999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Mixed-solvothermal Synthesis, Crystal Structure and Luminescence of a New Dinuclear Yttrium(III) Coordination Polymer with 1-D Wave-like Infinite Chains①

2018-06-20 12:00:38FENGYuQuanJIANGLanTingXINGZhengZhengWANGLu
結構化學 2018年5期

FENG Yu-Quan JIANG Lan-Ting XING Zheng-Zheng WANG Lu

?

Mixed-solvothermal Synthesis, Crystal Structure and Luminescence of a New Dinuclear Yttrium(III) Coordination Polymer with 1-Wave-like Infinite Chains①

FENG Yu-Quan②JIANG Lan-Ting XING Zheng-Zheng WANG Lu

(473061)

A new dinuclear Y3+coordination polymer{[Y2(H2O)2(C14H8O4)3(C12H8N2)2]·3H2O}(1, C14H8O4= 2,2?-biphenyldicarboxylate, phen = 1,10-phenanthroline), has been obtained by means of a mixed-solvothermal method using ethylene glycol and water as solvent. The compound was characterized by elemental analysis, energy-dispersive X-ray spectroscopy (EDS), IR spectrum and single-crystal X-ray diffraction. The results reveal that 1 belongs to monoclinic system, space group2/with= 24.249(3),= 12.069(48),= 22.7304(08) ?,= 113.480(7)°,= 4,= 6102(2) ?3,c= 1.462 g?cm-3,(000) = 2728,= 1.968 mm-1, the final= 0.0673,= 0.1508 and= 1.085. Its structure can be regarded as a 1-coordination polymer constructed by Y3+cations, 2,2?-biphenyldicarboxylate, 1,10-phenanthroline and water molecules. The compound not only contains two kinds of organic ligands, but also exhibits interesting wave-like infinite chains and 18-MR windows with the diameter of 4.070(7)? × 5.326(9)?. The structure is further stabilized by means of O–H···O hydrogen bonds and-stacking interactions. Furthermore, the luminescent properties (including emission spectrum, CIE chromaticity coordinate and decay curve) of 1 were also investigated in the solid-state at room temperature.

mixed-solvothermal synthesis,dinuclear Y3+coordination polymer, wave-like infinite chains,luminescent properties;

1 INTRODUCTION

There has been considerable interest in rare- earth(III) coordination polymers owing to their abundant structural features and potential appli- cations in the field of optical and magnetic ma- terials[1-4]. Currently, the ligands containing aromatic carboxylate anions have been widely applied in the construction of coordination polymers, which are more conducive to produce new frameworks with interesting structural features[5-7]. This is due to the fact that the aromatic carboxylate anions own excellent coordination ability with rare-earth(III) cations and they can act as bridging and chelating ligands by means of their flexible coordination modes. Previous studies have shown that many aromatic carboxylic acids containing potential chromophores can modify or produce new optical properties once they were introduced into the rare-earth(III) coordination polymers. Moreover, the metal cations of coordination polymers containing 2,2?-biphenyldicarboxylate ligand are mainly concentrated in TM2+cations including Mn2+, Co2+, Ni2+, Cd2+,[8-10]. Accordingly, guiding by the considerations, we expected that the combination of aromatic carboxylate anions and rare-earth(III) cations could obtain new polymers with interesting structural features and optical properties. In addition, the 1,10-phenanthroline can be viewed as a rigid conjugated chelating ligand which displays good solubility and low-antibonding orbital energy. The 1,10-phenanthroline is also a kind of excellent optically active ligand because it can easily generate MLCT electronic transition. We expected that the introduction of 1,10-phenanthroline can generate new rare-earth(III) coordination polymers with interesting properties. Therefore, the ligand 1,10- phenanthroline is selected as the second ligand in the formation of rare-earth(III) coordination polymers. As part of our ongoing investigations[11-16], herein, by employing two kinds of ligands, 2,2?-biphenyl- dicarboxylate and 1,10-phenanthroline (phen), we obtained a new dinuclear Y3+coordination polymer {[Y2(H2O)2(C14H8O4)3(C12H8N2)2]·3H2O}(1). The compound possesses interesting wave-like infinite chains and adds a new member into the family of rare-earth(III) coordination polymers containing two kinds of organic ligands.

2 EXPERIMENTAL

2. 1 Instruments and reagents

Elemental analyses (C, H and N) were also performed on a Perkin-Elmer 240 analyzer. Energy- dispersive X-ray spectroscopy (EDS) analysis was performed on a FEI-Quanta-200 scanning electron microscope. Infrared spectra were recorded on a Nicolet 5700 FT-IR spectrometer (400~24000 cm-1) using KBr pellets. The luminescent properties of 1 have been measured on the FLS980-fluorescence spectrometer in the solid state at room temperature. Crystal diffraction data were collected on a Bruker SMART APEX-II CCD diffractometer equipped with a graphite-monochromated Mo-radiation (= 0.71073 ?) at 293(2) K using an-scan mode. All chemicals were of reagent grade quality obtained from commercial sources and were used without further purification.

2. 2 Synthesis of {[Y2(H2O)2(C14H8O4)3(C12H8N2)2]·3H2O}n1

2. 3 X-ray crystallographic determination

A suitable single crystal of 1 (0.32mm × 0.26mm × 0.20mm) was used for structure determination. Crystal diffraction data of 1 were collected on a Bruker SMART APEX-II CCD diffractometer equipped with a graphite-monochromated Mo-Kα radiation (λ= 0.71073 ?) at 296(2) K using an ω-φscan mode. In the range of 1.98≤q≤25.00owith –28≤h≤28, –14≤k≤14 and –18≤l≤27, a total of 15008 reflections were collected, among which 5330 were unique reflections (Rint = 0.0772). Absorption correction was applied by using the SADABS[17]. The structure was solved by direct methods and refined by full-matrix least-squares techniques on F2 using SHELX-97 package[18]. All non-hydrogen atoms were refined anisotropically and hydrogen atoms isotropically by full-matrix least-squares refinement. The organic hydrogen atoms were generated geometrically. The selected bond lengths and bond angles of 1 are listed in Table 1.

Symmetry transformation: #1: –+1, –+1, –+1; #2: –+1,, –+3/2

3 RESULTS AND DISCUSSION

3. 1 EDS and elemental analyses

The results of EDS analysis reveal that compound 1 contains the elements of Y, O, N and C. This is in good agreement with the result of X-ray structural analysis. Elemental analyses (C, H and N) were performed on a Perkin-Elmer 240 analyzer. Analysis for C66H50N4O17Y2, calculated: C, 58.77; H, 3.74; N, 4.15%. Found: C, 58.43; H, 3.96; N, 4.41%. These values are further confirmed by the results of single-crystal X-ray structural analysis.

3. 2 Infrared spectroscopy

3. 3 Crystal structure

Fig. 1. Structure of compound 1. H atoms and isolated water molecules have been omitted for clarity.Displacement ellipsoids are drawn at the 30% probability level (Symmetry code: (A) 1–,, 3/2–)

Fig. 2. Structure of the infinite wave-like chain along theaxis

Fig. 3. Structure of the 18-MR windows presented in the wave-like chain

Fig. 4. A view of the packing structure of 1 along theaxis

3. 4 Luminescent properties

Fig. 5. Emission spectrum of 1

Fig. 6. CIE (1931) chromaticity diagram for the emission spectrum of 1

Fig. 7. Decay curves of 1 at room temperature

4 CONCLUSION

In summary, a new dinuclear Y3+coordination polymer containing 1-wave-like infinite chains and two kinds of organic ligands has been obtained by means of mixed-solvothermal method. The com- pound owns interesting 1-wave-like infinite chains and 18-MR windows with the dieter of 4.071? × 5.326?. The luminescent properties reveal that 1 displays a blue emission under the optimal excitation wavelength of 298 nm and its luminescent decay value is 12.0039 ns. The compound enriches the family of rare-earth(III) coordination polymers. Its successful synthesis reveals that more Y3+coordination polymers containingmultiple types of ligands may be prepared using the mixed-solvo- thermal method.

(1) Zhou, Y. F.; Hong, M. C.; Wu, X. T. Lanthanide-transition metal coordination polymers based on multiple N- and O-donor ligands.2006, 135–143.

(2) Plecnik, C. E.; Liu, S.; Shore, S. G. Lanthanide-transition-metal complexes: from ion pairs to extended arrays.2003, 36, 499–508.

(3) Wei, X. H.; Yang, L. Y.; Liao, S. Y.; Zhang, M.; Tian, J. L.; Du, P. Y.; Gu, W.; Liu, X. A series of rare earth complexes with novel non-interpenetrating 3networks: synthesis, structures, magnetic and optical properties..2014,5793–5800.

(4) Luo, F.; Hu, D.; Xue, L.; Che, Y.; Zheng, J. Pillared 3-4frameworks with rare 3D architecture showing the coexistence of ferromagnetic and antiferromagnetic interactions between gadolinium ions.2007, 7, 851–853.

(5) Xu,J.; Su, W. P.; Hong, M. C.A series of lanthanide secondary building units based metal-organicframeworks constructed by organic pyridine-2,6-dicarboxylate and inorganic sulfate.2011, 11, 337–346.

(6) (6). Zhang, T.; Xue, L. P. Ionothermal synthesis, crystal structure and photocatalytic property of a new cobalt coordination polymer.. 2015, 34, 417-422.

(7) Zhang, W.; Feng, Y.Q. A novel dinuclear bismuth(III) coordination compound: bis(-pyridine-2,6-dicarboxylato)-42,,6:6′;42:2′,,6-bis[(azido-)(1,10-phenanthroline-2,′)bismuth(III)] tetrahydrate.702014, 562–565.

(8) Li, J.; Li, C.; Wang, Z.L. Poly[[(2-bi-phenyl-2,4′-di-carboxyl-ato)[2-1,4-bis-(imidazol-1-yl-methyl)-benzene]cadmium(II)]0.15-hydrate].66 2010, m384–m386.

(9) Jiang, M.; Li, J.; Zhang, F. X. Poly-[manganese(II)-2-benzidine-2:′-μ3-bi-phenyl-2,2′-di-carboxylato-4:′,′′:′′′]..60 2004, m501–m503.

(10) Hawxwell, S. M.; Adams, H.; Brammer, L. Two-dimensional metal-organic frameworks containing linear di-carboxylates.62 2006, 808–814.

(11) Feng, Y. Q.; Bi, D. Q.; Hu, Y. L.; Zhong, Z. G..; Guo, Y. C. Ionothermal synthesis, crystal structure and antibacterial activities of a new 3-4hetero-metallic compound containing two kinds of ligands.. 2015, 34, 1598─1605.

(12) Feng, Y. Q.; Hu, Y. L.; Wang, H. W.; Cao, F. P. A new linear bismuth coordination polymer based on 1,10-phenanthroline-2,9-dicarboxylic acid: ionothermal synthesis, crystal structure and fluorescence properties..71 2015, 679–682.

(13) Feng, Y. Q.; Zhong, Z. G.;Wang, H. W.; Fan, H. T.; Bi, D. Q.; Wang, L.; Xing, Z. Z.; Qiu, D. F. A novel open-framework copper borovanadate with enhanced catalytic performance for oxidation of benzylic C–H bond.2017, 23, 9962?9967.

(14) Feng, Y. Q.; Fan, H. T.; Zhong, Z. G.;Wang, H. W.; Qiu, D. F. Cd3(MoO4)(TeO3)2: a polar 3D compound containing10-0scalp effect cations.

2016, 55, 11987?11992.

(15) Feng, Y. Q.; Li, M.; Fan, H. T.; Huang, Q. Z.; Qiu, D. F.; Shi, H. Z. A novel open-framework copper borophosphate containing 1-D borophosphate anion with 10-MR windows and 12-MR channels.2015, 44, 894-897.

(16) Sun, R. Z.; Guo, Y. C.; Liu, W. M.; Chen, S. Y.; Feng, Y. Q. Syntheses, crystal structures and antibacterial activities of complexes [(C9H18NS2)3M(III)] (M = Sb and Bi).. 2012, 31, 655-660.

(17) Sheldrick, G. M... University of G?ttingen: G?ttingen, Germany 1996.

(18) Sheldrick, G. M.University of G?ttingen: G?ttingen, Germany 1997.

(19) Thirumurugan, A.; Natarajan, S. Assembly of a Secondary Building Unit (SBU) into two- and three-dimensional structures in lanthanide benzenedicarboxylates.. 2006, 6, 983–988.

11 August 2017;

7 February 2018 (CCDC 1566256)

① Project supported by the National Natural Science Foundation of China (No. 21601095), the Youth Project of Nanyang Normal University (No. QN2017065) and the Opening Laboratory Project of Nanyang Normal University (No. SYKF2016075)

. Feng Yu-Quan, born in 1982. Tel: 0377-63513583, E-mail: yqfeng2008@126.com

10.14102/j.cnki.0254-5861.2011-1804

主站蜘蛛池模板: 亚洲午夜天堂| 亚洲精品无码抽插日韩| 国产午夜福利片在线观看| 亚洲第一在线播放| 在线视频亚洲色图| 国产性生交xxxxx免费| 无码中文字幕精品推荐| 永久免费av网站可以直接看的| 无码中文AⅤ在线观看| 亚洲人成网站在线观看播放不卡| 日韩福利视频导航| 成人亚洲视频| 亚洲综合色吧| 免费 国产 无码久久久| 国产视频只有无码精品| 99精品这里只有精品高清视频| 国产天天射| 亚洲va欧美ⅴa国产va影院| 久久中文电影| 久久鸭综合久久国产| 国产亚洲高清视频| 国产精品午夜福利麻豆| 成年人视频一区二区| 3D动漫精品啪啪一区二区下载| 无码福利日韩神码福利片| igao国产精品| 欧美黄网站免费观看| 色婷婷色丁香| 巨熟乳波霸若妻中文观看免费| 免费黄色国产视频| 一级毛片免费高清视频| 色综合天天综合中文网| AV不卡国产在线观看| 中文纯内无码H| 91口爆吞精国产对白第三集 | 日韩在线1| 国产福利免费视频| 中文字幕免费播放| а∨天堂一区中文字幕| 久久综合九九亚洲一区| 亚洲欧美日韩动漫| 欧美日韩一区二区在线播放| 中文字幕色站| 四虎成人精品在永久免费| 亚洲综合欧美在线一区在线播放| 97人妻精品专区久久久久| 最新国产麻豆aⅴ精品无| 国产超碰在线观看| 视频一本大道香蕉久在线播放| 亚洲天堂区| 在线观看91精品国产剧情免费| 亚洲狠狠婷婷综合久久久久| 青青草原国产| 国产精品丝袜视频| 日韩高清一区 | 日本少妇又色又爽又高潮| 91精品久久久久久无码人妻| 亚洲AV一二三区无码AV蜜桃| 日韩欧美成人高清在线观看| 国产成人综合网| 久久精品国产亚洲麻豆| 小说区 亚洲 自拍 另类| 狠狠色狠狠综合久久| 久久中文字幕不卡一二区| 中文字幕乱码二三区免费| 久久久久88色偷偷| 福利在线不卡| 婷婷午夜天| 久久婷婷五月综合色一区二区| 亚洲AV无码久久天堂| 国产免费a级片| 欧美日韩一区二区在线免费观看 | 国产成+人+综合+亚洲欧美 | 在线亚洲精品福利网址导航| 亚洲不卡影院| 九九视频在线免费观看| 国产97视频在线观看| AV不卡在线永久免费观看| 欧美精品二区| 久久精品国产精品青草app| 91成人精品视频| 亚洲欧美不卡|