999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Mixed-solvothermal Synthesis, Crystal Structure and Luminescence of a New Dinuclear Yttrium(III) Coordination Polymer with 1-D Wave-like Infinite Chains①

2018-06-20 12:00:38FENGYuQuanJIANGLanTingXINGZhengZhengWANGLu
結構化學 2018年5期

FENG Yu-Quan JIANG Lan-Ting XING Zheng-Zheng WANG Lu

?

Mixed-solvothermal Synthesis, Crystal Structure and Luminescence of a New Dinuclear Yttrium(III) Coordination Polymer with 1-Wave-like Infinite Chains①

FENG Yu-Quan②JIANG Lan-Ting XING Zheng-Zheng WANG Lu

(473061)

A new dinuclear Y3+coordination polymer{[Y2(H2O)2(C14H8O4)3(C12H8N2)2]·3H2O}(1, C14H8O4= 2,2?-biphenyldicarboxylate, phen = 1,10-phenanthroline), has been obtained by means of a mixed-solvothermal method using ethylene glycol and water as solvent. The compound was characterized by elemental analysis, energy-dispersive X-ray spectroscopy (EDS), IR spectrum and single-crystal X-ray diffraction. The results reveal that 1 belongs to monoclinic system, space group2/with= 24.249(3),= 12.069(48),= 22.7304(08) ?,= 113.480(7)°,= 4,= 6102(2) ?3,c= 1.462 g?cm-3,(000) = 2728,= 1.968 mm-1, the final= 0.0673,= 0.1508 and= 1.085. Its structure can be regarded as a 1-coordination polymer constructed by Y3+cations, 2,2?-biphenyldicarboxylate, 1,10-phenanthroline and water molecules. The compound not only contains two kinds of organic ligands, but also exhibits interesting wave-like infinite chains and 18-MR windows with the diameter of 4.070(7)? × 5.326(9)?. The structure is further stabilized by means of O–H···O hydrogen bonds and-stacking interactions. Furthermore, the luminescent properties (including emission spectrum, CIE chromaticity coordinate and decay curve) of 1 were also investigated in the solid-state at room temperature.

mixed-solvothermal synthesis,dinuclear Y3+coordination polymer, wave-like infinite chains,luminescent properties;

1 INTRODUCTION

There has been considerable interest in rare- earth(III) coordination polymers owing to their abundant structural features and potential appli- cations in the field of optical and magnetic ma- terials[1-4]. Currently, the ligands containing aromatic carboxylate anions have been widely applied in the construction of coordination polymers, which are more conducive to produce new frameworks with interesting structural features[5-7]. This is due to the fact that the aromatic carboxylate anions own excellent coordination ability with rare-earth(III) cations and they can act as bridging and chelating ligands by means of their flexible coordination modes. Previous studies have shown that many aromatic carboxylic acids containing potential chromophores can modify or produce new optical properties once they were introduced into the rare-earth(III) coordination polymers. Moreover, the metal cations of coordination polymers containing 2,2?-biphenyldicarboxylate ligand are mainly concentrated in TM2+cations including Mn2+, Co2+, Ni2+, Cd2+,[8-10]. Accordingly, guiding by the considerations, we expected that the combination of aromatic carboxylate anions and rare-earth(III) cations could obtain new polymers with interesting structural features and optical properties. In addition, the 1,10-phenanthroline can be viewed as a rigid conjugated chelating ligand which displays good solubility and low-antibonding orbital energy. The 1,10-phenanthroline is also a kind of excellent optically active ligand because it can easily generate MLCT electronic transition. We expected that the introduction of 1,10-phenanthroline can generate new rare-earth(III) coordination polymers with interesting properties. Therefore, the ligand 1,10- phenanthroline is selected as the second ligand in the formation of rare-earth(III) coordination polymers. As part of our ongoing investigations[11-16], herein, by employing two kinds of ligands, 2,2?-biphenyl- dicarboxylate and 1,10-phenanthroline (phen), we obtained a new dinuclear Y3+coordination polymer {[Y2(H2O)2(C14H8O4)3(C12H8N2)2]·3H2O}(1). The compound possesses interesting wave-like infinite chains and adds a new member into the family of rare-earth(III) coordination polymers containing two kinds of organic ligands.

2 EXPERIMENTAL

2. 1 Instruments and reagents

Elemental analyses (C, H and N) were also performed on a Perkin-Elmer 240 analyzer. Energy- dispersive X-ray spectroscopy (EDS) analysis was performed on a FEI-Quanta-200 scanning electron microscope. Infrared spectra were recorded on a Nicolet 5700 FT-IR spectrometer (400~24000 cm-1) using KBr pellets. The luminescent properties of 1 have been measured on the FLS980-fluorescence spectrometer in the solid state at room temperature. Crystal diffraction data were collected on a Bruker SMART APEX-II CCD diffractometer equipped with a graphite-monochromated Mo-radiation (= 0.71073 ?) at 293(2) K using an-scan mode. All chemicals were of reagent grade quality obtained from commercial sources and were used without further purification.

2. 2 Synthesis of {[Y2(H2O)2(C14H8O4)3(C12H8N2)2]·3H2O}n1

2. 3 X-ray crystallographic determination

A suitable single crystal of 1 (0.32mm × 0.26mm × 0.20mm) was used for structure determination. Crystal diffraction data of 1 were collected on a Bruker SMART APEX-II CCD diffractometer equipped with a graphite-monochromated Mo-Kα radiation (λ= 0.71073 ?) at 296(2) K using an ω-φscan mode. In the range of 1.98≤q≤25.00owith –28≤h≤28, –14≤k≤14 and –18≤l≤27, a total of 15008 reflections were collected, among which 5330 were unique reflections (Rint = 0.0772). Absorption correction was applied by using the SADABS[17]. The structure was solved by direct methods and refined by full-matrix least-squares techniques on F2 using SHELX-97 package[18]. All non-hydrogen atoms were refined anisotropically and hydrogen atoms isotropically by full-matrix least-squares refinement. The organic hydrogen atoms were generated geometrically. The selected bond lengths and bond angles of 1 are listed in Table 1.

Symmetry transformation: #1: –+1, –+1, –+1; #2: –+1,, –+3/2

3 RESULTS AND DISCUSSION

3. 1 EDS and elemental analyses

The results of EDS analysis reveal that compound 1 contains the elements of Y, O, N and C. This is in good agreement with the result of X-ray structural analysis. Elemental analyses (C, H and N) were performed on a Perkin-Elmer 240 analyzer. Analysis for C66H50N4O17Y2, calculated: C, 58.77; H, 3.74; N, 4.15%. Found: C, 58.43; H, 3.96; N, 4.41%. These values are further confirmed by the results of single-crystal X-ray structural analysis.

3. 2 Infrared spectroscopy

3. 3 Crystal structure

Fig. 1. Structure of compound 1. H atoms and isolated water molecules have been omitted for clarity.Displacement ellipsoids are drawn at the 30% probability level (Symmetry code: (A) 1–,, 3/2–)

Fig. 2. Structure of the infinite wave-like chain along theaxis

Fig. 3. Structure of the 18-MR windows presented in the wave-like chain

Fig. 4. A view of the packing structure of 1 along theaxis

3. 4 Luminescent properties

Fig. 5. Emission spectrum of 1

Fig. 6. CIE (1931) chromaticity diagram for the emission spectrum of 1

Fig. 7. Decay curves of 1 at room temperature

4 CONCLUSION

In summary, a new dinuclear Y3+coordination polymer containing 1-wave-like infinite chains and two kinds of organic ligands has been obtained by means of mixed-solvothermal method. The com- pound owns interesting 1-wave-like infinite chains and 18-MR windows with the dieter of 4.071? × 5.326?. The luminescent properties reveal that 1 displays a blue emission under the optimal excitation wavelength of 298 nm and its luminescent decay value is 12.0039 ns. The compound enriches the family of rare-earth(III) coordination polymers. Its successful synthesis reveals that more Y3+coordination polymers containingmultiple types of ligands may be prepared using the mixed-solvo- thermal method.

(1) Zhou, Y. F.; Hong, M. C.; Wu, X. T. Lanthanide-transition metal coordination polymers based on multiple N- and O-donor ligands.2006, 135–143.

(2) Plecnik, C. E.; Liu, S.; Shore, S. G. Lanthanide-transition-metal complexes: from ion pairs to extended arrays.2003, 36, 499–508.

(3) Wei, X. H.; Yang, L. Y.; Liao, S. Y.; Zhang, M.; Tian, J. L.; Du, P. Y.; Gu, W.; Liu, X. A series of rare earth complexes with novel non-interpenetrating 3networks: synthesis, structures, magnetic and optical properties..2014,5793–5800.

(4) Luo, F.; Hu, D.; Xue, L.; Che, Y.; Zheng, J. Pillared 3-4frameworks with rare 3D architecture showing the coexistence of ferromagnetic and antiferromagnetic interactions between gadolinium ions.2007, 7, 851–853.

(5) Xu,J.; Su, W. P.; Hong, M. C.A series of lanthanide secondary building units based metal-organicframeworks constructed by organic pyridine-2,6-dicarboxylate and inorganic sulfate.2011, 11, 337–346.

(6) (6). Zhang, T.; Xue, L. P. Ionothermal synthesis, crystal structure and photocatalytic property of a new cobalt coordination polymer.. 2015, 34, 417-422.

(7) Zhang, W.; Feng, Y.Q. A novel dinuclear bismuth(III) coordination compound: bis(-pyridine-2,6-dicarboxylato)-42,,6:6′;42:2′,,6-bis[(azido-)(1,10-phenanthroline-2,′)bismuth(III)] tetrahydrate.702014, 562–565.

(8) Li, J.; Li, C.; Wang, Z.L. Poly[[(2-bi-phenyl-2,4′-di-carboxyl-ato)[2-1,4-bis-(imidazol-1-yl-methyl)-benzene]cadmium(II)]0.15-hydrate].66 2010, m384–m386.

(9) Jiang, M.; Li, J.; Zhang, F. X. Poly-[manganese(II)-2-benzidine-2:′-μ3-bi-phenyl-2,2′-di-carboxylato-4:′,′′:′′′]..60 2004, m501–m503.

(10) Hawxwell, S. M.; Adams, H.; Brammer, L. Two-dimensional metal-organic frameworks containing linear di-carboxylates.62 2006, 808–814.

(11) Feng, Y. Q.; Bi, D. Q.; Hu, Y. L.; Zhong, Z. G..; Guo, Y. C. Ionothermal synthesis, crystal structure and antibacterial activities of a new 3-4hetero-metallic compound containing two kinds of ligands.. 2015, 34, 1598─1605.

(12) Feng, Y. Q.; Hu, Y. L.; Wang, H. W.; Cao, F. P. A new linear bismuth coordination polymer based on 1,10-phenanthroline-2,9-dicarboxylic acid: ionothermal synthesis, crystal structure and fluorescence properties..71 2015, 679–682.

(13) Feng, Y. Q.; Zhong, Z. G.;Wang, H. W.; Fan, H. T.; Bi, D. Q.; Wang, L.; Xing, Z. Z.; Qiu, D. F. A novel open-framework copper borovanadate with enhanced catalytic performance for oxidation of benzylic C–H bond.2017, 23, 9962?9967.

(14) Feng, Y. Q.; Fan, H. T.; Zhong, Z. G.;Wang, H. W.; Qiu, D. F. Cd3(MoO4)(TeO3)2: a polar 3D compound containing10-0scalp effect cations.

2016, 55, 11987?11992.

(15) Feng, Y. Q.; Li, M.; Fan, H. T.; Huang, Q. Z.; Qiu, D. F.; Shi, H. Z. A novel open-framework copper borophosphate containing 1-D borophosphate anion with 10-MR windows and 12-MR channels.2015, 44, 894-897.

(16) Sun, R. Z.; Guo, Y. C.; Liu, W. M.; Chen, S. Y.; Feng, Y. Q. Syntheses, crystal structures and antibacterial activities of complexes [(C9H18NS2)3M(III)] (M = Sb and Bi).. 2012, 31, 655-660.

(17) Sheldrick, G. M... University of G?ttingen: G?ttingen, Germany 1996.

(18) Sheldrick, G. M.University of G?ttingen: G?ttingen, Germany 1997.

(19) Thirumurugan, A.; Natarajan, S. Assembly of a Secondary Building Unit (SBU) into two- and three-dimensional structures in lanthanide benzenedicarboxylates.. 2006, 6, 983–988.

11 August 2017;

7 February 2018 (CCDC 1566256)

① Project supported by the National Natural Science Foundation of China (No. 21601095), the Youth Project of Nanyang Normal University (No. QN2017065) and the Opening Laboratory Project of Nanyang Normal University (No. SYKF2016075)

. Feng Yu-Quan, born in 1982. Tel: 0377-63513583, E-mail: yqfeng2008@126.com

10.14102/j.cnki.0254-5861.2011-1804

主站蜘蛛池模板: 国产成人三级| 毛片在线播放网址| 欧美日韩亚洲国产主播第一区| 99热这里只有精品5| 亚洲精品手机在线| 一区二区三区在线不卡免费| 91精品久久久无码中文字幕vr| 国产精品综合色区在线观看| 亚洲中文无码av永久伊人| 色一情一乱一伦一区二区三区小说| 美女国内精品自产拍在线播放| 日韩免费毛片视频| 日本一区二区三区精品国产| 亚洲人成网址| 国产超薄肉色丝袜网站| 波多野衣结在线精品二区| 婷婷综合在线观看丁香| a级毛片免费在线观看| 久久综合AV免费观看| 日韩不卡免费视频| 热99精品视频| 欧美翘臀一区二区三区| 久久综合激情网| 欧美日韩亚洲综合在线观看| 亚洲精品福利网站| 亚洲无线一二三四区男男| 日韩欧美亚洲国产成人综合| 亚洲青涩在线| 国产一级妓女av网站| 亚洲成A人V欧美综合| 欧美一区二区福利视频| 真实国产精品vr专区| 国产一级小视频| 日本免费高清一区| 动漫精品啪啪一区二区三区 | 一本综合久久| 国产综合无码一区二区色蜜蜜| 亚洲成在人线av品善网好看| 欧美 亚洲 日韩 国产| 久久情精品国产品免费| 91精品免费高清在线| 天天摸天天操免费播放小视频| 成人精品午夜福利在线播放| 国产女主播一区| 天堂在线www网亚洲| 亚洲首页国产精品丝袜| 久久综合亚洲鲁鲁九月天 | 国产欧美日韩视频一区二区三区| 国产呦视频免费视频在线观看| 国产性生大片免费观看性欧美| 亚洲免费黄色网| 亚洲精品777| 试看120秒男女啪啪免费| 日韩在线第三页| h网站在线播放| 91久久夜色精品| 欧美自慰一级看片免费| 国产真实二区一区在线亚洲| 久久人人爽人人爽人人片aV东京热 | 亚洲午夜综合网| 亚洲综合一区国产精品| 91麻豆精品国产高清在线| 国产精品9| 亚洲综合色在线| 永久天堂网Av| 国产精品yjizz视频网一二区| 久久亚洲欧美综合| 999福利激情视频| 成人午夜精品一级毛片| 18禁高潮出水呻吟娇喘蜜芽| 国产精品.com| 国产精品久久自在自2021| 久久伊人久久亚洲综合| 另类欧美日韩| 国产午夜一级淫片| 四虎永久在线| 伊人久久福利中文字幕| 九九热免费在线视频| 亚洲一区二区日韩欧美gif| 欧美国产精品不卡在线观看| 成年人福利视频| 亚洲日韩久久综合中文字幕|