999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Determinants of Generalized GCD Matrices Associated with Arithmetic Functions

2018-03-23 08:07:28ZHUYuqingLIANDongyanDIAOTianboHUShuangnian

ZHU Yuqing, LIAN Dongyan, DIAO Tianbo, HU Shuangnian,2

( 1. College of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan;2. College of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Henan)

1 Introduction and statements of main results

Throughout this section, we letfbe an arithmetic function andS={x1,x2,…,xn} be a set ofndistinct positive integers. We can now give the first two main results of this paper, which extend Bege’s results[20].

Then each of the following is true:

and then×nmatrixD=(dij) is defined by

In what follows, we always let then×nmatricesCandDbe defined as in Theorem 1.1.From Theorem 1.1, one can deduce the following result of Bege[20].

Then each of the following is true:

FromTheorem1.2,onecandeducethefollowingresultofBege[20].

From Theorems 1.1 and 1.2, we can easily get the following result.

We organize this paper as follows. In Section 2, we prove Theorems 1.1 and 1.2. In Section 3, some examples are given to illustrate our main results.

2 Proof of Theorems 1.1 and 1.2

In this section, we prove Theorems 1.1-1.2. We begin with the proof of Theorem 1.1.

ProofofTheorem1.1(i) Write

A=Cdiag(f(x1),f(x2),…,f(xn))DT.

Then for any integersiandj(1≤i,j≤n), we have

Thus,

So the desired result follows immediately. This completes the proof of part (i).

det(C)det(diag(f(x1),f(x2),…,f(xn)))×

(iii) As the argument given in part (ii), we let 1≤x1

This ends the proof of Theorem 1.1.

ProofofTheorem1.2(i) For any integersiandjwith 1≤i,j≤n, we have

So the desired result follows immediately. This completes the proof of part (i).

(ii) Using part (i), one infers that

det(D)det(diag(f(x1),f(x2),…,f(xn)))×

Since Corollaries 1.1~1.3 are very easy to get, we omit their proofs here.

3 Examples

In this section, we give some examples to demonstrate our main results.

Example3.1LetS={2,4,8,12,16} andλbe the Liouville function which is defined by

Then one has

By Theorems 1.1 and 1.2, we have

and

Furthermore, we have

Example3.2LetS={2,4,5,8}. For any positive integern, we letf(n)=n. Then we obtain

From Theorems 1.1 and 1.2, we have

and

Moreover, we have

and

AcknowledgementsThe authors would like to thank the anonymous referee for careful reading of the manuscript and helpful comments that improve the presentation of this paper.

[1] SMITH H J S. On the value of a certain arithmetical determinant[J]. Proc London Math Soc,1875,7(1):208-212.

[2] BESLIN S, LIGH S. Another generalization of Smith’s determinant[J]. Bull Aust Math Soc,1989,40(3):413-415.

[3] BOURQUE K, LIGH S. Matrices associated with classes of arithmetical functions[J]. J Number Theory,1993,45(3):367-376.

[4] BOURQUE K, LIGH S. Matrices associated with arithmetical functions[J]. Linear Multilinear Algebra,1993,34(3/4):261-267.

[5] BOURQUE K, LIGH S. Matrices associated with multiplicative functions[J]. Linear Algebra Appl,1995,216(2):267-275.

[6] CODECA P, NAIR M. Calculating a determinant associated with multiplicative functions[J]. Boll Unione Mat Ital Sez B:Artic Ric Mat,2002,5(2):545-555.

[7] HILBERDINK T. Determinants of multiplicative Toeplitz matrices[J]. Acta Arith,2006,125(3):265-284.

[8] HONG S. Gcd-closed sets and determinants of matrices associated with arithmetical functions[J]. Acta Arith,2002,101(4):321-332.

[9] HONG S. Factorization of matrices associated with classes of arithmetical functions[J]. J Algebra,2003,281(1):1-14.

[10] HONG S. Nonsingularity of matrices associated with classes of arithmetical functions[J]. Linear Algebra & Its Applications,2006,416(1):124-134.

[11] HONG S, LI M, WANG B. Hyperdeterminants associated with multiple even functions[J]. Ramanujan J,2014,34(2):265-281.

[12] HONG S, LOEWY R. Asymptotic behavior of the smallest eigenvalue of matrices associated with completely even functions (modr)[J]. Int J Number Theory,2011,7:1681-1704.

[13] 胡雙年,陳龍,譚千蓉. 定義在兩個擬互素因子鏈上與算術函數相關聯矩陣的行列式[J]. 四川大學學報(自然科學版),2015,52(1):6-10.

[14] HU S, HONG S. Multiple divisor chains and determinants of matrices associated with completely even functions (modr)[J]. Linear Multilinear Algebra,2014,62(9):1240-1257.

[15] HU S, HONG S, ZHAO J. Determinants of matrices associated with arithmetic functions on finitely many quasi-coprime divisor chains[J]. Appl Math Comput,2015,258(1):502-508.

[16] 胡雙年,譚千蓉,趙相瑜.k-集合上與算術函數關聯矩陣的行列式[J]. 四川大學學報(自然科學版),2015,52(3):456-460.

[17] TAN Q. Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains[J]. Linear Multilinear Algebra Appl,2013,438(3):1454-1466.

[18] 趙建容. 使得冪GCD陣(Se)整除冪LCM矩陣[Se]的四元gcd封閉集S的一個刻畫[J]. 四川大學學報(自然科學版),2008,45(3):485-487.

[19] 趙建容,趙偉,李懋. 六元gcd 封閉集上Smith 矩陣的整除性[J]. 數學學報,2011,54(4):609-618.

[20] BEGE A. Generalized GCD matrices[J]. Acta Univ Sapientiae Math,2010,2(2):160-167.

[21] TAN Q. Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains[J]. Linear Multilinear Algebra,2013,438(3):1454-1466.

[22] WAN J, HU S, TAN Q. New results on nonsingular power LCM matrices[J]. Electronic Journal of Linear Algebra,2014,27(1):652-669.

[23] HONG S, HU S, LIN Z. On a certain arithmetical determinant[J]. Acta Math Hungar,2016,150(2):372-382.

[24] HONG S, HU S, HONG S. Multiple gcd-closed sets and determinants of matrices associated with arithmetic functions[J]. Open Math,2016,14(1):146-155.

[25] HU S, LIAN D, DIAO T, et al. Further results on generalized LCM matrices[J]. 武漢大學學報(自然科學英文版),2017,22(1):1-4.

主站蜘蛛池模板: 就去吻亚洲精品国产欧美| 亚洲婷婷六月| 人人看人人鲁狠狠高清| 97精品国产高清久久久久蜜芽| 一区二区三区四区在线| 精品国产免费观看一区| 亚洲愉拍一区二区精品| 国产真实乱人视频| 97se亚洲综合在线天天| 欧美不卡在线视频| 久久婷婷色综合老司机| 99re热精品视频国产免费| 日韩中文精品亚洲第三区| 白浆视频在线观看| 一本无码在线观看| 在线观看国产黄色| 日本在线视频免费| 欧美一区中文字幕| 亚洲成人77777| 欧美激情福利| 这里只有精品国产| 国产精品欧美日本韩免费一区二区三区不卡| 国产精品成人免费综合| 色网在线视频| 91精品小视频| 免费在线视频a| 视频一本大道香蕉久在线播放| 久久青草免费91观看| 亚洲天堂视频网| 亚洲一区国色天香| 亚洲一区色| 国产第一页亚洲| 高清码无在线看| 香蕉视频国产精品人| 国产精品污污在线观看网站| 亚洲精品不卡午夜精品| 2021国产精品自拍| 97久久精品人人| 欧美日韩资源| 国产高潮流白浆视频| 国国产a国产片免费麻豆| 特级欧美视频aaaaaa| 狠狠色狠狠综合久久| 久久黄色小视频| 欧美激情第一欧美在线| 国产丝袜精品| 亚洲中文字幕av无码区| 国产欧美又粗又猛又爽老| 亚洲综合九九| 日本精品一在线观看视频| 国产极品美女在线观看| 久草视频中文| 亚洲最大看欧美片网站地址| 国产精品自拍露脸视频| 亚洲妓女综合网995久久| 日本午夜在线视频| 国产三级a| 中文字幕久久波多野结衣| 欧美成人A视频| 亚洲精品无码久久久久苍井空| 亚洲欧洲日本在线| 制服丝袜国产精品| 国产在线精彩视频二区| 亚洲人成网站18禁动漫无码| 成AV人片一区二区三区久久| 欧美区一区二区三| 亚洲欧洲自拍拍偷午夜色| 亚洲性视频网站| 日韩精品无码免费专网站| 99视频在线观看免费| 日韩一级毛一欧美一国产| 国产亚洲精久久久久久久91| 欧美亚洲一区二区三区在线| 国产AV毛片| 国产精品偷伦视频免费观看国产| 亚洲免费人成影院| 成年片色大黄全免费网站久久| 国产视频一二三区| 欧美特黄一级大黄录像| 久草青青在线视频| 免费在线国产一区二区三区精品| 日韩欧美亚洲国产成人综合|