999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Mixed-solvothermal Synthesis, Crystal Structure and Luminescence of a New Dinuclear Yttrium(III) Coordination Polymer with 1-D Wave-like Infinite Chains①

2018-06-20 12:00:38FENGYuQuanJIANGLanTingXINGZhengZhengWANGLu
結(jié)構(gòu)化學(xué) 2018年5期

FENG Yu-Quan JIANG Lan-Ting XING Zheng-Zheng WANG Lu

?

Mixed-solvothermal Synthesis, Crystal Structure and Luminescence of a New Dinuclear Yttrium(III) Coordination Polymer with 1-Wave-like Infinite Chains①

FENG Yu-Quan②JIANG Lan-Ting XING Zheng-Zheng WANG Lu

(473061)

A new dinuclear Y3+coordination polymer{[Y2(H2O)2(C14H8O4)3(C12H8N2)2]·3H2O}(1, C14H8O4= 2,2?-biphenyldicarboxylate, phen = 1,10-phenanthroline), has been obtained by means of a mixed-solvothermal method using ethylene glycol and water as solvent. The compound was characterized by elemental analysis, energy-dispersive X-ray spectroscopy (EDS), IR spectrum and single-crystal X-ray diffraction. The results reveal that 1 belongs to monoclinic system, space group2/with= 24.249(3),= 12.069(48),= 22.7304(08) ?,= 113.480(7)°,= 4,= 6102(2) ?3,c= 1.462 g?cm-3,(000) = 2728,= 1.968 mm-1, the final= 0.0673,= 0.1508 and= 1.085. Its structure can be regarded as a 1-coordination polymer constructed by Y3+cations, 2,2?-biphenyldicarboxylate, 1,10-phenanthroline and water molecules. The compound not only contains two kinds of organic ligands, but also exhibits interesting wave-like infinite chains and 18-MR windows with the diameter of 4.070(7)? × 5.326(9)?. The structure is further stabilized by means of O–H···O hydrogen bonds and-stacking interactions. Furthermore, the luminescent properties (including emission spectrum, CIE chromaticity coordinate and decay curve) of 1 were also investigated in the solid-state at room temperature.

mixed-solvothermal synthesis,dinuclear Y3+coordination polymer, wave-like infinite chains,luminescent properties;

1 INTRODUCTION

There has been considerable interest in rare- earth(III) coordination polymers owing to their abundant structural features and potential appli- cations in the field of optical and magnetic ma- terials[1-4]. Currently, the ligands containing aromatic carboxylate anions have been widely applied in the construction of coordination polymers, which are more conducive to produce new frameworks with interesting structural features[5-7]. This is due to the fact that the aromatic carboxylate anions own excellent coordination ability with rare-earth(III) cations and they can act as bridging and chelating ligands by means of their flexible coordination modes. Previous studies have shown that many aromatic carboxylic acids containing potential chromophores can modify or produce new optical properties once they were introduced into the rare-earth(III) coordination polymers. Moreover, the metal cations of coordination polymers containing 2,2?-biphenyldicarboxylate ligand are mainly concentrated in TM2+cations including Mn2+, Co2+, Ni2+, Cd2+,[8-10]. Accordingly, guiding by the considerations, we expected that the combination of aromatic carboxylate anions and rare-earth(III) cations could obtain new polymers with interesting structural features and optical properties. In addition, the 1,10-phenanthroline can be viewed as a rigid conjugated chelating ligand which displays good solubility and low-antibonding orbital energy. The 1,10-phenanthroline is also a kind of excellent optically active ligand because it can easily generate MLCT electronic transition. We expected that the introduction of 1,10-phenanthroline can generate new rare-earth(III) coordination polymers with interesting properties. Therefore, the ligand 1,10- phenanthroline is selected as the second ligand in the formation of rare-earth(III) coordination polymers. As part of our ongoing investigations[11-16], herein, by employing two kinds of ligands, 2,2?-biphenyl- dicarboxylate and 1,10-phenanthroline (phen), we obtained a new dinuclear Y3+coordination polymer {[Y2(H2O)2(C14H8O4)3(C12H8N2)2]·3H2O}(1). The compound possesses interesting wave-like infinite chains and adds a new member into the family of rare-earth(III) coordination polymers containing two kinds of organic ligands.

2 EXPERIMENTAL

2. 1 Instruments and reagents

Elemental analyses (C, H and N) were also performed on a Perkin-Elmer 240 analyzer. Energy- dispersive X-ray spectroscopy (EDS) analysis was performed on a FEI-Quanta-200 scanning electron microscope. Infrared spectra were recorded on a Nicolet 5700 FT-IR spectrometer (400~24000 cm-1) using KBr pellets. The luminescent properties of 1 have been measured on the FLS980-fluorescence spectrometer in the solid state at room temperature. Crystal diffraction data were collected on a Bruker SMART APEX-II CCD diffractometer equipped with a graphite-monochromated Mo-radiation (= 0.71073 ?) at 293(2) K using an-scan mode. All chemicals were of reagent grade quality obtained from commercial sources and were used without further purification.

2. 2 Synthesis of {[Y2(H2O)2(C14H8O4)3(C12H8N2)2]·3H2O}n1

2. 3 X-ray crystallographic determination

A suitable single crystal of 1 (0.32mm × 0.26mm × 0.20mm) was used for structure determination. Crystal diffraction data of 1 were collected on a Bruker SMART APEX-II CCD diffractometer equipped with a graphite-monochromated Mo-Kα radiation (λ= 0.71073 ?) at 296(2) K using an ω-φscan mode. In the range of 1.98≤q≤25.00owith –28≤h≤28, –14≤k≤14 and –18≤l≤27, a total of 15008 reflections were collected, among which 5330 were unique reflections (Rint = 0.0772). Absorption correction was applied by using the SADABS[17]. The structure was solved by direct methods and refined by full-matrix least-squares techniques on F2 using SHELX-97 package[18]. All non-hydrogen atoms were refined anisotropically and hydrogen atoms isotropically by full-matrix least-squares refinement. The organic hydrogen atoms were generated geometrically. The selected bond lengths and bond angles of 1 are listed in Table 1.

Symmetry transformation: #1: –+1, –+1, –+1; #2: –+1,, –+3/2

3 RESULTS AND DISCUSSION

3. 1 EDS and elemental analyses

The results of EDS analysis reveal that compound 1 contains the elements of Y, O, N and C. This is in good agreement with the result of X-ray structural analysis. Elemental analyses (C, H and N) were performed on a Perkin-Elmer 240 analyzer. Analysis for C66H50N4O17Y2, calculated: C, 58.77; H, 3.74; N, 4.15%. Found: C, 58.43; H, 3.96; N, 4.41%. These values are further confirmed by the results of single-crystal X-ray structural analysis.

3. 2 Infrared spectroscopy

3. 3 Crystal structure

Fig. 1. Structure of compound 1. H atoms and isolated water molecules have been omitted for clarity.Displacement ellipsoids are drawn at the 30% probability level (Symmetry code: (A) 1–,, 3/2–)

Fig. 2. Structure of the infinite wave-like chain along theaxis

Fig. 3. Structure of the 18-MR windows presented in the wave-like chain

Fig. 4. A view of the packing structure of 1 along theaxis

3. 4 Luminescent properties

Fig. 5. Emission spectrum of 1

Fig. 6. CIE (1931) chromaticity diagram for the emission spectrum of 1

Fig. 7. Decay curves of 1 at room temperature

4 CONCLUSION

In summary, a new dinuclear Y3+coordination polymer containing 1-wave-like infinite chains and two kinds of organic ligands has been obtained by means of mixed-solvothermal method. The com- pound owns interesting 1-wave-like infinite chains and 18-MR windows with the dieter of 4.071? × 5.326?. The luminescent properties reveal that 1 displays a blue emission under the optimal excitation wavelength of 298 nm and its luminescent decay value is 12.0039 ns. The compound enriches the family of rare-earth(III) coordination polymers. Its successful synthesis reveals that more Y3+coordination polymers containingmultiple types of ligands may be prepared using the mixed-solvo- thermal method.

(1) Zhou, Y. F.; Hong, M. C.; Wu, X. T. Lanthanide-transition metal coordination polymers based on multiple N- and O-donor ligands.2006, 135–143.

(2) Plecnik, C. E.; Liu, S.; Shore, S. G. Lanthanide-transition-metal complexes: from ion pairs to extended arrays.2003, 36, 499–508.

(3) Wei, X. H.; Yang, L. Y.; Liao, S. Y.; Zhang, M.; Tian, J. L.; Du, P. Y.; Gu, W.; Liu, X. A series of rare earth complexes with novel non-interpenetrating 3networks: synthesis, structures, magnetic and optical properties..2014,5793–5800.

(4) Luo, F.; Hu, D.; Xue, L.; Che, Y.; Zheng, J. Pillared 3-4frameworks with rare 3D architecture showing the coexistence of ferromagnetic and antiferromagnetic interactions between gadolinium ions.2007, 7, 851–853.

(5) Xu,J.; Su, W. P.; Hong, M. C.A series of lanthanide secondary building units based metal-organicframeworks constructed by organic pyridine-2,6-dicarboxylate and inorganic sulfate.2011, 11, 337–346.

(6) (6). Zhang, T.; Xue, L. P. Ionothermal synthesis, crystal structure and photocatalytic property of a new cobalt coordination polymer.. 2015, 34, 417-422.

(7) Zhang, W.; Feng, Y.Q. A novel dinuclear bismuth(III) coordination compound: bis(-pyridine-2,6-dicarboxylato)-42,,6:6′;42:2′,,6-bis[(azido-)(1,10-phenanthroline-2,′)bismuth(III)] tetrahydrate.702014, 562–565.

(8) Li, J.; Li, C.; Wang, Z.L. Poly[[(2-bi-phenyl-2,4′-di-carboxyl-ato)[2-1,4-bis-(imidazol-1-yl-methyl)-benzene]cadmium(II)]0.15-hydrate].66 2010, m384–m386.

(9) Jiang, M.; Li, J.; Zhang, F. X. Poly-[manganese(II)-2-benzidine-2:′-μ3-bi-phenyl-2,2′-di-carboxylato-4:′,′′:′′′]..60 2004, m501–m503.

(10) Hawxwell, S. M.; Adams, H.; Brammer, L. Two-dimensional metal-organic frameworks containing linear di-carboxylates.62 2006, 808–814.

(11) Feng, Y. Q.; Bi, D. Q.; Hu, Y. L.; Zhong, Z. G..; Guo, Y. C. Ionothermal synthesis, crystal structure and antibacterial activities of a new 3-4hetero-metallic compound containing two kinds of ligands.. 2015, 34, 1598─1605.

(12) Feng, Y. Q.; Hu, Y. L.; Wang, H. W.; Cao, F. P. A new linear bismuth coordination polymer based on 1,10-phenanthroline-2,9-dicarboxylic acid: ionothermal synthesis, crystal structure and fluorescence properties..71 2015, 679–682.

(13) Feng, Y. Q.; Zhong, Z. G.;Wang, H. W.; Fan, H. T.; Bi, D. Q.; Wang, L.; Xing, Z. Z.; Qiu, D. F. A novel open-framework copper borovanadate with enhanced catalytic performance for oxidation of benzylic C–H bond.2017, 23, 9962?9967.

(14) Feng, Y. Q.; Fan, H. T.; Zhong, Z. G.;Wang, H. W.; Qiu, D. F. Cd3(MoO4)(TeO3)2: a polar 3D compound containing10-0scalp effect cations.

2016, 55, 11987?11992.

(15) Feng, Y. Q.; Li, M.; Fan, H. T.; Huang, Q. Z.; Qiu, D. F.; Shi, H. Z. A novel open-framework copper borophosphate containing 1-D borophosphate anion with 10-MR windows and 12-MR channels.2015, 44, 894-897.

(16) Sun, R. Z.; Guo, Y. C.; Liu, W. M.; Chen, S. Y.; Feng, Y. Q. Syntheses, crystal structures and antibacterial activities of complexes [(C9H18NS2)3M(III)] (M = Sb and Bi).. 2012, 31, 655-660.

(17) Sheldrick, G. M... University of G?ttingen: G?ttingen, Germany 1996.

(18) Sheldrick, G. M.University of G?ttingen: G?ttingen, Germany 1997.

(19) Thirumurugan, A.; Natarajan, S. Assembly of a Secondary Building Unit (SBU) into two- and three-dimensional structures in lanthanide benzenedicarboxylates.. 2006, 6, 983–988.

11 August 2017;

7 February 2018 (CCDC 1566256)

① Project supported by the National Natural Science Foundation of China (No. 21601095), the Youth Project of Nanyang Normal University (No. QN2017065) and the Opening Laboratory Project of Nanyang Normal University (No. SYKF2016075)

. Feng Yu-Quan, born in 1982. Tel: 0377-63513583, E-mail: yqfeng2008@126.com

10.14102/j.cnki.0254-5861.2011-1804

主站蜘蛛池模板: 久久毛片网| 欧美精品v欧洲精品| 99热这里只有精品免费国产| 67194在线午夜亚洲| 国产成人综合久久精品下载| 99视频只有精品| 国产视频大全| 国产乱人免费视频| 亚洲欧美成人综合| 色妞永久免费视频| 丰满人妻被猛烈进入无码| 久久中文字幕不卡一二区| 在线日韩日本国产亚洲| 二级特黄绝大片免费视频大片| 91精品人妻互换| 狠狠v日韩v欧美v| 九色在线视频导航91| 国产黑丝一区| 99热这里只有精品国产99| 午夜不卡福利| 国内精品久久久久鸭| 91麻豆精品国产高清在线| 露脸国产精品自产在线播| 亚洲精品在线影院| 国产成本人片免费a∨短片| 国产精品部在线观看| 狠狠久久综合伊人不卡| 爱色欧美亚洲综合图区| 欧美五月婷婷| 久无码久无码av无码| 51国产偷自视频区视频手机观看 | 亚洲毛片一级带毛片基地 | 精品国产99久久| 国产精品嫩草影院av| 国产精品免费露脸视频| 免费人成网站在线高清| 成人免费视频一区| 亚洲人在线| 国产精品色婷婷在线观看| 黄片一区二区三区| 少妇被粗大的猛烈进出免费视频| 欧美性久久久久| 亚洲狼网站狼狼鲁亚洲下载| 成人中文字幕在线| 日韩欧美成人高清在线观看| 情侣午夜国产在线一区无码| 九九热精品免费视频| 久久性视频| 亚洲综合婷婷激情| 国产精品福利社| 在线观看亚洲国产| 亚洲欧洲综合| 九色在线视频导航91| 亚洲国产在一区二区三区| 色网在线视频| 亚洲无码精品在线播放| 在线观看国产黄色| 成人在线亚洲| 国产第一页第二页| 99这里只有精品在线| 久久伊伊香蕉综合精品| lhav亚洲精品| 日韩最新中文字幕| 亚洲中文字幕手机在线第一页| 亚洲一区波多野结衣二区三区| 亚洲成人在线免费观看| 色综合手机在线| 中文字幕在线视频免费| 欧美综合中文字幕久久| 五月婷婷综合色| 国产精品香蕉在线观看不卡| 亚洲色图欧美激情| 88av在线看| 69精品在线观看| 欧美日韩精品在线播放| 伊人成人在线| 欧美成在线视频| 国产熟睡乱子伦视频网站| 久久久久中文字幕精品视频| 最近最新中文字幕在线第一页| 夜夜爽免费视频| 一本综合久久|