999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Determinants of Generalized GCD Matrices Associated with Arithmetic Functions

2018-03-23 08:07:28ZHUYuqingLIANDongyanDIAOTianboHUShuangnian

ZHU Yuqing, LIAN Dongyan, DIAO Tianbo, HU Shuangnian,2

( 1. College of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan;2. College of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Henan)

1 Introduction and statements of main results

Throughout this section, we letfbe an arithmetic function andS={x1,x2,…,xn} be a set ofndistinct positive integers. We can now give the first two main results of this paper, which extend Bege’s results[20].

Then each of the following is true:

and then×nmatrixD=(dij) is defined by

In what follows, we always let then×nmatricesCandDbe defined as in Theorem 1.1.From Theorem 1.1, one can deduce the following result of Bege[20].

Then each of the following is true:

FromTheorem1.2,onecandeducethefollowingresultofBege[20].

From Theorems 1.1 and 1.2, we can easily get the following result.

We organize this paper as follows. In Section 2, we prove Theorems 1.1 and 1.2. In Section 3, some examples are given to illustrate our main results.

2 Proof of Theorems 1.1 and 1.2

In this section, we prove Theorems 1.1-1.2. We begin with the proof of Theorem 1.1.

ProofofTheorem1.1(i) Write

A=Cdiag(f(x1),f(x2),…,f(xn))DT.

Then for any integersiandj(1≤i,j≤n), we have

Thus,

So the desired result follows immediately. This completes the proof of part (i).

det(C)det(diag(f(x1),f(x2),…,f(xn)))×

(iii) As the argument given in part (ii), we let 1≤x1

This ends the proof of Theorem 1.1.

ProofofTheorem1.2(i) For any integersiandjwith 1≤i,j≤n, we have

So the desired result follows immediately. This completes the proof of part (i).

(ii) Using part (i), one infers that

det(D)det(diag(f(x1),f(x2),…,f(xn)))×

Since Corollaries 1.1~1.3 are very easy to get, we omit their proofs here.

3 Examples

In this section, we give some examples to demonstrate our main results.

Example3.1LetS={2,4,8,12,16} andλbe the Liouville function which is defined by

Then one has

By Theorems 1.1 and 1.2, we have

and

Furthermore, we have

Example3.2LetS={2,4,5,8}. For any positive integern, we letf(n)=n. Then we obtain

From Theorems 1.1 and 1.2, we have

and

Moreover, we have

and

AcknowledgementsThe authors would like to thank the anonymous referee for careful reading of the manuscript and helpful comments that improve the presentation of this paper.

[1] SMITH H J S. On the value of a certain arithmetical determinant[J]. Proc London Math Soc,1875,7(1):208-212.

[2] BESLIN S, LIGH S. Another generalization of Smith’s determinant[J]. Bull Aust Math Soc,1989,40(3):413-415.

[3] BOURQUE K, LIGH S. Matrices associated with classes of arithmetical functions[J]. J Number Theory,1993,45(3):367-376.

[4] BOURQUE K, LIGH S. Matrices associated with arithmetical functions[J]. Linear Multilinear Algebra,1993,34(3/4):261-267.

[5] BOURQUE K, LIGH S. Matrices associated with multiplicative functions[J]. Linear Algebra Appl,1995,216(2):267-275.

[6] CODECA P, NAIR M. Calculating a determinant associated with multiplicative functions[J]. Boll Unione Mat Ital Sez B:Artic Ric Mat,2002,5(2):545-555.

[7] HILBERDINK T. Determinants of multiplicative Toeplitz matrices[J]. Acta Arith,2006,125(3):265-284.

[8] HONG S. Gcd-closed sets and determinants of matrices associated with arithmetical functions[J]. Acta Arith,2002,101(4):321-332.

[9] HONG S. Factorization of matrices associated with classes of arithmetical functions[J]. J Algebra,2003,281(1):1-14.

[10] HONG S. Nonsingularity of matrices associated with classes of arithmetical functions[J]. Linear Algebra & Its Applications,2006,416(1):124-134.

[11] HONG S, LI M, WANG B. Hyperdeterminants associated with multiple even functions[J]. Ramanujan J,2014,34(2):265-281.

[12] HONG S, LOEWY R. Asymptotic behavior of the smallest eigenvalue of matrices associated with completely even functions (modr)[J]. Int J Number Theory,2011,7:1681-1704.

[13] 胡雙年,陳龍,譚千蓉. 定義在兩個擬互素因子鏈上與算術函數相關聯矩陣的行列式[J]. 四川大學學報(自然科學版),2015,52(1):6-10.

[14] HU S, HONG S. Multiple divisor chains and determinants of matrices associated with completely even functions (modr)[J]. Linear Multilinear Algebra,2014,62(9):1240-1257.

[15] HU S, HONG S, ZHAO J. Determinants of matrices associated with arithmetic functions on finitely many quasi-coprime divisor chains[J]. Appl Math Comput,2015,258(1):502-508.

[16] 胡雙年,譚千蓉,趙相瑜.k-集合上與算術函數關聯矩陣的行列式[J]. 四川大學學報(自然科學版),2015,52(3):456-460.

[17] TAN Q. Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains[J]. Linear Multilinear Algebra Appl,2013,438(3):1454-1466.

[18] 趙建容. 使得冪GCD陣(Se)整除冪LCM矩陣[Se]的四元gcd封閉集S的一個刻畫[J]. 四川大學學報(自然科學版),2008,45(3):485-487.

[19] 趙建容,趙偉,李懋. 六元gcd 封閉集上Smith 矩陣的整除性[J]. 數學學報,2011,54(4):609-618.

[20] BEGE A. Generalized GCD matrices[J]. Acta Univ Sapientiae Math,2010,2(2):160-167.

[21] TAN Q. Divisibility among power GCD matrices and among power LCM matrices on two coprime divisor chains[J]. Linear Multilinear Algebra,2013,438(3):1454-1466.

[22] WAN J, HU S, TAN Q. New results on nonsingular power LCM matrices[J]. Electronic Journal of Linear Algebra,2014,27(1):652-669.

[23] HONG S, HU S, LIN Z. On a certain arithmetical determinant[J]. Acta Math Hungar,2016,150(2):372-382.

[24] HONG S, HU S, HONG S. Multiple gcd-closed sets and determinants of matrices associated with arithmetic functions[J]. Open Math,2016,14(1):146-155.

[25] HU S, LIAN D, DIAO T, et al. Further results on generalized LCM matrices[J]. 武漢大學學報(自然科學英文版),2017,22(1):1-4.

主站蜘蛛池模板: 国产激情第一页| 亚洲精品久综合蜜| 免费aa毛片| 五月天在线网站| 久久五月视频| 国产白浆在线| 日韩毛片视频| 久草青青在线视频| 午夜久久影院| 亚洲首页在线观看| 成人韩免费网站| 热久久国产| 国产剧情一区二区| 国产91精品久久| 婷婷色一二三区波多野衣| 欧美精品成人| 国产欧美日韩综合在线第一| 日韩性网站| 伦精品一区二区三区视频| 国产剧情国内精品原创| 久久久波多野结衣av一区二区| 国产91视频观看| 奇米精品一区二区三区在线观看| 91黄视频在线观看| 国产成人91精品免费网址在线| 中国一级特黄视频| 国产精品对白刺激| 色综合久久久久8天国| 国产精品视频导航| 最新国产网站| 99er这里只有精品| 伊人色在线视频| 亚洲免费三区| 日韩在线永久免费播放| 国产jizzjizz视频| 亚洲国语自产一区第二页| 日本日韩欧美| 伊人久久综在合线亚洲2019| 国产午夜人做人免费视频中文| 看国产一级毛片| 亚洲第一页在线观看| 国产永久在线视频| 91精品最新国内在线播放| 欧美成人免费午夜全| 亚洲色图欧美激情| 久久精品中文字幕免费| 免费全部高H视频无码无遮掩| 2020国产免费久久精品99| 特级毛片免费视频| 丰满人妻被猛烈进入无码| 国产精品三级专区| 国产成人AV男人的天堂| 在线观看精品国产入口| 国内精品免费| 国产主播喷水| 国产精品2| 欧美午夜在线视频| 亚洲精品国偷自产在线91正片| 免费99精品国产自在现线| 夜夜爽免费视频| 91人妻在线视频| 人妻21p大胆| 国产爽爽视频| 久青草国产高清在线视频| 欧美色视频网站| 日本AⅤ精品一区二区三区日| 狠狠做深爱婷婷久久一区| 成人午夜精品一级毛片| 欧美第一页在线| 亚洲AV无码一区二区三区牲色| 一区二区理伦视频| 亚洲人在线| 欧洲精品视频在线观看| 日本人妻一区二区三区不卡影院| 欧美激情综合| аv天堂最新中文在线| 亚洲精品视频免费看| 55夜色66夜色国产精品视频| 国产情精品嫩草影院88av| 亚洲综合色婷婷| 亚洲精品福利网站| 一区二区三区四区在线|