饒大龐 虞海峰 王帥彬 孫來芳
[摘要] 目的 探討miRNA-149靶向IGFBP5抑制膀胱癌細胞侵襲的分子機制。 方法 采用雙螢光報告基因系統(tǒng)分別檢測miRNA-149對目的基因IGFBP5和PDGFRA的3'UTR的影響。在T24膀胱癌細胞中瞬時轉染miRNA-149模擬物(mimic)和陰性對照miRNA(mimic NC),并且在該細胞中分別轉染IGFBP5 過表達質粒(H10495)、陰性對照(H155)和PDGFRA過表達質粒(H10496),利用Transwell法檢測細胞的遷移和侵襲能力。 結果 miRNA-149顯著抑制IGFBP5的 3UTR 活性,差異具有統(tǒng)計學意義(P<0.0001)。Transwell實驗顯示T24-H155-miRNA149-mimics組較T24-H155-mimic-NC對照組(control)侵襲能力降低,差異具有統(tǒng)計學意義(P<0.0001),而在T24-H10495-miRNA-149-mimics組較 T24-H155-miRNA-149-mimics組侵襲能力明顯增強(P<0.01)。另一方面,T24-H10496-miRNA-149-mimics組較 T24-H155-miRNA-149-mimics組侵襲能力無明顯變化(P>0.05)。 結論 該研究表明miRNA-149通過抑制其下游基因IGFBP5從而抑制膀胱癌侵襲,為臨床膀胱癌轉移的分子治療研究提供了新的靶點和理論依據。
[關鍵詞] miRNA-149;膀胱癌;IGFBP5;PDGFRA;侵襲
[中圖分類號] R737.9? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-9701(2018)35-0001-04
[Abstract] Objective To investigate the molecular mechanism of miRNA-149 targeting IGFBP5 to inhibit the invasion of bladder cancer cells. Methods The effect of miRNA-149 on the 3'UTR of the target genes IGFBP5 and PDGFRA was examined using a dual fluorescent reporter system. miRNA-149 mimics and negative control miRNAs(mimic NC) were transiently transfected into T24 bladder cancer cells, and IGFBP5 overexpression plasmid(H10495), negative control (H155) and PDGFRA overexpression plasmid (H10496) were transfected into the cells, respectively. The migration and invasion ability of the cells were detected by Transwell method. Results miRNA-149 significantly inhibited the 3'UTR activity of IGFBP5 with a statistically significant difference(P<0.0001). Transwell experiment showed that the T24-H155-miRNA149-mimics group had a lower invasive ability than the T24-H155-mimic-NC control group, and the difference was significant(P<0.0001). While the invasive ability of the T24-H10495-miRNA-149-mimics group was significantly enhanced compared with that of the T24-H155-miRNA-149-mimics group(P<0.0001). On the other hand, there was no significant change in the invasive ability of the T24-H10496-miRNA-149-mimics group compared with that of the T24-H155-miRNA-149-mimics group(P>0.05). Conclusion This study demonstrates that miRNA-149 inhibits the invasion of bladder cancer through inhibiting its downstream gene IGFBP5, which provides a new target and theoretical basis for the molecular treatment of clinical bladder cancer metastasis.
[Key words] miRNA-149; Bladder cancer; IGFBP5; PDGFRA; Invasion
膀胱癌是世界范圍內最常見的泌尿系統(tǒng)惡性腫瘤之一,具有較高的發(fā)病率和死亡率,給患者造成了極大威脅[1,2]。2017年估計有79 030例膀胱癌新發(fā)病例和16 870例膀胱癌死亡[3]。膀胱癌可分為兩類:非肌肉浸潤性膀胱癌和肌肉浸潤性膀胱癌。研究顯示,1/3的非肌肉浸潤性膀胱癌(NMIBC)患者可隨后進展為肌肉浸潤性(MIBC)或轉移,并且約70%的患者進行根治性膀胱切除術和淋巴結切除術后同樣發(fā)展為轉移性疾病,降低膀胱癌患者的預后水平[4-7]。因此,闡明膀胱癌轉移機制已成為改善膀胱癌患者預后的必然趨勢。
MicroRNA(miRNA)是真核生物內源性的非編碼小單鏈RNA,長度約為19~24個核苷酸[8]。研究顯示miRNA通過降低mRNA的表達或者通過結合到目標mRNA的3UTR位點來調節(jié)編碼蛋白的基因表達從而參與多種生命過程,包括細胞生長、增殖、分化和凋亡[9,10]。我們前期研究發(fā)現(xiàn)miRNA-149在膀胱癌中顯著降低,miRNA-149抑制膀胱癌細胞遷移和侵襲,且抑制其下游靶基因Insulin-like growth factor binding protein 5(IGFBP5)和platelet—derived growth factor receptor alpha(PDGFRA)蛋白的表達。本研究將在前期研究的基礎上,進一步探究miRNA-149是否通過靶向IGFBP5和(或)PDGFRA抑制膀胱癌細胞的遷移和侵襲,為臨床膀胱癌的轉移防治提供了新的靶點和理論依據。
1 材料與方法
1.1 材料與試劑
人膀胱癌細胞株T24由本實驗室保存,293T細胞株來源于中科院細胞庫。胎牛血清、DMEM/Ham's F-12(1:1 volume)培養(yǎng)基購于美國GIBCO公司,pMIR-REPORT Luciferase-IGFBP5 3UTR(Wt)(H10046);pMIR-REPORT Luciferase-PDGFRA 3UTR(Wt)(H10047);pLenti-CMV-MCS-3FLAG(H155)、pLenti-CMV-IGFBP5-3FLAG(H10495)、pLenti-CMV-PDGFRA-3FLAG(H10496)均購自上海和元生物技術有限公司;pRL-CMV(H321)購自美國Promega公司;lipofectamine 2000購自美國invitrogen公司;mimics NC、hsa-miRNA-149-5p mimics均購自上海吉瑪制藥技術有限公司,Transwell和invision小室購自美國BD公司。
1.2 細胞株的培養(yǎng)、轉染和分組
實驗用所有細胞株均使用含5%胎牛血清的DMEM/Hams F-12(1:1 volume)培養(yǎng)基,并置于37℃含體積分數(shù)5%的CO2培養(yǎng)箱中培養(yǎng)。將293T細胞按 70%的匯合度接種到96孔板,24 h后轉染螢光素酶報告基因質粒和 RNA,每個樣品設置6個復孔。并按照螢火蟲螢光素酶載體(Firefly):海腎螢光素酶載體(Renilla):轉染試劑=0.2 μg:0.004 μg:0.25 μL的比例,采用脂質體LipofectamineTM 2000的說明書要求對細胞進行轉染。另一方面,使用慢病毒H155、H10495、H10496感染T24細胞,然后采用LipofectamineTM 2000 轉染試劑,將miRNA-149 mimic及其對照轉染至T24-H155,T24-H10495和T24-H10496細胞。
1.3 雙熒光素酶報告基因實驗
將IGFBP5-3UTR(Wt)(H10046);PDGFRA-3UTR(Wt)(H10047),雙熒光素酶報告載體轉染細胞后,放入細胞培養(yǎng)箱內24 h。提前將儀器開機并預熱,此后步驟盡量冰上操作。將細胞移至室溫,棄掉培養(yǎng)基,用PBS洗滌細胞1次。加入Lysis Buffer(1x PLB)100 μL,在室溫輕緩晃動培養(yǎng)板15 min,把裂解液轉移到檢測試管中。瞬間離心,吸取上清 20 μL加入檢測板。加入20 μL底物。測量 luciferase(firefly)。加入stop buffer與nenal底物混合物(50∶1)50 μL。立即再次測量,檢測結束后,進行數(shù)據分析。
1.4 Transwell侵襲實驗
將轉染24 h后的膀胱癌T24細胞進行消化,用無血清的培養(yǎng)基重懸細胞,并取400 μL重懸液分別至普通小室和帶基質膠的小室中,細胞數(shù)為104個,在下室中加入700 μL的完全培養(yǎng)基,繼續(xù)培養(yǎng)24 h后,將小室取出,放入新的24孔中,小室上下同時用3.7%的甲醛固定2 min,PBS洗2次,再用100%甲醇通透20 min,PBS洗2次后,用吉姆薩室溫避光染色15 min后,在顯微鏡下觀察細胞遷移和侵襲的數(shù)目,并拍照。
1.5 評價指標
經慢病毒轉染48 h后,采用熒光定量PCR檢測miRNA-149是否過表達水平,采用WB檢測PDGFRA和IGFBP5蛋白水平是否過表達。觀察Transwell侵襲實驗中,在顯微鏡下觀察細胞遷移和侵襲的數(shù)目,檢測PDGFRA和IGFBP5過表達后是否逆轉miRNA-149過表達抑制膀胱癌侵襲的作用。
1.6 統(tǒng)計學方法
所有實驗數(shù)據均以均數(shù)±標準差(x±s)表示,采用 SPSS18.0 統(tǒng)計軟件進行分析,利用t檢驗方法檢測兩組之間的差異,P<0.05為差異有統(tǒng)計學意義。
2 結果
2.1 miRNA-149對PDGFRA和IGFBP5的3UTR的影響
本研究使用TargetScan在線軟件預測miRNA-149的靶基因,發(fā)現(xiàn)PDGFRA和IGFBP5的3UTR區(qū)域分別包含一個保守的miRNA-149的靶位點,如封三圖1A、封三圖1B所示。接著通過雙熒光素酶報告基因實驗檢測 miRNA-149是否影響PDGFRA和IGFBP5的3UTR活性。結果顯示miRNA-149可抑制PDGFRA 和IGFBP5 3UTR活性,下調比例分別為 38.83%和30.51%,差異具有統(tǒng)計學意義(P<0.0001)。
2.2 IGFBP5對miRNA-149抑制膀胱癌細胞侵襲的影響
為進一步探究PDGFRA和IGFBP5對miRNA-149誘導的膀胱癌細胞侵襲抑制的影響,本研究單獨或聯(lián)合使用miRNA-149mimic和IGFBP5過表達載體轉染T24細胞。轉染后,T24-H155-miRNA-149-mimic組較 T24-H155-mimics-NC組侵襲能力降低,差異具有統(tǒng)計學意義(P<0.001);而T24-H10495-miRNA-149-mimic組較T24-H155-miRNA-149-mimic組侵襲能力明顯增強(P<0.01)。IGFBP5過表達載體對miRNA-149抑制膀胱癌細胞侵襲產生逆轉作用。
2.3 PDGFRA對miRNA-149抑制膀胱癌細胞侵襲的影響
另一方面,本研究同樣單獨或聯(lián)合使用miRNA-149mimic和PDGFRA過表達載體轉染T24細胞。同樣的,轉染后,T24-H155-miRNA-149-mimic組較 T24-H155-mimics-NC組侵襲能力降低,差異具有統(tǒng)計學意義(P<0.001);然而T24-H10496-miRNA-149-mimic組較T24-H155-miRNA-149-mimic組侵襲能力未發(fā)生明顯變化(P>0.05)。PDGFRA過表達載體對miRNA-149抑制膀胱癌細胞侵襲未產生逆轉作用。
3 討論
越來越多的研究表明,miRNA作為致癌基因或抑癌基因在腫瘤發(fā)生發(fā)展過程中發(fā)揮重要作用[11-13]。miRNA在多種惡性腫瘤中異常表達,包括膀胱癌[14]。大量的功能性研究已表明膀胱癌中多種miRNA具有潛在的新的預后價值[15,16]。本研究前期miRNA-149在膀胱癌中表達降低,過表達miRNA-149可顯著抑制膀胱癌細胞侵襲,且miRNA-149下調其潛在的靶基因PDGFRA和IGFBP5蛋白水平的表達。以往研究表明,miRNA-149在不同類型的腫瘤(包括結腸癌、骨髓性白血病、肝細胞癌和腎細胞癌)進展中發(fā)揮不同的功能[17-20]。miRNA-149異位表達可通過靶向肌動調節(jié)蛋白PPM1F抑制肝細胞癌的轉移;miRNA-149可通過直接靶向FOXM1從而顯著抑制結腸癌細胞的遷移和侵襲[21,22]。因此本研究在前期研究的基礎上,進一步明確miRNA-149是否通過靶向PDGFRA和IGFBP5抑制膀胱癌細胞侵襲。我們的結果表明miRNA-149可顯著抑制PDGFRA和IGFBP5的3UTR活性,miRNA-149可能靶向作用于IGFBP5和PDGFRA。
血小板源性生長因子受體A(PDGFRA),是一種細胞表面酪氨酸激酶受體。與其他許多受體酪氨酸激酶(RTKs)一樣,PDGFRA通過表達升高或由于突變和染色體重排導致的活性增加從而參與各種腫瘤的進展,如白血病、胃腸道間質瘤(GISTs)、膠質母細胞瘤和肝細胞癌等[23-25]。研究顯示,PDGFRA在炎性乳腺癌中過度表達且具有獨特的活性,可能是IBC治療的理想靶點[26]。活化的PDGFRA通過激活AKT通路刺激纖維原細胞增殖,并誘導心肌成纖維細胞激活,可作為心肌纖維化治療的潛在靶點[27]。此外,PDGFRA參與間充質細胞增殖和雄性特異性中腎細胞遷移[28]。本研究在前期發(fā)現(xiàn)miRNA-149降低PDGFRA蛋白表達的基礎上,進一步探究miRNA-149是否通過靶向作用于PDGFRA抑制膀胱癌細胞侵襲。結果顯示miRNA-149抑制PDGFRA 3UTR的活性,然而PDGFRA過表達未能逆轉miRNA-149抑制膀胱癌細胞侵襲的作用。因此miRNA-149抑制膀胱癌細胞侵襲可能與PDGFRA沒有相關作用。
另一方面,胰島素樣生長因子結合蛋白5(IGFBP5)是IGFBPs同源蛋白家族之一,且在人類腫瘤和轉移組織中異常表達[29]。研究表明IGFBP5在腫瘤發(fā)生和發(fā)展過程中具有多種生物學功能,調控細胞的存活、生長、遷移和侵襲[29]。IGFBP5通過IGF依賴和不依賴的機制調節(jié)細胞功能,可抑制各種組織或環(huán)境下的腫瘤生長和轉移,也可促進腫瘤轉移從而作為致癌基因發(fā)揮作用[30]。其中,IGFBP5在腫瘤中表達升高,被認為具有促進轉移的能力;外源性IGFBP5表達已被證實對神經酰胺誘導的細胞凋亡具有保護作用;且IGFBP5的過表達被發(fā)現(xiàn)與乳腺癌患者預后不良有關[31-33]。而最近發(fā)表的一項研究表明IGFBP5在尿路上皮癌進展中發(fā)揮重要作用并且IGFBP5過表達與腫瘤晚期、頻繁有絲分裂和較差的臨床預后緊密相關[34]。此外,IGFBP5不同的結構域對人類不同腫瘤的致瘤性和轉移產生不同的影響[35]。然而未見IGFBP5在膀胱癌轉移中的報道。本研究在前期工作的基礎上進一步探討了miRNA-149是否通過靶向作用于IGFBP5抑制膀胱癌細胞的侵襲。結果顯示miRNA-149抑制IGFBP5 3UTR的活性,并且IGFBP5過表達明顯逆轉miRNA-149抑制膀胱癌細胞侵襲的作用。因此該結果表明miRNA-149通過靶向作用于IGFBP5抑制膀胱癌細胞侵襲,為臨床膀胱癌轉移防治提供了新的靶點和理論依據。
綜上所述,miRNA-149通過靶向IGFBP5基因抑制膀胱癌細胞侵襲,具有重要的臨床意義。然而miRNA-149是否在體內同樣通過該調控機制抑制膀胱癌轉移尚需進一步的探究。
[參考文獻]
[1] Isabel Heidegger,Gennadi Tulchiner,Georg Schfer,et al. Long term disease free survival with multimodal therapy in small cell bladder cancer[J].European Journal of Medical Research,2016,21(1):40.
[2] Gao L,Li SH,Tian YX,et al. Role of downregulated miR-133a-3p expression in bladder cancer:A bioinformatics study[J].Oncotargets & Therapy,2017,10(6):3667-3683.
[3] Jemal A,Siegel R,Xu J,et al.Cancer statistics,2010[J].A Cancer Journal for Clinicians,2010,60(5):277-300.
[4] Babjuk M,Oosterlinck W,Sylvester R,et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder[J].Eur Urol,2011,59(6):997-1008.
[5] Kaufman DS,Shipley WU, Feldman AS. Bladder cancer[J].Lancet,2009,374(9685):239-249.
[6] Witjes JA,Compérat E,Cowan NC,et al.EAU guidelines on muscle-invasive and metastatic bladder cancer:Summary of the 2013 guidelines[J].European Urology,2014, 65(4):778-792.
[7] Zeng S,Yu X,Ma C,et al. Transcriptome sequencing identifies ANLN as a promising prognostic biomarker in bladder urothelial carcinoma[J].Scientific Reports, 2017, 7(1):3151.
[8] Bartel DP.MicroRNAs:Genomics,biogenesis,mechanism,and function[J].Cell, 2004,116(2):281-297.
[9] Huang Y,Li X,Tao G,et al.Comparing serum microRNA levels of acute herpes zoster patients with those of postherpetic neuralgia patients[J].Medicine,2017,96(8):e5997.
[10] Wang C,Liao H,Cao Z. Role of osterix and micrornas in bone formation and tooth development[J].Medical Science Monitor International Medical Journal of Experimental & Clinical Research,2016,22(8):2934-2942.
[11] Wang W,Shen F,Wang C,et al.MiR-1-3p inhibits the proliferation and invasion of bladder cancer cells by suppressing CCL2 expression[J].Tumour Biology the Journal of the International Society for Oncodevelopmental Biology & Medicine, 2017,39(6):383.
[12] Lu S,Wang MS,Chen PJ,et al.MiRNA-186 inhibits prostate cancer cell proliferation and tumor growth by targeting YY1 and CDK6[J].Experimental & Therapeutic Medicine,2017,13(6):3309-3314.
[13] Yan L,Wang Y,Liang J,et al.Mir-301b promotes the proliferation,mobility and epithelial-to-mesenchymal transition of bladder cancer cells by targeting EGR1[J].Biochemistry & Cell Biology,2017,95(5).571-577.
[14] Armstrong DA,Green BB,Seigne JD,et al.MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer[J].Molecular Cancer,2015,14(14):194.
[15] Jiang X,Du L,Wang L,et al.Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer[J]. International Journal of Cancer,2015,136(4):854-862.
[16] Jia AY,Castillo-Martin M,Bonal DM,et al.MicroRNA-126 inhibits invasion in bladder cancer via regulation of ADAM9[J].Br J Cancer,2014,110(12): 2945-2954.
[17] Tian P,Yan,L. Inhibition of microRNA-149-5p induces apoptosis of acute myeloid leukemia cell line THP-1 by targeting Fas ligand(FASLG)[J].Medical Science Monitor International Medical Journal of Experimental & Clinical Research, 2016,22(11): 5116-5123.
[18] Lin L,Zhang YD,Chen ZY,et al. The clinicopathological significance of miR-149 and PARP-2 in hepatocellular carcinoma and their roles in chemo/radiotherapy[J].Tumor Biology,2016,37(9):1-8.
[19] Zhang G,Liu X,Li Y,et al. EphB3-targeted regulation of miR-149 in the migration and invasion of human colonic carcinoma HCT116 and SW620 cells[J].Cancer Science,2017,108(3):408-418.
[20] Jin L,Li Y,Liu J, et al.Tumor suppressor miR-149-5p is associated with cellular migration,proliferation and apoptosis in renal cell carcinoma[J]. Molecular Medicine Reports,2016,13(6):5386-5392.
[21] Luo G,Chao YL,Tang B,et al.miR-149 represses metastasis of hepatocellular carcinoma by targeting actin-regulatory proteins PPM1F[J].Oncotarget,2015,6(35):37808-37823.
[22] Xu K,Liu X,Mao X,et al. icroRNA-149 Suppresses colorectal cancer cell migration and invasion by directly targeting forkhead box transcription factor FOXM1[J].Cellular Physiology & Biochemistry,2015,35(2):499-515.
[23] Oseini AM,Roberts LR.PDGFRalpha:A new therapeutic target in the treatment of hepatocellular carcinoma?[J].Expert Opin Ther Targets,2009,13(4): 443-454.
[24] stman A,Heldin C. H.PDGF receptors as targets in tumor treatment[J].Advances in Cancer Research,2007,97(97):247-274.
[25] Ozawa T,Brennan CW,Wang L,et al.PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas[J].Genes & Development,2010,24(19):2205-2218.
[26] Joglekar-Javadekar M,Van Laere S,Bourne M,et al.Characterization and targeting of platelet-derived growth factor receptor alpha (PDGFRA) in inflammatory breast cancer (IBC)[J].Neoplasia, 2017,19(7):564-573.
[27] Wang L,Yue Y,Yang X,et al.Platelet derived growth factor alpha (PDGFRα) induces the activation of cardiac fibroblasts by Activating c-Kit[J]. Medical Science Monitor International Medical Journal of Experimental & Clinical Research,2017,23(8):3808-3816.
[28] Smith CA,McClive PJ,Hudson Q,et al.Male-specific cell migration into the developing gonad is a conserved process involving PDGF signalling[J]. Developmental Biology,2005,284(2):337-350.
[29] GüllüG,Karabulut S,Akkiprik M.Functional roles and clinical values of insulin-like growth factor-binding protein-5 in different types of cancers[J]. Chin J Cancer,2012, 31(6):266-280.
[30] Mohan S,BaylinkD.J.IGF-binding proteins are multifunctional and act via IGF-dependent and -independent me-chanisms[J].Journal of Endocrinology,2002,175(1):19-31.
[31] Mita K,Zhang Z,Ando Y,et al.Prognostic significance of insulin-like growth factor binding protein(IGFBP)-4 and IGFBP-5 expression in breast cancer[J]. Japanese Journal of Clinical Oncology,2007,37(8):575-582.
[32] Akkiprik M,Hu L,Sahin A,et al.The subcellular localization of IGFBP5 affects its cell growth and migration functions in breast cancer[J].BMC Cancer,2009,9(1):103-105.
[33] van 't Veer LJ,Dai H,van de Vijver MJ,et al.Gene expression profiling predicts clinical outcome of breast cancer[J].Nature,2002,415(6871):530-536.
[34] Liang PI,Wang YH,Wu TF,et al.IGFBP-5 overexpression as a poor prognostic factor in patients with urothelial carcinomas of upper urinary tracts and urinary bladder[J].Journal of Clinical Pathology,2013,66(7):573-582.
[35] Luther GA,Lamplot J,Chen X,et al.IGFBP5 domains exert distinct inhibitory effects on the tumorigenicity and metastasis of human osteosarcoma[J]. Cancer Letters,2013, 336(1):222-230.
(收稿日期:2018-08-03)