999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Phase Space View of Ensem b les of Excited States

2018-05-25 00:56:10NAGYgnes
物理化學(xué)學(xué)報(bào) 2018年5期

NAGYágnes

Departmentof TheoreticalPhysics,University of Debrecen,H-4002Debrecen,Hungary

1 Introduction

Density functional theory1is a ground state theory.It is valid for the lowest-energy state in each symmetry class2,3.The theory was fi rst rigorously generalized for excited states by Theophilou4.Itwas furher generalized by Gross,Oliveira and Kohn5.Themethod was used in several calculations6–12.The relativistic generalization of this formalism has also been done13.The optimized potentialmethod was also extended to ensembles of excited states14.Wemention by passing that theories fora singleexcited statealso exists14–21.An alternative theory,worth remarking,is time-dependent density functional theory22,23.

The ground-state density functional theory was formalized as ‘thermodynam ics’ by Ghosh,Berkow itz and Parr24.A phase–space distribution function f(r,p)was derived by maxim izing a phase–space Shannon information entropy subject to the conditions that f yields the density and the local kinetic energy density of the system. A local Maxwell-Boltzmann distribution function was resulted and the conceptof local temperaturewas introduced.This phase-space description resulted several applications25–29.Extensions of the formalism have also been provided30–40.A couple of years ago the local thermodynam ic formalism was extended to ensembles of excited states41and ensemble local temperature was defined.

Recently the ground-state theory has been revisited42.The local temperature of the Ghosh-Berkow itz-Parr theory was defined via the kinetic energy density.However,the kinetic energy density isnotuniquely defined.Usually the everywhere positive gradient form is applied,though any function that integrates to the true kinetic energy can do.Ithas recently been shown42that it is possible selecting the kinetic energy density so that the local temperaturebea constant for thewhole system under consideration.Moreover,it turned out that the kinetic energy density corresponding to the constant temperature,maximizes the information entropy.

The ensemble kinetic energy density isnotdefined uniquely either.In thispaper theensemble temperatureand kineticenergy density resulting themaximum phase-spaceinformationentropy are presented.The extremum is obtained by the constrained search of Levy and Lieb43,44.

The outline of this paper is as follows:In Section 2 the ensemble theory of excited states is summarized.In Section 3 the local thermodynam ic formalism of ensembles is reviewed41.The constrained search is applied in Section 4 to obtain the ensemble kinetic energy density giving the maximum phase-space information entropy.Section 5 is devoted to an illustrative example and discussion.

2 Ensem b le density functional theory for excited states

The Schr?dinger equations of the Hamiltonian?H can be w ritten as

are theenergy eigenvalues.Theensembleenergy isdefined as5

where w1≥w2≥...≥wM≥0.When theweighting factors are wi=1/M the eigenensemble of M states is obtained.It corresponds to the subspace theory of Theophilou4.

The generalized Hohenberg-Kohn-theorems for ensembles read as follows:

(i)The external potential v(r)is determined w ithin a trivial additive constant,by theensemble density n defined as

The ensemble functional E has its minimum at the correct ensemble density n.The variation principle leads to the Euler-equation:

The ensemble Kohn-Sham equationswere also derived:

is a functional of the ensemble density n.The ensemble exchange-correlation potential vxcis the functional derivative of theensembleexchange-correlation energy functional Exc.

3 A “therm odynam ical” view of ensem b les of excited states

Now,the thermodynamical transcription of ensembles is summarized41.Consider a system of N electrons in a local external potential v(r).The ensemble is specified by a phase-space distribution function f(r,p)thatsatisfies

m is the mass.The ensemble non-interacting kinetic energy density ts(r)integrates to the ensemble non-interacting kinetic energy Ekin

There exist several distribution functions that satisfy the marginal conditions(11)–(13).One can choose a distribution functionZmaxim izing the entropy

subjectto the constraintsofcorrectdensity(Eq.(11))and correct non-interacting kinetic energy(Eq.(13)).k is the Boltzmann constant.Themaximum entropy isa localMaxwell-Boltzmann distribution function

One can immediately see that itcan be rew ritten asan idealgas expression

where the local temperature T(r)is defined as

Then the Maxwell-Boltzmann distribution function takes the form

Substituting Eq.(21)into Eq.(15)we arrive at the well-known Sackur–TetroZde expression of the entropy:

Theeあectivepotential veあcanbe related to theensembleKohn-Sham potential.

4 Maxim um in fo rm ation en tropy w ith constrained search

In the previous section the information entropy was maxim ized w ith constraints(11)–(13).However,the ensemble kinetic energy density in Eq.(13)is not uniquely defined.Therefore the ensemble temperature in notunique either.Only the ensemble non-interacting kinetic energy Ekinin Eq.(14)is fixed.Any function that integrates to Ekinis a possible applicant for the ensemble non-interacting kinetic energy density,though functionseverywhere positive are preferred.

Now we select that ensemble temperature(or ensemble non-interacting kinetic energy density) that maxim izes information entropy.We are going tofind the phase-space distribution function f(r,p)thatsatisfies

The constrained search of Levy and Lieb43,44is applied.That is,the extremum is pursued in two steps.In the fi rst step the search is over all distribution functions that result a given ensemble temperature.In the second step the search isover all temperatures.We can immediatelly notice that the fi rststep has already been done in the previous section.The maximum information entropy after the fi rst step is given by the Sackur-Tetrode expression(22).In the second step we have tofind the ensemble temperature that makes the information entropy(22)w ith the constraint that

As the Lagrangemultiplierζis a constant,the temperature T of the ensemble is also a constant.Ithas the consequence that according to Eq.(18)the ensemble non-interacting kinetic energy density is proportional to the ensemble density n.Eqs.(27)and(28)lead to

The distribution function obtained by the constrained search isaMaxwell-Boltzmann distribution function

that is,Eq.(21)w ith the constantensemble temperature(33).

5 Discussion and illustrative exam p les

Take the linear harmonic oscillator as the fi rst the example.The potential is V=mω2x2,where m is themass andωis the frequency.The eigenvaluesare

where n=0,1,...is thequantum number.Becauseof thevirial theorem the kinetic energiesare

The ensemble kinetic energy is

Consequently the ensemble temperature is

In the subspace theory of Theophilou4w1=...=wM=1/M,theensemblekineticenergy and theensemble temperature take the form

Z,m and e and n=1,2,...are theatom ic number,theelectron mass,themagnitude of the electronic charge and the principal quantum number,respectively.In thesecond equality of Eq.(41)the virial theorem wasused.Then,theensemble kinetic energy is

where K is the numberof diあerentprincipalquantum numbers n.In the subspace theory of Theophilouwe have

wherewemakeuseof the factthatthedegeneracy ofa levelw ith the principalquantum number n is n2.Therefore the ensemble kinetic energy and the ensemble temperature have the form

One of our interesting results is that the ensemble temperature corresponding to the extremum phase-space information entropy is constant.This is true for any ensemble irrespective of the construction of the ensemble,that is,the weighting factors.Of course,the ensemble kinetic energy and consequently,the ensemble temperature w ill depend on the weighting factors,but itw illalwaysbe a constant.

The ensemble kinetic energy densitymaxim izing the phasespace information entropy is found to be proportional to the ensemble density.We emhasize here,that the know ledge of the ensemblekineticenergy density doesnotgiveusany information about the ensemble kinetic energy functional or its functional derivative.

This paper emhasizes the non-uniqueness of the local thermodynam ics and shows that the maximum entropy is attained if the ensemble temperature is constant.Theambiquity of the local thermodynam ics can also be considered an advantage from the pointof view of practicalapplications.One is free to select that particular ensemble local temperature(or ensemble kinetic energy density)that is themost suitable for the given application.It might happen that the constant ensemble temperature is themost favorable in certain cases.In other cases,another ensemble kinetic energy density and the corresponding temperature aremore beneficial.Itmeans that they can provide diあerentphysicalor chemical insight.

From information theoretic viewpoint the present theory has the significance that it is possible to selectan ensemble kinetic energy density that is proportional to the ensemble density.It means that the ensemble kinetic energy density has almost the same information as the ensemble density.There isa diあerence only in thenormalization:theensembledensity integrates to the numberofelectrons,whiletheensemblekineticenergydensity is normalized to theensemblekineticenergy.Thatis,themaximum entropy isattainedby theensemblekineticenergy densityhaving no new information in addition to theensemble density.

6 Conc lusions

In summary,we constructed ensembles of excited states and selected thatensemblekineticenergy density thatmaxim izesthe phase-space information entropy.The extremum was obtaned through the constrained search of Levy and Lieb.Thisensemble kinetic energy density is proportional to the ensemble density and the ensemble temperature is constant.

References

(1) Hohenberg,P.;Kohn,W.Phys.Rev.1964,136,B864.doi:10.1103/PhysRev.136.B864

(2) (a)Gunnarsson,O.;Lundqvist,B.I.Phys.Rev.B 1976,B13,4274.doi:10.1103/PhysRevB.13.4274(b)Gunnarsson,O.;Jonson M.;Lundqvist,B.I.Phys.Rev.B 1979,20,3136.doi:10.1103/PhysRevB.20.3136

(3) von Barth,U.Phys.Rev.A 1979,20,1693.doi:10.1103/PhysRevA.20.1693

(4) Theophilou,A.K.J.Phys.C 1978,C12,5419.doi:10.1088/0022-3719/12/24/013

(5) (a)Gross,E.K.U.;Oliveira,L.N.;Kohn,W.Phys.Rev.A 1988,37,2805.doi:10.1103/PhysRevA.37.2805(b)Gross,E.K.U.;Oliveira,L.N.;Kohn,W.Phys.Rev.A 1988,37,2809.doi:10.1103/PhysRevA.37.2809(c)Gross,E.K.U.;Oliveira,L.N.;Kohn,W.Phys.Rev.A 1988,37,2821.doi:10.1103/PhysRevA.37.2821

(6) Nagy,á.Phys.Rev.A 1990,42,4388.doi:10.1103/PhysRevA.42.4388

(7) Nagy,á.J.Phys.B 1991,24,4691.doi:10.1088/0953-4075/24/22/008

(8) Nagy,á.;Andrejkovics,I.J.Phys.B 1994,27,233.doi:10.1088/0953-4075/27/2/002

(9) Nagy,á.Int.J.Quantum.Chem.1995,56,225.doi:10.1002/qua.560560406

(10) Nagy,á.J.Phys.B 1996,29,389.doi:10.1088/0953-4075/29/3/007

(11) Nagy,á.Int.J.Quantum.Chem.1995,29(Suppl.),297.doi:10.1002/qua.560560833

(12) Nagy,á.Adv.Quantum.Chem.1997,29,159.doi:10.1016/S0065-3276(08)60268-3

(13) Nagy,á.Phys.Rev.A 1994,49,3074.doi:10.1103/PhysRevA.49.3074

(14) Nagy,á.Int.J.Quantum.Chem.1998,69,247.doi:10.1002/(SICI)1097-461X(1998)69:3<247::AIDQUA4>3.0.CO;2-V

(15) G?rling,A.Phys.Rev.A 1996,54,3912.doi:10.1103/PhysRevA.54.3912

(16) (a)G?rling,A.;Levy,M.Phys.Rev.B 1993,47,13105.doi:10.1103/PhysRevB.47.13105(b)G?rling,A.;Levy,M.Phys.Rev.A 1994,50,196.doi:10.1103/PhysRevA.50.196(c)G?rling,A.;Levy,M.Int.J.Quantum.Chem.1995,29(Suppl.),93.doi:10.1002/qua.560560810

(17) Nagy,á.Int.J.Quantum.Chem.1998,70,681.doi:10.1002/(SICI)1097-461X(1998)70:4/5<681::AIDQUA14>3.0.CO;2-5

(18) Levy,M.;Nagy,á.Phys.Rev.Lett.1999,83,4361.doi:10.1103/PhysRevLett.83.4361

(19) Nagy,á.;Levy,M.Phys.Rev.A 2001,63,052502.doi:10.1103/PhysRevA.63.052502

(20) Ayers,P.W.;Levy,M.;Nagy,á.Phys.Rev.A 2012,85,042518.doi:10.1103/PhysRevA.85.042518

(21) Ayers,P.W.;Levy,M.;Nagy,á.J.Chem.Phys.2015,143,191101.doi:10.1063/1.4934963

(22) Gross,E.U.K.;Dobson,J.F.;Petersilka,M.Density Functional Theory.In Topics in CurrentChemistry;Nalewajski,R.Ed.;Springer-Verlag:Heidelberg,Germany,1996;Vol.81,p.81.

(23) Casida,M.F.RecentAdvances in the Density FunctionalMethods.in RecentAdvances in ComputationalChemistry;Chong,D.P.Ed.;World Scientific:Singapore,1996;Vol.1,p.155.

(24) Ghosh,S.K.;Berkow itz,M.;Parr,R.G.Proc.Natl.Acad.Sci.USA 1984,81,8028.doi:10.1073/pnas.81.24.8028

(25) Ghosh S.K.;Parr,R.G.Phys.Rev.A 1986,34,785.doi:10.1103/PhysRevA.34.785

(26) Ghosh,S.K.;Berkow itz,M.J.Chem.Phys.1985,83,2976.doi:10.1063/1.449846

(27) Parr,R.G.;Rupnik,K.;Ghosh,S.K.Phys.Rev.Lett.1986,56,1555.doi:10.1103/PhysRevLett.56.1555

(28) Lee,C.;Parr,R.G.Phys.Rev.A 1987,35,2377.doi:10.1103/PhysRevA.35.2377

(29) Rong,C.Y.;Lu,T.;Chattaraj P.K.;Liu,S.B.Indian J.Chem.A 2014,53,970.

(30) Gadre,S.R.;Bendale,R.D.Int.J.Quant.Chem.1985,28,311.doi:10.1002/qua.560280212

(31) Gadre,S.R.;Sears,S.B.;Chakravorty,S.J.;Bendale,R.D.Phys.Rev.A 1985,32,2602.doi:10.1103/PhysRevA.32.2602

(32) Gadre,S.R.Phys.Rev.A 1984,30,620.doi:10.1103/PhysRevA.30.620

(33) Gadre,S.R.;Kulkani,S.A.;Shrivastava,I.H.Chem.Phys.Lett.1990,166,445.doi:10.1016/0009-2614(90)85058-K

(34) Gadre,S.R.;Bendale,R.D.;Gejii,S.P.Chem.Phys.Lett.1985,117,138.doi:10.1016/0009-2614(85)85222-2

(35) Nagy,á.;Parr,R.G.Proc.Ind.Acad.Sci.Chem.Sci.1984,106,217.(36) Nagy,á.;Parr,R.G.J.Mol.Struct.(Theochem)2000,501,101.doi:10.1016/S0166-1280(99)00418-2

(37) Nagy,á.;Parr,R.G.Int.J.Quantum Chem.1996,58,323.doi:10.1002/(SICI)1097-461X(1996)58:4<323::AIDQUA1>3.0.CO;2

(38) Nagy,á.Proc.Ind.Acad.Sci.(Chem.Sci)1994,106,251.

(39) Nagy,á.ReviewsofModern Quantum Chemistry;Sen,K.D.Ed.;World Scientific:Singapore,2002;Vol.I,p.413.

(40) Nagy,á.J.Mol.Struct.Theochem 2010,943,48.doi:10.1016/j.theochem.2009.10.010

(41) Nagy,á.Indian J.Chem.A 2014,53,965.

(42) Nagy,á.Int.J.Quantum Chem.2017,117,e5396.doi:10.1002/qua.25396

(43) Levy,M.Proc.Natl.Sci.USA 1979,76,6002.

(44) Lieb,H.Int.J.Quantum Chem.1982,24,243.doi:10.1002/qua.560240302

主站蜘蛛池模板: 成人午夜视频网站| 国产女人水多毛片18| 日本午夜影院| 久久精品亚洲专区| 97在线免费| 亚洲综合专区| 在线色综合| 无码网站免费观看| 日本免费a视频| 97人妻精品专区久久久久| 性欧美久久| 一区二区三区四区精品视频 | 亚洲swag精品自拍一区| 91视频青青草| 国产极品美女在线播放| A级全黄试看30分钟小视频| 无码电影在线观看| 动漫精品啪啪一区二区三区| 美女高潮全身流白浆福利区| 人妻中文久热无码丝袜| 在线观看精品国产入口| 国产精品亚洲综合久久小说| 国产波多野结衣中文在线播放| 日日拍夜夜操| 国产福利影院在线观看| 久久永久免费人妻精品| 五月丁香在线视频| 欧美丝袜高跟鞋一区二区| 久久免费视频6| 欧美在线导航| 亚洲综合18p| www.99在线观看| 98超碰在线观看| 99久久精品免费观看国产| 日韩在线视频网| 久久久精品无码一区二区三区| 欧美激情网址| 国产精品九九视频| 日本高清免费一本在线观看| 国产在线无码av完整版在线观看| 国产高潮视频在线观看| 亚洲天堂网站在线| 欧美激情第一区| 色亚洲成人| 91免费观看视频| 欧美日本一区二区三区免费| 99re免费视频| 久久人人97超碰人人澡爱香蕉| 亚洲成人手机在线| 亚洲第一视频网| 亚洲一区二区三区香蕉| 在线欧美日韩| 六月婷婷精品视频在线观看| 久久黄色一级片| 熟妇丰满人妻av无码区| 国产亚洲精品自在久久不卡| 91网址在线播放| 欧美亚洲日韩中文| 毛片免费在线视频| 亚洲无码精彩视频在线观看| 色悠久久久久久久综合网伊人| 日本国产精品| 蜜芽一区二区国产精品| 999精品色在线观看| 国产尤物jk自慰制服喷水| 另类综合视频| 婷婷六月在线| 日韩欧美高清视频| 成人av手机在线观看| 国产亚洲第一页| 国产99免费视频| 亚洲va在线观看| 亚洲精品无码抽插日韩| www.91在线播放| 丁香综合在线| 亚洲精品国产精品乱码不卞| 成人午夜网址| 欧美一区二区自偷自拍视频| 亚洲另类色| 中国特黄美女一级视频| 91亚瑟视频| 免费Aⅴ片在线观看蜜芽Tⅴ|