心,提出了新的研究方向,希望得到基金資助機構的優(yōu)先考慮和支持[4,9?11].雖然這些研究報告對控制理論的發(fā)展起到了積極的促進作用,但并沒有使系統(tǒng)與控制成為資助機構優(yōu)先資助的領域.我國負責自動化科學與技術發(fā)展的部門曾多次組織國內學者開展自動化學科發(fā)展和優(yōu)先資助領域的戰(zhàn)略研究,出版了研究報告,闡明自動化科學與技術的重要性和優(yōu)先資助的研究方向[12?13].這些研究報告對自動化學科的發(fā)展起到了積極的促進作用.雖然與國外相比,我國有負責自動化科學與技術發(fā)展的基金資助機構與資助經(jīng)費,但是自動化科學與技術在國家社會經(jīng)濟發(fā)展和國防安全中發(fā)揮的作用卻不如通訊、計算機等其他信息科學和技術那樣明顯,獲得的資助經(jīng)費也少于通訊、計算機等其他信息科學和技術.
自動化科學與技術始終圍繞著建模、控制與優(yōu)化三個基本科學問題開展研究,它所形成的核心基礎理論—建模、控制、優(yōu)化理論和方法具有“使能”性.因此,大多數(shù)工程技術與工程管理專業(yè)都將建模、控制與優(yōu)化理論和方法作為該專業(yè)基礎的必修課.國外大學一般不設立自動化專業(yè),從事系統(tǒng)與控制研究的教授主要在其他工程專業(yè)講授控制理論課程.而在我國,大多數(shù)大學設有自動化專業(yè),但從事控制理論研究的學術帶頭人多,從事自動化系統(tǒng)技術研究的學術帶頭人少,而且重傳統(tǒng)控制理論,輕自動化系統(tǒng)技術.
上述研究報告主要根據(jù)理論的發(fā)展提出研究方向,然而,自動化科學與技術的建模、控制、優(yōu)化理論與方法是通過與應用領域的實際對象結合,研制具有動態(tài)特性分析、預測、控制與優(yōu)化決策功能的自動化系統(tǒng)來體現(xiàn)其在人類認識世界和改造世界活動中發(fā)揮的不可替代的作用.
特別是,當今國際上信息科學與技術的重要研究方向是Cyber-Physical Systems(CPS).美國國家科學基金會在2008年提出,CPS是計算資源與物理資源的緊密融合與協(xié)同,使得系統(tǒng)的適應性、自治力、效率、功能、可靠性、安全性和可用性遠超過今天的系統(tǒng)[14].計算資源主要指自動化(建模、控制、優(yōu)化)、計算機、通訊,物理資源主要是指CPS的研究對象所涉及的領域知識.研究目標是研制實現(xiàn)未來需求功能的系統(tǒng).智能手機、IBM的同聲傳譯系統(tǒng)、AlphaGo等智能技術系統(tǒng)是典型的CPS.CPS是多學科交叉的產物,是當今信息技術條件下的自動化系統(tǒng).創(chuàng)造未來需求的新功能的系統(tǒng)已成為信息科學與技術的研究目標.
為了使中國的自動化專業(yè)在國家社會經(jīng)濟發(fā)展和國家安全中發(fā)揮不可取代的作用,本文以智能自主控制系統(tǒng)、智能優(yōu)化決策系統(tǒng)和智能優(yōu)化決策與控制一體化系統(tǒng)作為未來需求的自動化系統(tǒng)發(fā)展方向,以生產制造系統(tǒng)和重要運載工具為主要對象,以實現(xiàn)上述系統(tǒng)的愿景功能為目標的系統(tǒng)理論與技術研究為主線,提出了自動化科學與技術的發(fā)展方向,結合新興應用領域對自動化科學與技術的需求與挑戰(zhàn),提出了未來自動化科學與技術的發(fā)展方向.
自動化的界定并不明確,且隨時間推移不斷變化,但自動化的研究和應用多年來始終秉持一個核心目標:研制系統(tǒng)代替人或輔助人去完成人類生產、生活和管理活動中的特定任務,減少和減輕人的體力和腦力勞動,提高工作效率、效益和效果.由于我國大多數(shù)大學都設有自動化專業(yè),科技部和國家自然科學基金委員會都設有專門部門負責自動化科學與技術的發(fā)展,因此,有必要從學術和專業(yè)的角度對自動化科學與技術給出定義.百度對自動化的定義如下:廣義的自動化,是指在人類的生產、生活和管理的一切過程中,通過采用一定的技術裝置和策略,使得僅用較少的人工干預甚至做到?jīng)]有人工干預,就能使系統(tǒng)達到預期目的的過程,從而減少和減輕了人的體力和腦力勞動,提高了工作效率、效益和效果.由此可見,自動化涉及到人類活動的幾乎所有領域,因此,自動化是人類自古以來永無止境的夢想和追求目標.
自動化科學與技術主要以工業(yè)裝備為代表的固定物體、運載工具為代表的運動體以及人參與的信息物理系統(tǒng)為研究對象,以替代人或輔助人來增強人類認識世界和改造世界的能力為目的,綜合運用控制科學與工程、系統(tǒng)科學與工程、信息與通信工程、計算機科學與技術、數(shù)學與人工智能等學科知識和所涉及對象的領域知識,研究具有動態(tài)特性仿真與分析、預測、控制與優(yōu)化決策功能的自動化系統(tǒng)設計方法和實現(xiàn)技術的一門工程技術學科.
自動化科學與技術具有如下明顯的特征:
1)交叉性
自動化科學與技術是具有明顯交叉性的學科.自動化科學與技術的理論基礎(建模、控制、優(yōu)化理論與方法)的建立是由數(shù)學、物理、計算機科學、以及研究對象所涉及的領域學科交叉形成.所研制的自動化系統(tǒng)涉及到控制科學與工程、系統(tǒng)科學與工程、信息與通信工程、計算機科學與技術、數(shù)學、人工智能等學科知識和所涉及對象的領域知識.工程技術專家、數(shù)學家、經(jīng)濟學家和物理學家等都對該領域的發(fā)展做出了貢獻.
2)使能性
自動化科學與技術的核心理論基礎是動態(tài)系統(tǒng)的建模、控制與優(yōu)化的理論與方法,核心技術基礎是具有動態(tài)特性仿真與分析、預測、控制與優(yōu)化決策功能的系統(tǒng)設計方法與實現(xiàn)技術.
自動化科學與技術的使能性表現(xiàn)在其動態(tài)系統(tǒng)建模理論與方法所提供的動態(tài)特性建模與參數(shù)估計方法有助于其他學科在研究對象的機理基礎上建立動態(tài)數(shù)學模型、進行動態(tài)特性仿真與分析的研究;控制理論與方法所提供的反饋、前饋、預測、自適應控制器設計方法和思想以及控制系統(tǒng)性能分析方法有助于機械、電氣與電子、化工與冶金等其他學科領域涉及的控制系統(tǒng)設計與分析的研究;優(yōu)化理論與方法所提供的靜態(tài)與動態(tài)優(yōu)化決策理論與方法有助于其他學科領域涉及的系統(tǒng)優(yōu)化運行和優(yōu)化決策的研究.
3)系統(tǒng)性
系統(tǒng)性是自動化科學與技術的重要特征.自動化科學與技術總是從“系統(tǒng)”的角度來分析與研究所涉及到的研究對象的動態(tài)建模、控制和優(yōu)化決策.特別是反饋控制,通過反饋機制改善了被控對象的動態(tài)特性,形成的反饋控制系統(tǒng)可以達到預期的目的.自動化科學與技術的建模、控制、優(yōu)化理論與方法是通過具有動態(tài)特性分析、預測、控制與優(yōu)化決策功能的系統(tǒng)來體現(xiàn)在人類認識世界和改造世界活動中發(fā)揮的不可替代的作用.今天,大型而復雜的物理系統(tǒng)與越來越多的分布式計算單元相結合用以監(jiān)測、控制、管理和優(yōu)化決策.物理系統(tǒng)的各個元素通過物質、能量或動量的交換而相互聯(lián)系,而控制和管理與優(yōu)化決策系統(tǒng)的各個單元則通過通信網(wǎng)絡相互聯(lián)系.例如,智能電網(wǎng)、水資源控制與管理系統(tǒng)、交通管理與指揮系統(tǒng)、智能工廠、智慧城市、智慧醫(yī)療等.只有對這種人參與的信息物理系統(tǒng)進行建模、預測、控制和優(yōu)化決策的深入研究,才有可能更好地設計監(jiān)測、控制、管理和優(yōu)化決策系統(tǒng),才能實現(xiàn)節(jié)能減排,有效地改善人類的生活.
4)廣泛性
通過以上對自動化科學與技術的交叉性、使能性和系統(tǒng)性的分析,可以看到自動化科學與技術還具有廣泛性的特征.
自動化科學與技術的研究對象具有廣泛性.研究對象可以是固定的物體,如以機械制造工業(yè)為代表的離散工業(yè)和以原材料工業(yè)為代表的流程工業(yè)中的生產制造裝備、建筑設施等;研究對象可以是移動的物體,如航天航空器、軌道交通與汽車、陸運運動體、機器人等;研究對象也可以是人參與的信息物理系統(tǒng),如企業(yè)管理系統(tǒng)、交通管理系統(tǒng)、生物系統(tǒng)、社會管理與經(jīng)濟系統(tǒng).
自動化科學與技術的應用領域具有廣泛性.采用自動化科學與技術所研制的自動化系統(tǒng)廣泛應用到工業(yè)、農業(yè)、軍事、科學研究、交通運輸、商業(yè)、醫(yī)療、服務和家庭等各個領域,涉及到人類的生產、生活和管理的一切過程.
自動化科學與技術針對同一研究對象所研究的自動化系統(tǒng)的功能具有廣泛性和多樣性.例如,針對工業(yè)過程研究動態(tài)特性建模可以實現(xiàn)工業(yè)過程的動態(tài)特性仿真與分析;研究過程控制可以實現(xiàn)工業(yè)過程的輸出跟蹤工藝所確定的設定值;研究過程運行優(yōu)化可以實現(xiàn)表征工業(yè)過程的加工產品的質量、效率、消耗等運行指標的優(yōu)化控制;研究由不同工業(yè)過程組成的全流程生產線的協(xié)同優(yōu)化控制可以實現(xiàn)生產線生產指標的優(yōu)化控制;研究企業(yè)經(jīng)營決策、計劃調度的管理與優(yōu)化決策可以實現(xiàn)企業(yè)的綜合生產指標優(yōu)化;研究生產工況的建模可以實現(xiàn)異常工況的監(jiān)控與自愈控制.
很久以前,大自然就發(fā)現(xiàn)了反饋.它創(chuàng)造了反饋機制并且在各個層次利用這些機制,它是機體平衡和生命的核心[11].反饋控制系統(tǒng)最早出現(xiàn)在風車上.當時發(fā)明的離心調速器就是一種反饋控制系統(tǒng),其目的是使風車保持恒定轉速運行[15].為了使織布機和其他機器保持恒定轉速,1788年,吉姆斯·瓦特成功地改造了離心調速器.離心調速器是一個比例控制器,因此會產生穩(wěn)態(tài)誤差.后來的調速器加入了積分作用[15?16],從此調速器成了蒸汽機不可分割的一部分.蒸汽機與調速器的廣泛應用推動了第一次工業(yè)革命.如何設計一個穩(wěn)定的調速器成為一個極富挑戰(zhàn)的科學難題.麥克斯韋(Maxwell)開始了調速器的理論研究[17].麥克斯韋推導出三階線性微分方程來描述調速系統(tǒng),同時發(fā)現(xiàn)可以通過閉環(huán)系統(tǒng)特征方程的根確定系統(tǒng)的穩(wěn)定性.緊接著,數(shù)學家勞斯和赫爾維茨建立了一般線性系統(tǒng)的穩(wěn)定性判據(jù)[18?19].上述工作奠定了控制理論的基礎.
19世紀初,Sperry發(fā)明了陀螺駕駛儀,應用于船舶駕駛[16,20?21].陀螺駕駛儀可以調整控制器參數(shù),也可以設置目標航向.該控制器是一個典型的PID控制器.PID控制不僅廣泛應用于上述領域,而且應用于電力工業(yè),使傳送帶于1870年開始在辛辛那提屠宰場使用,推動了基于勞動分工和以電為動力的大規(guī)模生產,形成了第二次工業(yè)革命.如何選擇PID控制器參數(shù)使控制系統(tǒng)具有良好的性能的研究吸引了大量的工程師和科學家,直到1942年,Ziegler Nichols建立了PID參數(shù)的整定方法[22].
為了解決長途電話的失真問題,貝爾實驗室的Harold Black工程師發(fā)明了負反饋放大器[23].不穩(wěn)定或“嘯叫”常常出現(xiàn)在反饋放大器的試驗中.因此,長途電話通信的技術挑戰(zhàn)帶來了反饋回路的穩(wěn)定性問題.1932年,亨利·奈奎斯特(Harry Nyquist)開始研究這個問題,建立了“奈奎斯特判據(jù)”[24].1943年,貝爾實驗室的伯德領導的小組設計M9火炮指揮控制系統(tǒng),采用了伯德發(fā)明的設計反饋控制系統(tǒng)的工具—Bode圖[25].上述成果奠定了經(jīng)典控制理論的基礎.
50年代末到60年代初,航天技術的發(fā)展涉及到大量的多輸入多輸出系統(tǒng)的最優(yōu)控制問題,用經(jīng)典控制理論已難以解決.數(shù)字計算機的出現(xiàn)使得亨利·龐加萊(1875~1906)的狀態(tài)空間表述方法可以作為被控對象的數(shù)學模型和控制器設計與分析的工具.于是產生了以極大值原理、動態(tài)規(guī)劃和狀態(tài)空間法為核心的現(xiàn)代控制理論[26].然而,現(xiàn)代控制理論難以應用于工業(yè)過程.工業(yè)過程往往是由多個回路組成的復雜被控對象,難以用精確數(shù)學模型描述.大規(guī)模工業(yè)生產的需求、計算機和通訊技術的發(fā)展催生了一種專門的計算機控制系統(tǒng)—邏輯程序控制器(PLC).1969年,美國Modicon公司推出了084 PLC[27].該控制系統(tǒng)可以將多個回路的傳感器和執(zhí)行機構通過設備網(wǎng)與控制系統(tǒng)連接起來,可以方便地進行多個回路的控制、設備的順序控制和監(jiān)控.1975年,Honeywell和Yokogawa公司研制了可以應用于大型工業(yè)過程的分布式控制系統(tǒng)(DCS)[28].以組態(tài)軟件為基礎的控制軟件、過程監(jiān)控軟件的廣泛應用使得生產線的自動化程度更高,推動了第三次工業(yè)革命.
在工業(yè)過程控制中,現(xiàn)有的控制理論和控制系統(tǒng)的設計方法的研究集中在保證閉環(huán)控制回路穩(wěn)定的條件下,使被控變量盡可能地跟蹤控制系統(tǒng)的設定值.從工業(yè)工程的角度看,自動控制或者人工控制的作用不僅僅是使控制系統(tǒng)輸出很好地跟蹤設定值,而且要控制整個生產設備(或過程)的運行過程,實現(xiàn)運行優(yōu)化,即使反映產品加工過程的質量、效率的運行指標盡可能高,反映消耗的運行指標盡可能低.工業(yè)過程的運行優(yōu)化需求使得實時優(yōu)化(RTO)和模型預測控制(MPC)廣泛應用于可以建立數(shù)學模型的石化工業(yè)過程.對于難以建立數(shù)學模型的冶金工業(yè)過程,高技術公司針對具體的工業(yè)過程開發(fā)了工藝模型進行開環(huán)設定控制,數(shù)據(jù)驅動的智能運行優(yōu)化控制技術的研發(fā)受到工業(yè)界和學術界的廣泛關注[29?32].
大規(guī)模的工業(yè)生產迫切需要生產企業(yè)的管理高效化.自動化技術開始應用于企業(yè)管理.20世紀60年代初計算機財務系統(tǒng)問世,從此人工的管理方式開始逐漸被計算機管理系統(tǒng)代替.20世紀60年代末70年代初,財務系統(tǒng)擴充了物料計劃功能,發(fā)展成為物料需求計劃系統(tǒng)(Material Requirements Planning,MRP).20世紀70年代末80年代初,MRP系統(tǒng)中增加了車間報表管理系統(tǒng)、采購系統(tǒng)等,于是發(fā)展成為MRP II.但是MRP II不能配置資源,因此配置資源計劃系統(tǒng)(Distribution Resource Planning,DRP)出現(xiàn)了,單一功能的制造過程管理系統(tǒng)(如質量管理系統(tǒng))也相繼出現(xiàn).到20世紀80年代末90年代初,MRP II逐漸演變?yōu)槠髽I(yè)資源計劃(Enterprise Resource Planning,ERP),DRP演變?yōu)楣湽芾?Supply Chain Management,SCM),而車間層應用的專業(yè)化制造管理系統(tǒng)演變成集成的制造執(zhí)行系統(tǒng)(Manufacturing Execution System,MES)[33?34].ERP和MES廣泛應用于生產企業(yè),顯著提高了企業(yè)的競爭力.
縱觀自動化科學與技術發(fā)展史,給我們如下啟示:1)自動化科學與技術的產生和發(fā)展來自人類改造自然的實際需求;2)自動化科學與技術的產生和發(fā)展源于控制科學與工程;3)實際需求與實現(xiàn)技術推動了控制系統(tǒng)的出現(xiàn)與發(fā)展;4)控制系統(tǒng)的設計與性能分析的需求產生和推動了控制理論的發(fā)展,控制理論的發(fā)展對控制系統(tǒng)的設計與性能分析起到了重要推動作用;5)以工業(yè)系統(tǒng)為代表的固定物體、以船舶、飛行器、火炮為代表的運動體的控制系統(tǒng)的設計與性能分析推動了控制理論的形成與發(fā)展.
經(jīng)過改革開放,中國的自動化科學與技術取得了巨大發(fā)展,主要體現(xiàn)在控制理論與控制工程、系統(tǒng)工程、導航、制導與控制、檢測技術與裝置、模式識別與智能系統(tǒng)、機器人等方面以及在社會經(jīng)濟發(fā)展、國家安全等方面的諸多應用研究.基礎研究已達到國際先進水平,在自動化科學與技術的國際頂級期刊IEEE匯刊與IFAC會刊發(fā)表的論文數(shù)量與質量顯著提高.特別是結合國家在智能制造、航天、軌道交通等領域的重大需求開展的自動化科學與技術研究取得了一批推動上述領域科技進步并產生重要國際影響的學術成果.總體上來看,基礎研究還處于跟跑與同跑階段,缺乏領跑的研究成果,在國家社會經(jīng)濟發(fā)展和國防安全中發(fā)揮的作用不如其他信息科學和技術那樣明顯.
中國的社會經(jīng)濟與國家安全進入了快速發(fā)展階段,人們在生產、生活與管理中提出了更高的要求.國家實施的智能制造、互聯(lián)網(wǎng)+、大數(shù)據(jù)、新一代人工智能等重大發(fā)展戰(zhàn)略對自動化科學與技術的發(fā)展提出了新的要求.移動互聯(lián)網(wǎng)、云計算、大數(shù)據(jù)應用技術和人工智能技術的突破性發(fā)展促使工程技術人員與研究人員將以自動化、計算機、通訊為主的計算資源與以研究對象為主的物理資源深度融合與協(xié)同,使研究的系統(tǒng)在適應性、自治力、效率、功能、可靠性、安全性和可用性方面遠超過今天的系統(tǒng).
為了適應國家發(fā)展的需求和人們在生產、生活與管理中的新要求,今天關鍵的基礎設施系統(tǒng)如工業(yè)系統(tǒng)、交通系統(tǒng)、能源系統(tǒng)、水資源系統(tǒng)、生物系統(tǒng)、醫(yī)療系統(tǒng)、通訊系統(tǒng)等正在向網(wǎng)絡化、智能化方向發(fā)展,這就對控制系統(tǒng)和管理與決策系統(tǒng)提出了新的要求.控制系統(tǒng)正在向智能自主控制系統(tǒng)的方向發(fā)展,管理與決策系統(tǒng)正在向智能優(yōu)化決策系統(tǒng)和智能優(yōu)化決策和控制一體化系統(tǒng)方向發(fā)展.
面向生產制造過程的智能自主控制系統(tǒng)的愿景功能是:智能感知生產條件變化,自適應決策控制回路設定值,使回路控制層的輸出很好地跟蹤設定值,對運行狀況和控制系統(tǒng)的性能進行遠程移動與可視化監(jiān)控和自優(yōu)化控制,使生產制造系統(tǒng)安全、可靠、優(yōu)化與綠色運行[35].
面向生產制造企業(yè)的智能優(yōu)化決策系統(tǒng)和智能優(yōu)化決策與控制一體化系統(tǒng)主要是制造全流程智能協(xié)同優(yōu)化控制系統(tǒng)和智能優(yōu)化決策系統(tǒng).智能協(xié)同優(yōu)化控制系統(tǒng)的愿景功能是:智能感知運行工況的變化,以綜合生產指標的優(yōu)化為目標,自適應決策智能自主控制系統(tǒng)的最佳運行指標;優(yōu)化協(xié)同生產制造全流程中的各工業(yè)過程(裝備)的智能自主控制系統(tǒng);實時遠程與移動監(jiān)控與預測異常工況,自優(yōu)化控制,排除異常工況,使系統(tǒng)安全優(yōu)化運行,實現(xiàn)制造流程全局優(yōu)化.智能優(yōu)化決策系統(tǒng)的愿景功能是:實時感知市場信息、生產條件和制造流程運行工況;以企業(yè)高效化和綠色化為目標,實現(xiàn)企業(yè)目標、計劃調度、運行指標、生產指令與控制指令一體化優(yōu)化決策;遠程與移動可視化監(jiān)控決策過程動態(tài)性能,自學習與自優(yōu)化決策;人與智能優(yōu)化決策系統(tǒng)協(xié)同,使決策者在動態(tài)變化環(huán)境下精準優(yōu)化決策.
面向航天器、汽車、陸用武器等重要運載工具的智能自主控制系統(tǒng)的愿景功能是:快速準確感知環(huán)境信息,識別環(huán)境的不確定性和多樣性任務,使被控對象成為智能自主體,能夠修正自己的行為以適應環(huán)境的不確定性,自主決策與自主控制,實時安全可靠地完成任務.
面向運載工具的智能決策系統(tǒng)和智能決策與控制一體化系統(tǒng)是多智能體協(xié)同控制系統(tǒng)和導航與制導一體化控制系統(tǒng).多智能體協(xié)同控制系統(tǒng)的愿景功能是:感知整個群體區(qū)域環(huán)境信息,自主學習,協(xié)同優(yōu)化決策,自主協(xié)同運行,快速、可靠、安全地完成總體目標任務.導航與制導一體化控制系統(tǒng)的愿景功能是:快速感知環(huán)境信息,融合多元異構信息,自主產生精確導航信息,自動為制導系統(tǒng)給出導航信息,制導與控制系統(tǒng)使被控運載工具快速、準確地跟蹤導航信息,準確、迅速、安全可靠地到達目的地.
為了實現(xiàn)生產制造過程未來需求的自動化系統(tǒng)的愿景功能,需將生產制造過程的自動化系統(tǒng)發(fā)展為五大系統(tǒng):1)制造過程智能自主控制系統(tǒng);2)制造全流程智能協(xié)同優(yōu)化控制系統(tǒng);3)智能優(yōu)化決策系統(tǒng);4)智能安全運行監(jiān)控與自優(yōu)化系統(tǒng);5)工業(yè)過程虛擬制造系統(tǒng).由五大系統(tǒng)構成兩層結構的現(xiàn)代集成制造系統(tǒng),即智能優(yōu)化決策系統(tǒng)和制造流程智能化控制系統(tǒng),取代由ERP、MES和PCS(DCS)組成的三層結構集成制造系統(tǒng).制造流程智能化控制系統(tǒng)由生產制造過程智能自主控制系統(tǒng)和制造全流程智能協(xié)同優(yōu)化控制系統(tǒng)組成.智能安全運行監(jiān)控和自優(yōu)化系統(tǒng)和制造過程虛擬制造系統(tǒng)保證構成兩層結構的兩大系統(tǒng)安全可靠優(yōu)化運行.
為了實現(xiàn)運載工具未來需求的自動化系統(tǒng)的愿景功能,需將運載工具自動化系統(tǒng)發(fā)展為三大系統(tǒng):1)智能自主控制系統(tǒng);2)多智能體協(xié)同控制系統(tǒng);3)導航制導一體化控制系統(tǒng).
以實現(xiàn)上述系統(tǒng)的愿景功能為目標,開展上述新系統(tǒng)理論與系統(tǒng)實現(xiàn)技術的研究以及在智能制造、機器人、航天航空、高鐵等重大應用領域的應用研究,將會成為對我國社會經(jīng)濟發(fā)展和國家安全做出重要貢獻的自動化科學與技術的發(fā)展方向.
目前,復雜制造全流程中的工況識別、運行控制和ERP與MES中的決策仍然依靠知識工作者.知識工作者依靠數(shù)據(jù)、文本、圖像等信息和經(jīng)驗進行工況識別、運行控制和決策,難以實現(xiàn)離散工業(yè)產品個性定制的高效化和流程工業(yè)的高效化與綠色化[36].然而,大數(shù)據(jù)驅動的人工智能技術取得了革命性進步.自動化科學與技術本質上是數(shù)學模型驅動的人工智能技術.大數(shù)據(jù)驅動的人工智能技術與自動化科學與技術的結合必將產生人工智能驅動的自動化.大數(shù)據(jù)、移動互聯(lián)網(wǎng)、云計算為人工智能驅動的自動化開辟了新途徑.人工智能驅動的自動化必將在智能制造中發(fā)揮更重要的作用.
自動化技術不僅在航空、航天、軌道交通、汽車、海洋運載工具的導航、制導與控制、機器人的控制與運動軌跡的規(guī)劃中發(fā)揮著不可取代的作用,而且開始應用于交通系統(tǒng)、能源系統(tǒng)、水資源系統(tǒng)、生物系統(tǒng)、醫(yī)療系統(tǒng)、通訊系統(tǒng)等關鍵基礎設施系統(tǒng)的安全監(jiān)控與管理中.如同企業(yè)管理系統(tǒng),上述系統(tǒng)本質上是人參與的信息物理系統(tǒng).要使這些關鍵基礎設施系統(tǒng)安全、可靠、高效和綠色地運行,必須開展這類系統(tǒng)的建模、仿真、預測和控制與優(yōu)化決策理論與技術的研究.這必將推動自動化科學與技術的發(fā)展.
信息技術的發(fā)展促進了智能工廠、智能電網(wǎng)、智能交通、智慧城市等人參與的信息物理系統(tǒng)以及量子通訊、微納制造和生物系統(tǒng)的發(fā)展.實現(xiàn)上述新興領域的檢測、控制、管理和優(yōu)化決策對已有的建模、控制、優(yōu)化理論和技術提出了挑戰(zhàn).因此,應將未來發(fā)展的自動化科學與技術作為發(fā)展方向,開展下列研究:
a)人工智能驅動的自動化;
b)新一代網(wǎng)絡化與智能化管控系統(tǒng);
c)人參與的信息物理系統(tǒng)中的自動化科學與技術;
d)新興應用領域(量子通訊、微納制造和生物系統(tǒng))中的自動化科學與技術.
開展上述自動化科學與技術發(fā)展方向的研究必須攻克下列挑戰(zhàn)的科學難題:
a)機理不清的具有綜合復雜性的動態(tài)系統(tǒng)建模;
b)具有綜合復雜性的被控對象的高性能控制;
c)多沖突目標、多沖突約束、多尺度的復雜動態(tài)系統(tǒng)優(yōu)化決策與控制一體化;
d)在大數(shù)據(jù)、移動通訊、云計算環(huán)境下,網(wǎng)絡化與智能化的自動化系統(tǒng)的設計與實現(xiàn)技術[37?39].
回顧自動化科學與技術的發(fā)展歷程,我們清楚地看到,只有結合重大需求,采用CPS思想,即將自動化(建模、控制、優(yōu)化)、計算機和通訊技術等計算資源與研究對象的物理資源緊密融合與協(xié)同,以系統(tǒng)的未來需求的愿景功能為目標,研究實現(xiàn)未來需求的愿景功能的建模、控制和優(yōu)化的新算法和研究采用大數(shù)據(jù)應用技術、移動通訊、云計算等新一代信息技術研制新的自動化系統(tǒng)的設計和實現(xiàn)技術,并結合重大應用領域開展應用研究才有可能解決上述科學難題.由于我國的社會經(jīng)濟發(fā)展和國家安全對自動化科學與技術有重大需求,我國大多數(shù)大學都設有自動化專業(yè),有國際上最大的自動化科學與技術的研究隊伍,國家又有專門負責自動化科學與技術發(fā)展的部門和專項科研經(jīng)費,因此,我國廣大的從事自動化科學與技術的研究人員完全有可能做出對中國社會經(jīng)濟發(fā)展和國家安全有重要影響、引領自動化科學與技術發(fā)展的研究成果.
本文以創(chuàng)造未來需求新功能的自動化系統(tǒng)為自動化科學與技術的研究目標,以國家社會經(jīng)濟發(fā)展和國家安全對自動化系統(tǒng)的未來需求為導向,提出生產制造過程未來需求的自動化系統(tǒng)為下列五大系統(tǒng):1)制造過程智能自主控制系統(tǒng);2)制造全流程智能協(xié)同優(yōu)化控制系統(tǒng);3)智能優(yōu)化決策系統(tǒng);4)智能安全運行監(jiān)控與自優(yōu)化系統(tǒng);5)工業(yè)過程虛擬制造系統(tǒng);提出運載工具未來需求的自動化系統(tǒng)為下列三大系統(tǒng):1)智能自主控制系統(tǒng);2)多智能體協(xié)同控制系統(tǒng);3)導航制導一體化控制系統(tǒng).
以實現(xiàn)上述系統(tǒng)的愿景功能為目標,研究建模、控制和優(yōu)化的新算法,研究采用移動通訊、云計算、人工智能技術等新一代信息技術的新的自動化系統(tǒng)的設計方法和實現(xiàn)技術,并結合重大應用領域開展應用研究將成為自動化科學與技術的發(fā)展方向.
由于人參與的信息物理系統(tǒng)如智能工廠、智能電網(wǎng)、智能交通、智慧城市等和量子通訊、微納制造和生物系統(tǒng)等新興領域對自動化科學與技術提出了新的需求與挑戰(zhàn),因此,下列研究:1)人工智能驅動的自動化;2)新一代網(wǎng)絡化與智能化管控系統(tǒng);3)人參與的信息物理系統(tǒng)中的自動化科學與技術;4)新興應用領域(量子通訊、微納制造和生物系統(tǒng))中的自動化科學與技術,將成為未來自動化科學與技術的發(fā)展方向.
在上述發(fā)展方向做出對國家社會經(jīng)濟發(fā)展和國家安全有重要貢獻、引領自動化科學與技術發(fā)展的研究成果,需要一大批從事研究、設計、開發(fā)、運營未來需求的自動化系統(tǒng)的創(chuàng)新人才.這就需要重新審視和考慮現(xiàn)行的自動化專業(yè)人才培養(yǎng)模式、研究經(jīng)費資助機制、評價機制等,并進行必要的改革.
致謝
本論文得以完成,得到了中國自動化學會自動化學科發(fā)展路線圖項目組的多名專家學者的支持和幫助,謹致以誠摯的謝意.