韓如夢 劉東毅



摘要:為了研究輸入時滯對Timoshenko梁系統穩定性的影響,鎮定邊界具有輸入時滯和載荷的Timoshenko梁系統,利用Backstepping方法,設計了一種新的控制器來補償輸入時滯帶來的影響,從而得到一個穩定的閉環系統。首先,給出一個與原時滯系統等價的無時滯系統;然后,構造一個Backstepping線性變換,并證明這個線性變換是有界可逆的;最后,通過這個變換將無時滯系統轉化為一個穩定的目標系統,并設計出相應的控制器。結果表明,此無時滯系統與目標系統是等價的,其反饋控制律可以鎮定原來的時滯系統。研究方法解決了輸入時滯對彈性系統的負面影響,豐富了分布參數控制系統的控制器設計方法及其穩定性理論,在工程實踐中具有一定的借鑒意義。
關鍵詞:穩定性理論;Timoshenko梁;漸近穩定;反饋控制;Backstepping方法; 時滯; 載荷
中圖分類號:O231.4MSC(2010)主題分類:34D20文獻標志碼:A
收稿日期:20171006;修回日期:20171228;責任編輯:張軍
基金項目:國家自然科學基金(61573252)
第一作者簡介:韓如夢(1993—),女,河北滄州人,碩士研究生,主要從事分布參數系統方面的研究。
通信作者:劉東毅副教授。Email:dyliu@tju.edu.cn
韓如夢,劉東毅.帶有輸入時滯的Timoshenko梁系統的控制器設計與穩定性分析[J].河北科技大學學報,2018,39(2):125134.
HAN Rumeng,LIU Dongyi.Controller design and stability analysis of Timoshenko beam with input delay[J].Journal of Hebei University of Science and Technology,2018,39(2):125134.Controller design and stability analysis of Timoshenko
beam with input delay
HAN Rumeng, LIU Dongyi
(School of Mathematics, Tianjin University, Tianjin 300354, China)
Abstract:In order to study the influence of input time delay on the stability of Timoshenko beam system and stabilize the Timoshenko beam system with input delay and load, by using the Backstepping method, a new controller is designed to compensate for the input delay, and then a stable closedloop system is obtained. At first, a delayfree system is given, which is equivalent to the original timedelay system. Then, a bounded linear transformation is constructed, and it is proved that the linear transformation is bounded and invertible. Finally, the delayfree system is transformed into a stable target system by the linear transformation, and the corresponding controller is given, which implies that the delayfree system is equivalent to the target system. Therefore, the original timedelay system can be stabilized by the feedback control law. The negative effect of input delay on elastic system is solved by this method, which enriches the controller design method and stability theory of distributed parameter control system, and has a certain theoretical significance in engineering practice.
Keywords:theory of stability; Timoshenko beam; asymptotic stability; feedback control; Backstepping method; timedelay; payload
在航空、海洋和土木等工程領域中,彈性結構通常起著關鍵性的連接和承載作用。在外部干擾和載荷等的作用下,這些結構會發生振動,給工程結構造成一定的危害。一直以來,很多學者的研究致力于彈性系統的控制器設計與穩定性分析。通過抵制時滯和外部干擾等不利因素來鎮定系統[19]。Timoshenko梁系統考慮了剪切效應和旋轉效應的影響,對于彈性桿的動力學行為有著準確的描述,是一種非常精確的系統模型。河北科技大學學報2018年第2期韓如夢,等:帶有輸入時滯的Timoshenko梁系統的控制器設計與穩定性分析很多學者對其產生了濃厚的興趣。本文以一個邊界上帶有載荷和輸入時滯的Timoshenko梁為研究對象,利用Backstepping方法,設計了一種新的控制器補償時滯所帶來的影響,使閉環系統達到漸近穩定。系統模型如下:ρwtt(x,t)-κ(wxx-φx)(x,t)=0,Iρφtt(x,t)-EIφxx(x,t)-κ(wx-φ)(x,t)=0,mwtt(1,t)+κ(wx-φ)(1,t)=u1(t-τ),Jφtt(1,t)+EIφx(1,t)=u2(t-τ),w(0,t)=φ(0,t)=0,w(x,0)=w0(x),wt(x,0)=w1(x),φ(x,0)=φ0(x),φt(x,0)=φ1(x),u1(θ)=f1(θ),u2(θ)=f2(θ),θ∈(-τ,0),(1)其中:下標字母表示對應相應變量的偏微分,x∈(0,1),t>0;函數fi(θ)在適當的空間是有界可測的,i=1,2;w(x,t)代表梁在其平衡狀態下的彈性撓度;φ(x,t)代表總旋轉角度;u1(t)和u2(t)分別代表邊界控制力和力矩;ρ,κ,Iρ和EI分別代表線密度、剪切彈性模量、梁橫截面的慣量矩和剛度系數。
當系統無時滯時,即τ=0,輸出反饋控制律:u1(t)=-α1wt(1,t),u2(t)=-α2φt(1,t),(2)可以使系統(1)漸近穩定[10]。
當τ≠0時,即系統存在時滯現象時,在哪種反饋控制律的作用下,系統(1)也可以被鎮定呢?這是本文主要考慮的問題。對于時滯系統,文獻\[11\]針對αu(t)+βu(t-τ)這類控制器研究了一維波方程的穩定性并且得到了所謂的1/2法則。文獻\[12-14\]設計了一類新的動態反饋控制器,證明了條件|α|≠|β|可以保證所得閉環系統的穩定性。基于Backstepping方法[1518],本文設計了一類新的控制器。在該反饋控制律的作用下,所得閉環系統是漸近穩定的。
1控制器設計與穩定性結論
筆者通過Backstepping方法設計原系統的控制器并給出相關的穩定性結論,其主要思想是通過構造一個可逆的有界線性變換,將原系統的穩定性問題轉化為目標系統的穩定性問題[1518]。
所以變換(4)是有界可逆的。 證畢。
最后,證明定理3。
證明由定理2易知,無時滯系統(3)與目標系統(11)和系統(12)是等價的。由引理2知,目標系統是漸近穩定的,故無時滯系統(3)也是漸近穩定的,即反饋控制律(13)可以使得原系統(1)漸近穩定。證畢。
3結論
基于Backstepping方法,針對邊界帶有載荷和輸入時滯的Timoshenko梁系統設計了一個新的控制器,證明了原系統在這個反饋控制律作用下是漸近穩定的。研究重點在于控制器的設計與穩定性分析,難點在于目標系統的構造和線性變換的選取。本文考慮的控制算子是有界的,當控制算子是無界的時候,應該如何考慮?這類控制器是否可以應用到高維系統模型中?這都是將來要研究的問題。
參考文獻/References:
[1]MORGL , RAO B P, CONRAD F. On the stabilization of a cable with a tip mass[J]. IEEE Transactions on Automatic Control, 2002, 39(10): 21402145.
[2]BAICU C F, RAHN C D, DAWSON D M. Exponentially stabilizing boundary control of stringmass systems[J]. Journal of Vibration and Control, 1999, 5(3): 491502.
[3]D'ANDRANOVEL B, BOUSTANY F, CONRAD F. Control of an overhead crane: Stabilization of flexibilities[J]. Boundary Control and Boundary Variation, 1992,178(1): 126.
[4]D'ANDRANOVEL B, BOUSTANY F, CONRAD F, et al. Feedback stabilization of a hybrid PDEODE system: Application to an overhead crane[J]. Mathematics of Control, Signals, and Systems , 1994, 7(1): 122.
[5]GUO Baozhu, XU Chengzhong. On the spectrumdetermined growth condition of a vibration cable with a tip mass[J]. IEEE Transactions on Automatic Control, 2000, 45(1): 8993.
[6]ZHANG Shuang, HE Wei, GE S S. Modeling and control of a nonuniform vibrating string under spatiotemporally varying tension and disturbance[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6): 11961203.
[7]HE Wei, ZHANG Shuang, GE S S. Adaptive control of a flexible crane system with the boundary output constraint[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 41264133.
[8]HE Wei, GE S S. Cooperative control of a nonuniform gantry crane with constrained tension[J]. Automatica, 2016, 66: 146154.
[9]ZHANG Shuang, HE Wei, HUANG Deqing. Active vibration control for a flexible string system with input backlash[J]. IET Control Theory and Applications, 2016, 10(7): 800805.
[10]SHI DH, HOU S H, FENG D X. Feedback stabilization of a Timoshenko beam with an end mass[J]. International Journal of Control, 1998, 69(2): 285300.
[11]XU Genqi, YUNG S P, LI L K. Stabilization of wave systems with input delay in the boundary control[J]. ESAIM: Control Optimization and Calculus of Variations, 2006, 12(4): 770785.
[12]XU Genqi, WANG Hongxia. Stabilization of Timoshenko beam system with delay in the boundary control[J]. International Journal of Control, 2013, 86(6): 11651178.
[13]SHANG Yingfeng, XU Genqi. Stabilization of an EulerBernoulli beam with input delay in the boundary control[J]. Systems & Control Letters, 2012, 61(11): 10691078.
[14]WANG Hongxia, XU Genqi. Exponential stabilization of 1d wave equation with input delay[J]. Wseas Transactions on Mathematics, 2012, 12(10/11/12): 10011013.
[15]KRSTIC M. Delay Compensation for Nonlinear, Adaptive, and PDE Systems[M]. Boston: Birkhuser Boston Press, 2009.
[16]BEKIARISLIBERIS N, KRSTIC M. Nonlinear Control under Nonconstant Delays[M]. Philadelphia: SIAM, 2013.
[17]LIU Weijiu. Boundary feedback stabilization of an unstable heat equation[J]. SIAM Journal on Control and Optimization, 2003, 42(3): 10331043.
[18]KRSTIC M, SMYSHLYAEV A. Boundary Control of PDEs: A Course on Backstepping Designs[M]. Philadelphia: SIAM, 2008.
[19]郭寶珠, 柴樹根. 無窮維線性系統控制理論[M]. 北京: 科學出版社, 2012.
[20]TUCSNAK M, WEISS G. Observation and Control for Operator Semigroups[M]. Basel: BirkhauserVerlag, 2009.
[21]PAZY A. Semigroups of Linear Operators and Applications to Partial Differential Equations[M]. Berlin: SpringerVerlag, 1983.
第39卷第2期河北科技大學學報Vol.39,No.2
2018年4月Journal of Hebei University of Science and TechnologyApr. 2018