999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Synthesis, Crystal Structure and Photoluminescent Property of a New Zn(II) Complex Based on 3,4-Bis(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole①

2018-03-12 08:40:50WUHunPingLIBingTIANXioYnJINXioDongLIANGHongJioQIUJingRuMENGQingFeng
結(jié)構(gòu)化學(xué) 2018年2期

WU Hun-Ping LI Bing TIAN Xio-Yn JIN Xio-Dong LIANG Hong-Jio QIU Jing-Ru MENG Qing-Feng

?

Synthesis, Crystal Structure and Photoluminescent Property of a New Zn(II) Complex Based on 3,4-Bis(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole①

WU Huan-PingaLI Binga②TIAN Xiao-YanaJIN Xiao-DongaLIANG Hong-JiaoaQIU Jing-RuaMENG Qing-Fengb

a(750021)b(810008)

complex, crystal structure, 2,2?,4??-tpt, photoluminescent;

1 INTRODUCTION

It has been well established that polymeric coor- dination complexes with metal ions and conjugated ligands may be regarded as promising candidates for potential photoluminescent materials[1-5]. In this connection, Zn(II) ion with the adjustable coordina- tion numbers and10electronic configuration has been applied in preparing coordination supramole- cular systems with interesting structures and promising properties[6-9].

Currently, triazole derivatives have been widely used in the construction of metal complexes[10-13]. As one of the derivatives of triazole, tripyridyltriazole (tpt) can be considered as excellent building blocks for their multiple binding sites and diverse con- formations upon complexation[14-16]. Furthermore, the prototropy and conjugation between the 1H-1,2,4-triazole and pyridyl groups alter the electron density in different sections of the molecules, thus making the ligand more flexible[17, 18]. So, we have chosen 3,4-bis(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole as an organic ligand, which can be regarded as an excellent building block for the construction of new coordination compounds. In addition, terephthalic acid (H2tpa) has been extensively explored to pro- duce robust crystalline materials due to their exclu- sive bridging abilities and versatile coordination modes[19-21]. Thus, it is usually used as an auxiliary ligand in the construction of metal organic frame- works[22, 23].

As the further investigation of tpt[24], a new Zn(II) coordination polymer [Zn1.5(2,2?,4??-tpt)(tpa)2]nbased on 2,2?,4??-tpt (3,4-bis(2-pyridyl)-5-(4-pyri- dyl)-1,2,4-triazole) and H2tpa has been structurally established by single-crystal X-ray diffraction analysis, and characterized by EA, IR, TGA and XPRD. The luminescent property of complex 1 is also studied, which shows it can be a good candidate for potential photoactive materials.

2 EXPERIMENTAL

2. 1 Reagents and instruments

All chemicals were commercially available and used as purchased. Elemental analyses (C, H and N) were performed on a Vario EL III analyzer. Infrared spectra were obtained from KBr pellets on a BEQ VZNDX 550 FTIR instrument within the 400~4000 cm-1region. Thermogravimetric analysis was carried out on a TA Instruments NETZSCH STA 449 C simultaneous TGA at a heating rate of 10 ℃·min-1under hydrostatic air. The luminescent spectra for the powdered solid samples were recorded at room temperature on an F-7000 FL Spectrophotometer.

2. 2 Synthesis of the ligand

2,2?,4??-tpt was synthesized according to refe- rence[25]. A mixture of 2-aminopyridine (4.655 g, 0.05 mol), sulfur powder (4.81 g, 0.15 mol) and sodiumsulfide nonahydrate (0.24 g, 0.01 mol) in 2-methyl pyridine (30 mL) was refluxed for 48 h. After cooling and removal of all volatiles in vacuo, the dark solid residue was taken up in 2 mol/L aqueous sodium hydroxide (100 mL), and the mixture was filtered. The filtrate was diluted with water (200 mL) and acidified to pH = 5 by dropwise adding hydrochloric acid. The resulting yellow precipitate was filtered off and washed thoroughly with water. Then, a mixture of N-(2-pyridyl)py- ridine-4-thio formamide (2.15 g, 10.0 mmol) and 4-pyridine formyl hydrazine (1.645 g, 12.0 mmol) in n-butyl alcohol (40 mL) was refluxed for 24 h. On cooling, the product crystallized from the orange reaction mixture. It was filtered off, washed with ethanol and dried in vacuo to give 2.85 g (52%) as fine colourless needles (Scheme 1). m.p. 230.5~233.5 ℃. C17H12N6: Calcd. (%): C, 67.99; H, 4.03; N, 27.98. Found (%): C, 68.43; H, 3.51; N, 28.06. IR (KBr, cm-1): 1589s, 1568m, 1471m, 1454m, 1427m, 1342w, 1327w, 1284m, 1242w, 1176m, 1149w, 1099m, 1047m, 1020m, 993m, 929w, 817s, 798s, 754s, 711s, 608s.1H NMR (400 MHz, CDCl3): 8.59 (dd, J = 1.9, 0.8Hz, 1H), 8.58 (dd, J = 3.7, 1.2Hz, 1H), 8.56 (d, J = 1.7Hz, 1H), 8.31 (dt, J = 8.0, 1.0Hz, 1H), 8.20 (ddd, J = 4.8, 1.7, 0.9Hz, 1H), 7.85 (td, J = 7.7, 1.9 Hz, 1H), 7.80 (td, J = 7.8, 1.8Hz 1H), 7.48 (ddd, J = 7.5, 4.9, 1.0Hz, 1H), 7.34 (d, J = 1.7 Hz, 1H), 7.33 (d, J = 1.7 Hz, 1H), 7.29 (dt, J = 7.9, 0.8 Hz, 1H), 7.22 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H).

Scheme 1. Synthetic route of the 2,2?,4??-tpt ligand

2. 3 Synthesis of compound 1

Compound 1 was prepared as follows.A water solution (5 mL) of Zn(NO3)2·6H2O (29.1 mg, 0.1 mmol) and H2tpa (21.0 mg, 0.1 mmol) was added to a solution of 2,2?,4??-tpt (15.0 mg, 0.05 mmol) in CH3OH (10 mL). After ca. 30 min of vigorous mixing, the resulting solution was filtered and left to stand under ambient conditions. Colorless block crystals of 1 were obtained after10 days in 60% yield (based on 2,2?,4??-tpt).C33H21Zn1.5N6O8: calcd.: C, 54.47; H, 2.91; N, 11.55%. Found: C, 54.62; H, 2.92; N, 11.59%. IR(KBr, cm-1): 1586s, 1578s, 1514m, 1464m, 1410s,1397m, 1217m, 1195m, 1152w, 1112w, 1005s,991m, 976w, 836s, 822m, 787m, 742m, 722m, 707m,632s, 610s, 523w.

2. 4 X-ray crystallography

All diffraction data of complex 1 were collected on a Bruker/Siemens Smart Apex II CCD diffrac- tometer with graphite-monochromated Moradia- tion (= 0.71073 ?) at 293(2) K. Cell parameters were retrieved using SMART software and refined using SAINTPLUS for all observed reflections. Data reduction and correction forand decay were performed using the SAINTPLUS software. Absorp- tion corrections were applied using SADABS. All structures were solved by direct methods using the SHELXS program of the SHELXTL-97 package and refined with SHELXL. For 1, a total of 25507 reflections were collected in the range of 3.10≤≤25.01°, of which 1966 were independent (int= 0.0648). The final= 0.0322 and= 0.0815 for observed reflections with> 2(),= 0.0359 and= 0.0841 for all data with (Δ)max= 0.812 and (Δ)min= 0.557 e·?-3.

3 RESULTS AND DISCUSSION

3. 1 Description of the structure

Table 1. Selected Bond Lengths and Bond Angles for Complex 1

Symmetry codes: i:+1,+1,+1; ii: –+1, –+1, –+1

Fig. 1. Coordination environment of complex 1 (Hydrogen atoms are omitted for clarity)

In this structure, adjacent two Zn(Ⅱ) ions are chelating-bridged by chelating pyridyl-triazolyl segment and bridging 4-pyridyl groups of 2,2?,4??-tpt ligand to form a dimeric subunit; then the nei- ghboring dimeric subunits are doubly bridged by tpt2-(Scheme 2a) to generate a 1D chain extending with the Zn···Zn distance of 10.9401(3) ?. The structure is further crossed through bridging/chelating mono- dentate-bidentate (Scheme 2b) tpa2-ligands into a 2D network skeleton (Fig. 2). Furthermore, the hydrogen bonds O(8)–H(8)···O(2) (Table 2) arise out of interactions between two different H2tpa groups, expanding the 2D networks into a 3D supramolecular architecture (Fig. 3).

Scheme 2. Coordination modes of the terephthalic acid

Fig. 2. 2D structure diagram in complex 1

Fig. 3. A 3D framework directed by hydrogen bonding interaction (green dashed lines)

Table 2. Hydrogen Bond Lengths (?) and Bond Angles (°) for Complex 1

Symmetry code: i: –, –+2, –+2

3. 2 Thermal decomposition process of the complex

Thermogravimetric experiments were conducted to study the thermal stability of 1, which is an important parameter for metal-organic framework materials. As shown in Fig. 4, the TGA curve of 1 begins to decompose at 320 K, leading to the collapse of the framework, and releases all the ligands completely from 320 to 887 K with an exothermic peak at 345 K.

Fig. 4. TGA curves for 1

To confirm the stable framework of 1, the original and processed samples were characterized by X-ray powder diffraction (XRPD) at room temperature. As shown in Fig. 5, the processed sample resulted in a slightly broadened XRPD pattern with similar peak positions to that of the original one, which shows that the crystallinity of 1 is retained.

3. 3 Photoluminescent properties

Coordination compounds with10metal centers and aromatic organic tectons are generally con- sidered as potential hybrid-photoactive materials[26, 27]. The solid state photoluminescent behavior of 1 and the free ligands are investigated at room temperature (Fig. 6). Excitation at 300 nm leads to photolumi- nescencewith the emission maxima at approximately 482 nm for 1, and 490 nm for free ligand 2,2?,4??-tpt.The similar profile and location for both emission peaks reveal that the photoluminescent mechanism of 1 should be ascribed to the intraligand transitions of 2,2?,4??-tpt[28-30]. In contrast to the free ligand, a slight blue shift of 8 nmhas appeared in complex 1,which can be attributed to the metal-ligand coordination effect that will effectively reduce the energy loss[31]. The emission properties make it as potential photoactive material.

Fig. 5. Comparison of XRPD patterns of theoriginal sample and the processed sample:– , original sample; … , processed sample

Fig. 6. Photoluminescent spectrum of 1 and ligands in the solid state at room temperature

4 CONCLUSION

In summary, a new complex [Zn1.5(2,2?,4??- tpt)(tpa)2]nhas been successfully synthesized from mixed ligand systems of2,2?,4??-tpt and H2tpa. 2,2?,4??-tpt acting as a tridentate ligand connects Zn(II) atoms to form a dimeric motif, which is linked into a 2D framework by tpa2-linkers. Moreover, the title complex has good thermal stability and displays strong luminescence emission at room temperature, which indicates that the complex could be a good candidate for potential photoactive materials. Further investigation is currently being processed.

(1) Wei, G.; Shen, Y. F.; Li, Y. R.; Huang, X. C. Synthesis, crystal structure, and photoluminescent properties of ternary Cd(II)/triazolate/chloride system.. 2010, 49, 9191–9199.

(2) Feng, Q.; Yan, M. J.; Song, H. H.; Shi, S. K. Self-assembly of two chiral zinc coordination polymers based on N-benzoyl-l-glutamic acid: influence of different N-donor ancillary ligands on structural arrangement and photoluminescent properties.2014, 415, 75–80.

(3) Coban, M. B.; Erkarslan, U.; Oylumluoglu, G.; Aygun, M.; Kara, H. Hydrothermal synthesis, crystal structure and photoluminescent properties; 3D holmium(III) coordination polymer.2016, 447, 87–91.

(4) Liu, Y. Y.; Liu, B.; Yang, J.; Ma, J. F. Five new coordination polymers constructed from 1,4-bis(1H-imidazol-1-yl)butane and different carboxylates: syntheses, structures and photoluminescence.2013, 56, 96–101.

(5) Liu, B.; Feng, H. J.; Zhang, Z. H.; Xu, L.; Jiao, H. A new 3D Cd-triazolate framework obtained from in situ decarboxylication of 5-amino-3-carboxyl-1,2,4-triazole.2015, 1098, 240–245.

(6) Liu, J.; Zhang, H. B.; Tan, Y. X.; Wang, F.; Kang, Y.; Zhang, J. Structural diversity and photoluminescent properties of zinc benzotriazole-5-carboxylate coordination polymers.2014, 53, 1500–1506.

(7) Zhao, J.; Wang, X. L.; Shi, X.; Yang, Q. H.; Li, C. Synthesis, structure, and photoluminescent properties of metal-organic coordination polymers assembled with bithiophenedicarboxylic acid.2011, 3198–3205.

(8) Wang, J.; Lin, Z. J.; Ou, Y. C.; Yang, N. L.; Zhang, Y. H.; Tong, M. L. Hydrothermal synthesis, structures, and photoluminescent properties of benzenepentacarboxylate bridged networks incorporating zinc(II)?hydroxide clusters or zinc(II)-carboxylate layers.2008, 47, 190–199.

(9) Li, B.; Chen, S. P.; Xie, G.; Yang, Q.; Gao, S. L. Benzenedicarboxylate-modulated zinc(II)-3,5-bis(3-pyridyl)-1H-1,2,4-triazole frameworks: syntheses, structures and luminescent properties.. 2014, 67, 2028–2038.

(10) Li, C. P.; Chen, J.; Guo, W.; Du, M. Anion-directed assembly and crystal trans-formation of Ag(I) coordination polymers with a versatile tripyridyltriazole ligand 3,4-bis(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole.2015, 223, 95–103.

(11) Guo, W.; Yang, Y. Y.; Du, M. Anion-directed assembly of two fluorescent Cd(II) coordination polymers with a versatile multidentate N-donor building block 3-(2-pyridyl)-4,5-bis(4-pyridyl)-1,2,4-triazole.2010, 13, 863–866.

(12) Yang, Y. Y.; Guo, W.; Du, M. Solvent-controlled assemblies, structures, and properties of two Hg(II) coordination polymers with a multidentate N-donor tecton 3,4-bis(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole.2010, 13, 1195–1198.

(13) Wang, H. H.; Shi, W. J.; Hou, L.; Li, G. P.; Zhu, Z. H.; Wang, Y. Y. A cationic MOF with high uptake and selectivity for CO2due to multiple CO2-philic Sites.2015, 21, 16525–16531.

(14) Ahmad, M.; Hassan, H. M.; Ali, M.; Peter, M. Sonochemical synthesis and characterization of new one-dimensional manganese(II) coordination polymer nanostructures.. 2015, 24, 140–145.

(15) Wang, X.; Guo, Y. M. Diverse structures and physicochemical properties of four zinc-tripyridyltriazole coordination polymers regulated by counter-ions.. 2016, 69, 33–40.

(16) Guo, J. H.; Guo, W.; Wang, X.; Du, M. Distinct 1D Cd(II) coordination polymers constructed by three isomeric tripyridyltriazole building blocks and thiocyanate anions.. 2012, 22, 77–81.

(17) Li, B.; Shen, D.; Chen, X. Y.; Li, T.; Ren, J. L.; Hu, Q. L.; Liu, W. Y. A new 1-D energetic complex [Cu(2,3?-bpt)2·H2O]n: synthesis, structure, and catalytic thermal decomposition for ammonium perchlorate.2014, 67, 2028–2038.

(18) Jin, X. D.; Li, B.; Gao, H.; Zhang, X.; Liu, W. Y. Synthesis, crystal structure, fluorescent property and DFT calculations of a new Zn(II) complex based on 3-(2-pyridyl)-5-(4-pyridyl)-1H-1,2,4-triazole.2016, 7, 1129–1136.

(19) Ye, B. H.; Tong, M. L.; Chen, X. M. Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands.. 2005, 249, 545–565.

(20) Yan, L.; Liu, W. Synthesis, crystal structure and luminescence study of a new two-dimensional Mn(II) coordination polymer.. 2016, 11, 1770–1776.

(21) Marmier, M.; Wise, M. D.; Holstein, J. J.; Pattison, P.; Schenk, K.; Solari, E.; Scopelliti, R.; Severin, K. Carboxylic acid functionalized clathrochelate complexes: large, robust, and easy-to-access metalloligands.2016, 55, 4006–4015.

(22) Chen, F.; Wang, C. Z.; Li, Z. J.; Lan, J. H.; Ji, Y. Q.; Chai, Z. F. New three-fold interpenetrated uranyl organic framework constructed by terephthalic acid and imidazole derivative.2015, 54, 3829–3834.

(23) Dong, W. K.; Ma, J. C.; Zhu, L. C.; Sun, Y. X.; Akogun, S. F.; Zhang, Y. A series of heteromultinuclear zinc(II)?lanthanide(III) complexes based on 3-MeOsalamo: syntheses, structural characterizations, and luminescent properties.2016, 16, 6903–6914.

(24) Li, B.; Han, J.; Yang, Q. F.; Tian, X. Y.; Chen, X. Y. A new energetic complex [Co(2,4,3-tpt)2(H2O)2]·2NO3: synthesis, structure, and catalytic thermal decomposition for ammonium perchlorate.2015, 641, 2371–2375.

(25) Klingele, M. H.; Brooker, S. From N-substituted thioamides to symmetrical and unsymmetrical 3,4,5-trisubstituted 4H-1,2,4-triazoles: synthesis and characterization of new chelating ligands.2004, 16, 3422–3434.

(26) Li, T.; Meng, Q. F.; Li, B.; Jin, X. D.; Gao, H.; Chen, X. Y.; Song, W. M.; Liu, W. Y. Assembly of a new fluorescent Cd(II) coordination compound with a versatile multidentate N-donor building block 3-(2-pyridyl)-5-(3?-pyridyl)-1,2,4-triazole.. 2015, 10, 1525–1532.

(27) Du, L. Y.; Shi, W. J.; Hou, L.; Wang, Y. Y.; Shi, Q. Z.; Zhu, Z. H. Solvent or temperature induced diverse coordination polymers of silver(I) sulfate and bipyrazole systems: syntheses, crystal structures, luminescence, and sorption properties.. 2013, 52, 14018?14027.

(28) Li, G. P.; Liu, G.; Li, Y. Z.; Hou, L.; Wang, Y. Y.; Zhu, Z. H. Uncommon pyrazoyl-carboxyl bifunctional ligand-based microporous lanthanide systems: sorption and luminescent sensing properties.2016, 55, 3952?3959.

(29) Liu, B.; Wu, W. P.; Hou, L.; Wang, Y. Y. Four uncommon nanocage-based Ln-MOFs: highly selective luminescent sensing for Cu2+ions and selective CO2capture.2014, 50, 8731?8734.

(30) Yang, Y. Y.; Guo, W.; Du, M. Solvent-controlled assemblies, structures, and properties of two Hg(II) coordination polymers with a multidentate N-donor tecton 3,4-bis(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole.. 2010, 13, 1195?1198.

(31) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks.. 2009,38, 1330?1352.

10 May 2017;

31 August 2017 (CCDC 1543223)

10.14102/j.cnki.0254-5861.2011-1717

① Supported by the Natural Science Foundation of Ningxia (No. NZ15006)and theResearch Project of Ningxia Colleges and Universities (No.NGY2017004)

②. E-mail: nxdaxue@126.com

主站蜘蛛池模板: 亚洲国产精品日韩专区AV| 一区二区理伦视频| 伊人激情久久综合中文字幕| 亚洲av片在线免费观看| 国产精品成人免费视频99| 日韩一区二区在线电影| 国产综合在线观看视频| 欧美三級片黃色三級片黃色1| 亚洲天堂网在线播放| 青青操视频在线| 992tv国产人成在线观看| 91毛片网| 在线欧美日韩| 国产在线一二三区| 日韩一区二区三免费高清| 国产美女无遮挡免费视频网站| 亚洲91在线精品| 国产91蝌蚪窝| 精品国产成人av免费| 重口调教一区二区视频| 国产成人AV男人的天堂| 亚洲第一色视频| 在线精品自拍| 久草视频中文| 中国一级特黄大片在线观看| 中国精品久久| 漂亮人妻被中出中文字幕久久| 青草视频久久| 国产一区成人| 国产激情在线视频| www.国产福利| 中国丰满人妻无码束缚啪啪| 国产精品欧美激情| 114级毛片免费观看| 国产成人高精品免费视频| 婷婷综合色| 中文字幕免费在线视频| 婷婷五月在线视频| 欧美人人干| 日韩福利在线视频| jizz在线观看| 国产亚洲欧美日韩在线一区二区三区| 色呦呦手机在线精品| 亚洲狼网站狼狼鲁亚洲下载| 国产精品亚洲欧美日韩久久| 久久久久人妻一区精品色奶水 | 免费看美女自慰的网站| 91免费国产高清观看| 久久久久88色偷偷| 欧美国产综合色视频| 国产尤物jk自慰制服喷水| 亚洲男人的天堂视频| 亚洲bt欧美bt精品| 亚洲成人精品在线| 国产欧美精品一区二区| 亚洲成人精品在线| a亚洲视频| 亚洲欧美国产五月天综合| 国产粉嫩粉嫩的18在线播放91 | 三上悠亚精品二区在线观看| 国产美女一级毛片| 欧洲成人在线观看| 九九这里只有精品视频| 亚洲人成网站色7799在线播放| 国产美女一级毛片| 欧美一级特黄aaaaaa在线看片| 国产全黄a一级毛片| 亚洲视频欧美不卡| 片在线无码观看| 久久99热这里只有精品免费看 | 国产精品lululu在线观看| 欧洲高清无码在线| 国产亚洲精品91| 欧美日韩91| 精品久久香蕉国产线看观看gif| 国产一区在线观看无码| 国产日韩欧美在线播放| 日韩大片免费观看视频播放| 国产成人综合欧美精品久久| 国产99视频精品免费视频7| 国产成人夜色91| 久久久久亚洲av成人网人人软件|