999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

SOBOLEV INEQUALITIES FOR MOEBIUS MEASURES ON THE UNIT CIRCLE

2018-09-19 08:13:32LEILiangzhenMAYutaoXUEDandan
數(shù)學(xué)雜志 2018年5期

LEI Liang-zhen,MA Yu-tao,XUE Dan-dan

(1.School of Mathematical Sciences,Capital Normal Univeristy,Beijing 100048,China)

(2.School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China)

(3.The High School Affiliated to Minzu University of China,Beijing 100081,China)

Abstract:In this paper,we consider Moebius probability on the unit circle.By using the method in[1]and[2],we transfer the estimates on Moebius probability onto one-dimensional diffusion,and obtain two-sided estimates on optimal Poincaré constant,logarithmic Sobolev constant and Sobolev constant for Moebius measures on the unit circle.

Keywords:Moebius measures;Sobolev inequalities;Poincaré inequalities;logarithmic Sobolev inequalities

1 Introduction

Let n ≥ 2 and let Sn?1be the unit sphere on Rnequipped with geodesic distance d and the uniform probability measureμ.For x∈ Rnwith|x|< 1,we consider the probability measure on Sn?1given by

It is the so-called Moebius measure we are working on.In fact,this probability is the image ofμ under the Moebius transformation.The factoris known as the invariant Poisson kernel P(x,y):as a function of x,it is not harmonic but satisfies the equationP(·,y)=0,wheredenotes the invariant Laplacian operator(the reader is referred to[3]for further information on this measure).

Let M be a connected complete Riemannian manifold with Riemannian metric d and?is the gradient on M.Let M1(M)be the space of all probabilities on M.Given anyμ∈M1(M),we say that

1. μ satisfies a Poincaré inequality with a non-negative constant C if for any smooth function f:M→R,there exists a constant C≥0 such that

The optimal constant above is denoted by CP(μ).

2.μsatisfies a logarithmic Sobolev inequality with a constant C≥0 if for any smooth function f:M →R withμ(f2)=1,

We denote by CLS(μ)the optimal logarithmic Sobolev constant.

3.μsatisfies a Sobolev inequality with exponent p≥1,if there exists one positive constant C such that for any f:M→R smooth enough,

In fact,the classical Poincaré inequality corresponds to the case p=1 and the logarithmic Sobolev inequality turns out to the limit case when p tends to 2 since

where

is the relative entropy of f2under.It was proved in[4]that

is increasing on p for given f.

In this paper,we consider the Poincaré inequality,logarithmic Sobolev inequality and Sobolev inequality for Moebius measures on the unit circle.

In[3],Schechtman and Schmuckenschl?ager proved thatwith any|x| < 1 has a uniform Gaussian concentration property,which is similar to the one of.In[5],they obtained logarithmic Sobolev and Poincaré inequalities for harmonic measures on unit sphere Sn?1for n ≥ 3 and in[2]they had similar results for harmonic measures when n=2.And then in[1],they obtained Sobolev inequalities for harmonic measures when n≥2.

Following the idea in[5],they obtained in[6]similar results for Moebius measures on unit sphere for n≥3.In this paper,we will work on the Moebius measures on unit circle

with x∈R2,|x|<1 andμthe uniform probability on the unit circle.

The main result of this paper is the following.

Theorem 1 Letμxbe the Moebius measure on the unit circle.We have

a)the optimal Poincaré constant CP(μx)satisfies

b)the optimal logarithmic Sobolev constant CLS(μx)satisfies

c)the optimal Sobolev constant Cp(μx)satisfies

for 1<p<2.

2 Proof of the Estimate on CP(μx)

We first present a crucial lemma,which combines a particular case of Lemma 1.1 in[2]and a lemma in[1].

Lemma 2.1 Define

for 0<a<1.We have,respectively,

(1)the corresponding Poincaré constant satisfies

(2)similarly,the optimal logarithmic Sobolev constants satisfy

here λDD(ν|x|)is defined as

(3)the optimal Sobolev constant satisfies

Define the diffusion operator Laas

for any smooth function f:[0,π]→ R.The corresponding Dirichlet form is

The optimal Poincaré constant,where λ1(νa)has classic variational formula

Put f(θ)=1 ? acosθ.We get

and

So by the variational formula

Therefore we have CP(νa)≥ 1.Now we work on the upper bound for CP(νa).The variational formula for λ1(νa)by Chen in[7]could be understood as

where

where the first equality comes true by the fact that for α ∈ [0,π],

And the last but second equality holds by the fact

Step 1 Lower bound for λDD(νa).Choose f as f(θ)=sin θ for θ∈ [0,π].Clearly,f satisfies

So by Theorem 1.1 in[8],

In fact,for 0≤a≤1,

Now,combining the upper and lower bound for λ1(νa)as well as the lower bound for λDD(νa),we have by Lemma 2.1,

The part a)of Theorem 1 follows.

3 Proof of Log-Sobolev Inequality

By(2.3),it is clear that the median of νais θa=arccosa.Define

and

and

for any 0<β<α<π.

where the last inequality is true sincefor any

Similarly,by(3.2)and the fact sinwe have

and

Therefore from the monotonicity of xlog(1+b/x)for x>0 when b>0,it holds

Barthe-Roberto’s characterization for logarithmic Sobolev constants tells(see[9])

Therefore,it follows from(3.3),(3.4)and(3.5)that

By(2.4),we have

Thereby by Lemma 2.1,we get

which completes the proof of b)of Theorem 1.

4 Proof of the Estimate on Cp(μx).

Define

It is easy to check that bothandare increasing on R+for C>0.Recalling the estimates

and

for any 0<β<α<π.We get

where the second inequality holds by

Similarly,we get

Finally,Barthe-Roberto’s characterization for Sobolev constant guarantees that

By Lemma 2.4 in[1],we know

where the last inequality holds by the facts thatis increasing and1.Combining(4.5),(4.6),≤ log4 and Lemma 2.1 together,we have

which completes the proof of theorem.

主站蜘蛛池模板: 91娇喘视频| 亚洲综合在线网| 三上悠亚一区二区| 欧美日韩精品一区二区视频| 亚洲精品波多野结衣| 高清免费毛片| 欧美日韩国产在线观看一区二区三区| 2021精品国产自在现线看| 久久久亚洲色| 亚洲 欧美 偷自乱 图片 | 久久久久人妻一区精品| 在线观看无码a∨| 亚洲天堂免费在线视频| 91精品福利自产拍在线观看| 亚瑟天堂久久一区二区影院| 在线观看免费国产| 日韩精品无码免费一区二区三区| 免费在线国产一区二区三区精品| 亚洲开心婷婷中文字幕| 国产成人久久777777| 日韩在线影院| 97超碰精品成人国产| 欧美另类第一页| 小说区 亚洲 自拍 另类| 试看120秒男女啪啪免费| 2022精品国偷自产免费观看| 国产精品成人AⅤ在线一二三四| 精品无码日韩国产不卡av | 国产剧情无码视频在线观看| 欧美一级高清免费a| 国产白浆在线观看| 五月天丁香婷婷综合久久| 青青青国产视频| 国产福利免费视频| 亚洲高清无码久久久| aa级毛片毛片免费观看久| 国产理论精品| 97超级碰碰碰碰精品| 第一区免费在线观看| 久久精品波多野结衣| 97色伦色在线综合视频| 一级毛片在线播放免费观看| 丝袜国产一区| 精品亚洲麻豆1区2区3区 | 亚洲天堂免费在线视频| 日本91在线| 波多野结衣国产精品| 91免费片| 亚洲久悠悠色悠在线播放| 精久久久久无码区中文字幕| 91视频国产高清| 日韩国产综合精选| 亚洲无码视频图片| 国产在线观看第二页| 亚洲人成网站色7799在线播放| 日本高清成本人视频一区| 91网站国产| 久久网欧美| 欧美成人手机在线视频| 亚洲天堂久久久| 无码内射在线| 国产日韩精品欧美一区灰| 97国产一区二区精品久久呦| 欧美区在线播放| 欧美一区精品| 亚洲国产天堂久久综合| 国产h视频在线观看视频| 久久婷婷国产综合尤物精品| 成人无码一区二区三区视频在线观看 | 国产va欧美va在线观看| 美女国内精品自产拍在线播放 | 99视频在线看| 亚洲精品国产精品乱码不卞| 精品国产成人国产在线| h视频在线播放| 国产成人永久免费视频| 国产精品视频白浆免费视频| 一本二本三本不卡无码| 波多野结衣无码视频在线观看| 欧美中文字幕一区二区三区| 毛片网站免费在线观看| 国产精品夜夜嗨视频免费视频|