999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

An Alternative Approach to Extend Levy Constrained Search in Fock Space to No Integer Electron Number in Density Functional Theory

2018-03-08 03:45:49LIUShubin
物理化學學報 2018年6期

LIU Shubin

Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA.

Email: shubin@email.unc.edu

The Hohenberg-Kohn theorem in density functional theory, as originally formulated, states that if an electron density, ρ0(r), is the nondegenerate ground state density of an N-electron system with external potential v0(r), where N is a positive integer, then ρ0(r) is not the ground-state density for any other electronic system1. This implies that the external potential is a functional of the ground-state electron density, and provides the foundation for density-functional theory (DFT). However, defining a practical variational method for optimizing the electron density requires that one consider electron densities associated with degenerate ground states, electron densities that are not the ground state for any electronic system, and electron densities that have noninteger electron number. The Levy constrained search2, and its extension to the grand canonical ensemble by Perdew, Parr, Levy, and Balduz3, were the first (but by no means the only4–7) theoretical frameworks that provided these extensions. These approaches allow one to determine the ground-state energy and electron density by minimizing the electronic energy functional over the set of all nonnegative integrable densities. They do this by extending the domain of the Hohenberg-Kohn functional, F[ρ], from the set of nondegenerate v-representable integer-N densities to the set of all nonnegative integrable electron densities

The Hohenberg-Kohn theorem is also restricted to ground state electron densities. The integer-N Levy constrained search functional also works for excited-state electron densities that are not ground-state electron densities8, and can be extended to other excited states by a variety of techniques9–20. Similarly, the extension of the Levy constrained search to Fock space will also work for an excited state if it is not the ground state density for any electronic system; this is an advantage over the traditional zero-temperature grand-canonical ensemble approach.

In the present paper (This paper is published online in the Journal of Acta Physico-Chimica Sinica, doi:10.3866/PKU.WHXB201711071)21, Professor Paul W. Ayers of McMaster University, Canada, and Professor Mel Levy of Tulane University, USA, present a new way to extend the domain of F[ρ], based on the generalization of the Levy constrained search to Fock space. Fock space is the direct sum of the integer-N-electron Hilbert spaces, so wavefunctions in Fock space can have an (expected value for the) number of electrons that is not an integer. This allows the traditional integer-N Levy constrained search functional for the wavefunction to be extended to fractional electron number in a straightforward way. Specifically, the Levy constrained search functional searches over all wavefunctions in the N-electron Hilbert space with the target electron density, finds the wavefunction that has the smallest value for the sum of the electronic kinetic energy and electron-electron potential energy,F = T + V ee, and defines F Levy[ρ] as that value2,22. The new function, F Fock[ρ], is defined in the same way: the only change is that the constrained search is over all wavefunctions in the Fock space that have the target electron density. While the Fock-space constrained search functional gives, as it must, the same results as the zero-temperature grand canonical ensemble functional for electronic ground states, it may be easier to derive properties of the exact functional from this new approach22. (It is generally easier to derive properties of the traditional Levy constrained search functional than it is to derive properties of alternative functionals based on ensembles or Legendre transformation.23)Whether the Fock-space Levy constrained search functional can also be extended to arbitrary excited states, perhaps using the same strategies that were used to extend the integer-N Levy constrained search to excited states, is an almost24completely unexplored, but very interesting, topic for future research.

(1) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.doi: 10.1103/PhysRev.136.B864

(2) Levy, M. Proc. Natl. Acad. Sci. USA 1979, 76, 6062.doi: 10.1073/pnas.76.12.6062

(3) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett.1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691

(4) Valone, S. M. J. Chem. Phys. 1980, 73, 4653. doi: 10.1063/1.440656

(5) Lieb, E. H. Int. J. Quantum Chem. 1983, 24, 243.doi: 10.1002/qua.560240302

(6) Ayers, P. W. Phys. Rev. A 2006, 73, 012513.doi: 10.1103/PhysRevA.73.012513

(7) Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84,5172. doi: 10.1103/PhysRevLett.84.5172

(8) Perdew, J. P.; Levy, M. Phys. Rev. B 1985, 31, 6264.doi: 10.1103/PhysRevB.31.6264

(9) Levy, M.; Nagy, A. Phys. Rev. Lett. 1999, 83, 4361.doi: 10.1103/PhysRevLett.83.4361

(10) Levy, M.; Nagy, A. Phys. Rev. A 1999, 59, 1687.doi: 10.1103/PhysRevA.59.1687

(11) Nagy, A.; Levy, M. Phys. Rev. A 2001, 63, 052502.doi: 10.1103/PhysRevA.63.052502

(12) Nagy, A.; Levy, M.; Ayers, P. W. Time-Independent Theory for a Single Excited State. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2009; p. 121.

(13) Ayers, P. W.; Levy, M. Phys. Rev. A 2009, 80, 012508.doi: 10.1103/PhysRevA.80.012508

(14) Ayers, P. W.; Nagy, A.; Levy, M. Phys. Rev. A 2012, 85, 042518.doi: 10.1103/PhysRevA.85.042518

(15) Ayers, P. W.; Levy, M.; Nagy, A. J. Chem. Phys. 2015, 143 (19), 4.doi: 10.1063/1.4934963

(16) Gorling, A. Phys. Rev. A 1999, 59, 3359.doi: 10.1103/PhysRevA.59.3359

(17) Gorling, A. J. Chem. Phys. 2005, 123, 062203.doi: 10.1063/1.1904583

(18) Theophilou, A. K. J. Phys. C 1979, 12, 5419.

(19) Gross, E. K. U.; Oliveira, L. N.; Kohn, W. Phys. Rev. A 1988, 37,2809. doi: 10.1103/PhysRevA.37.2809

(20) Oliveira, L. N.; Gross, E. K. U.; Kohn, W. Phys. Rev. A 1988, 37,2821. doi: 10.1103/PhysRevA.37.2821

(21) Ayers, P. W.; Levy, M. Acta Phys. -Chim. Sin. 2018, 34 (6), 625.doi: 10.3866/PKU.WHXB201711071

(22) Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010.doi: 10.1103/PhysRevA.32.2010

(23) Levy, M.; Perdew, J. P. NATO ASI Series, Series B 1985, 123, 11.

(24) Ayers, P. W. Ph.D. Disseration, University of North Carolina, Chapel Hill, NC, USA, 2001.

主站蜘蛛池模板: 国产www网站| 亚洲水蜜桃久久综合网站| 亚洲国产精品日韩专区AV| 国产激爽大片在线播放| 国产福利在线免费| 在线免费a视频| 亚洲最猛黑人xxxx黑人猛交| 欧美午夜视频| 亚洲精品国产精品乱码不卞 | 久久这里只有精品8| 99久久国产综合精品2020| 扒开粉嫩的小缝隙喷白浆视频| 四虎永久在线| 国产 在线视频无码| 国产成人精品优优av| 免费看av在线网站网址| 美女无遮挡被啪啪到高潮免费| 久久黄色视频影| 九九热这里只有国产精品| 91破解版在线亚洲| 亚洲精品人成网线在线 | 欧美精品导航| 国产欧美精品一区aⅴ影院| 中文字幕波多野不卡一区| 午夜一区二区三区| 亚洲一区免费看| 666精品国产精品亚洲| 亚洲一区二区黄色| 亚洲第一极品精品无码| 九九热在线视频| 亚洲午夜18| 国产成+人+综合+亚洲欧美| 亚洲国产成人精品无码区性色| 乱色熟女综合一区二区| 永久免费av网站可以直接看的| 伊人色在线视频| 丁香六月综合网| 三级欧美在线| 精品国产毛片| 精品国产www| 欧美成人h精品网站| 国产欧美视频综合二区| 亚洲欧美综合另类图片小说区| 亚洲精品欧美重口| 免费一级无码在线网站| 欧美国产精品不卡在线观看| 日韩无码视频专区| 亚洲av日韩av制服丝袜| 国产精品理论片| 91久久夜色精品国产网站| 中文字幕无码制服中字| 精品国产一区二区三区在线观看| 国产日韩欧美成人| 四虎在线观看视频高清无码| 国产99热| 国产成人啪视频一区二区三区| 亚洲自拍另类| 亚洲熟女偷拍| 精品少妇人妻一区二区| 99免费视频观看| 亚洲婷婷丁香| 日韩精品成人在线| 亚卅精品无码久久毛片乌克兰| 综合人妻久久一区二区精品| 国产丝袜第一页| 久久人搡人人玩人妻精品| 伊人五月丁香综合AⅤ| 久久精品免费看一| 91探花在线观看国产最新| 亚洲欧洲日韩久久狠狠爱| 久久香蕉国产线| 亚洲欧美极品| 在线无码九区| 成人午夜精品一级毛片| jizz在线免费播放| 最新国产在线| 九九九久久国产精品| 看国产一级毛片| 97国内精品久久久久不卡| 欧美一区二区三区欧美日韩亚洲| 久久这里只精品国产99热8| 她的性爱视频|