999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

An Alternative Approach to Extend Levy Constrained Search in Fock Space to No Integer Electron Number in Density Functional Theory

2018-03-08 03:45:49LIUShubin
物理化學學報 2018年6期

LIU Shubin

Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA.

Email: shubin@email.unc.edu

The Hohenberg-Kohn theorem in density functional theory, as originally formulated, states that if an electron density, ρ0(r), is the nondegenerate ground state density of an N-electron system with external potential v0(r), where N is a positive integer, then ρ0(r) is not the ground-state density for any other electronic system1. This implies that the external potential is a functional of the ground-state electron density, and provides the foundation for density-functional theory (DFT). However, defining a practical variational method for optimizing the electron density requires that one consider electron densities associated with degenerate ground states, electron densities that are not the ground state for any electronic system, and electron densities that have noninteger electron number. The Levy constrained search2, and its extension to the grand canonical ensemble by Perdew, Parr, Levy, and Balduz3, were the first (but by no means the only4–7) theoretical frameworks that provided these extensions. These approaches allow one to determine the ground-state energy and electron density by minimizing the electronic energy functional over the set of all nonnegative integrable densities. They do this by extending the domain of the Hohenberg-Kohn functional, F[ρ], from the set of nondegenerate v-representable integer-N densities to the set of all nonnegative integrable electron densities

The Hohenberg-Kohn theorem is also restricted to ground state electron densities. The integer-N Levy constrained search functional also works for excited-state electron densities that are not ground-state electron densities8, and can be extended to other excited states by a variety of techniques9–20. Similarly, the extension of the Levy constrained search to Fock space will also work for an excited state if it is not the ground state density for any electronic system; this is an advantage over the traditional zero-temperature grand-canonical ensemble approach.

In the present paper (This paper is published online in the Journal of Acta Physico-Chimica Sinica, doi:10.3866/PKU.WHXB201711071)21, Professor Paul W. Ayers of McMaster University, Canada, and Professor Mel Levy of Tulane University, USA, present a new way to extend the domain of F[ρ], based on the generalization of the Levy constrained search to Fock space. Fock space is the direct sum of the integer-N-electron Hilbert spaces, so wavefunctions in Fock space can have an (expected value for the) number of electrons that is not an integer. This allows the traditional integer-N Levy constrained search functional for the wavefunction to be extended to fractional electron number in a straightforward way. Specifically, the Levy constrained search functional searches over all wavefunctions in the N-electron Hilbert space with the target electron density, finds the wavefunction that has the smallest value for the sum of the electronic kinetic energy and electron-electron potential energy,F = T + V ee, and defines F Levy[ρ] as that value2,22. The new function, F Fock[ρ], is defined in the same way: the only change is that the constrained search is over all wavefunctions in the Fock space that have the target electron density. While the Fock-space constrained search functional gives, as it must, the same results as the zero-temperature grand canonical ensemble functional for electronic ground states, it may be easier to derive properties of the exact functional from this new approach22. (It is generally easier to derive properties of the traditional Levy constrained search functional than it is to derive properties of alternative functionals based on ensembles or Legendre transformation.23)Whether the Fock-space Levy constrained search functional can also be extended to arbitrary excited states, perhaps using the same strategies that were used to extend the integer-N Levy constrained search to excited states, is an almost24completely unexplored, but very interesting, topic for future research.

(1) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.doi: 10.1103/PhysRev.136.B864

(2) Levy, M. Proc. Natl. Acad. Sci. USA 1979, 76, 6062.doi: 10.1073/pnas.76.12.6062

(3) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett.1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691

(4) Valone, S. M. J. Chem. Phys. 1980, 73, 4653. doi: 10.1063/1.440656

(5) Lieb, E. H. Int. J. Quantum Chem. 1983, 24, 243.doi: 10.1002/qua.560240302

(6) Ayers, P. W. Phys. Rev. A 2006, 73, 012513.doi: 10.1103/PhysRevA.73.012513

(7) Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84,5172. doi: 10.1103/PhysRevLett.84.5172

(8) Perdew, J. P.; Levy, M. Phys. Rev. B 1985, 31, 6264.doi: 10.1103/PhysRevB.31.6264

(9) Levy, M.; Nagy, A. Phys. Rev. Lett. 1999, 83, 4361.doi: 10.1103/PhysRevLett.83.4361

(10) Levy, M.; Nagy, A. Phys. Rev. A 1999, 59, 1687.doi: 10.1103/PhysRevA.59.1687

(11) Nagy, A.; Levy, M. Phys. Rev. A 2001, 63, 052502.doi: 10.1103/PhysRevA.63.052502

(12) Nagy, A.; Levy, M.; Ayers, P. W. Time-Independent Theory for a Single Excited State. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2009; p. 121.

(13) Ayers, P. W.; Levy, M. Phys. Rev. A 2009, 80, 012508.doi: 10.1103/PhysRevA.80.012508

(14) Ayers, P. W.; Nagy, A.; Levy, M. Phys. Rev. A 2012, 85, 042518.doi: 10.1103/PhysRevA.85.042518

(15) Ayers, P. W.; Levy, M.; Nagy, A. J. Chem. Phys. 2015, 143 (19), 4.doi: 10.1063/1.4934963

(16) Gorling, A. Phys. Rev. A 1999, 59, 3359.doi: 10.1103/PhysRevA.59.3359

(17) Gorling, A. J. Chem. Phys. 2005, 123, 062203.doi: 10.1063/1.1904583

(18) Theophilou, A. K. J. Phys. C 1979, 12, 5419.

(19) Gross, E. K. U.; Oliveira, L. N.; Kohn, W. Phys. Rev. A 1988, 37,2809. doi: 10.1103/PhysRevA.37.2809

(20) Oliveira, L. N.; Gross, E. K. U.; Kohn, W. Phys. Rev. A 1988, 37,2821. doi: 10.1103/PhysRevA.37.2821

(21) Ayers, P. W.; Levy, M. Acta Phys. -Chim. Sin. 2018, 34 (6), 625.doi: 10.3866/PKU.WHXB201711071

(22) Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010.doi: 10.1103/PhysRevA.32.2010

(23) Levy, M.; Perdew, J. P. NATO ASI Series, Series B 1985, 123, 11.

(24) Ayers, P. W. Ph.D. Disseration, University of North Carolina, Chapel Hill, NC, USA, 2001.

主站蜘蛛池模板: 亚洲一区色| 免费人成又黄又爽的视频网站| 亚洲中文精品人人永久免费| 国产成人高清精品免费5388| 久久国产亚洲偷自| 国产chinese男男gay视频网| 国产91蝌蚪窝| 亚洲人成成无码网WWW| 亚洲无码视频图片| 精品人妻无码中字系列| 欧美精品在线视频观看| 免费亚洲成人| 国产地址二永久伊甸园| 国产精品v欧美| 久草国产在线观看| 毛片在线播放a| 国产福利一区视频| AV不卡无码免费一区二区三区| 久久男人视频| 久久一级电影| 激情無極限的亚洲一区免费| 69视频国产| 99久久国产精品无码| 在线无码九区| 久热中文字幕在线| 日韩欧美在线观看| 亚洲午夜福利精品无码不卡| 久久99精品久久久大学生| 亚洲欧美日韩色图| 国产精品男人的天堂| 99在线视频精品| 国产精品视频观看裸模| 国产精品护士| 亚洲αv毛片| 色悠久久久| 影音先锋丝袜制服| 色视频国产| 香蕉色综合| 成人午夜福利视频| 久久婷婷六月| 97亚洲色综久久精品| 最新亚洲人成无码网站欣赏网| 福利国产在线| 成人毛片在线播放| 美女无遮挡免费网站| 日韩免费毛片视频| 亚洲黄色视频在线观看一区| 国产福利免费视频| 国产一区二区三区日韩精品 | h视频在线播放| 在线视频亚洲色图| 国产午夜福利在线小视频| 中文字幕调教一区二区视频| 中国一级毛片免费观看| 四虎永久免费在线| 9cao视频精品| 欧美国产日产一区二区| 午夜成人在线视频| 欧美日韩第三页| 日韩欧美中文字幕在线精品| 亚洲中文字幕久久精品无码一区| 天天色综网| 欧美成人在线免费| 亚洲第一页在线观看| 亚洲毛片网站| 五月婷婷亚洲综合| 天天干天天色综合网| 草草影院国产第一页| 久久久精品久久久久三级| 男女性午夜福利网站| 久草热视频在线| 幺女国产一级毛片| 亚洲第一色网站| 一区二区影院| 成人日韩精品| 亚洲欧美日韩综合二区三区| 少妇极品熟妇人妻专区视频| 一级香蕉人体视频| 免费看美女毛片| 中文字幕天无码久久精品视频免费| 四虎永久在线精品国产免费 | 色播五月婷婷|