999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Synthesis, Crystal Structure and Antitumor Activities of (14S)-2,14-diphenyl-6,6a,11,12-tetrahydro-5H,10H,14H-[1,8]naphthyridino[1,2-c]pyrido[3,2,1-ij] quinazoline-3-carbonitrile①

2018-10-12 03:54:24CHENXiuWenJIAGuoKaiWANGZongCheng
結構化學 2018年9期

CHEN Xiu-Wen JIA Guo-Kai WANG Zong-Cheng

?

Synthesis, Crystal Structure and Antitumor Activities of (14S)-2,14-diphenyl-6,6a,11,12-tetrahydro-5H,10H,14H-[1,8]naphthyridino[1,2-c]pyrido[3,2,1-ij] quinazoline-3-carbonitrile①

CHEN Xiu-Wen JIA Guo-Kai WANG Zong-Cheng②

a(425199)b(425199)

naphthyridine, tetrahydroquinazolines, synthesis, crystal structure, antitumor activity;

1 INTRODUCTION

1,2,3,4-Tetrahydro-1,8-naphthyridine moieties (THNs) are present in numerous molecules with important biological activities, as represented by a potent antagonist of thev3receptor (structure-A)[1-3],cholesterol ester transfer protein inhibitor (structure-B)[4], antioxidants in lipid membranes and low-density lipoproteins (structure-C)[5], and antibac- terial agents (structure-D)[6, 7].Moreover, THNs serve as interesting building blocks that have been extensively applied for various synthetic purposes[8].Additionally,tetrahydroquinazolines skeleton cons- titutes the core structure of numerous products exhibiting interesting bioactivities including DNA- intercalation[9]and inhibition of butyrylcholine- sterase[10].However, the synthesis of tetrahydroquina- zolines derivatives is rare.Hence, the development of efficient and accurate reliabile methods to synthesize tetrahydroquinazolines has been of great interest and the subject of several recent reviews.In order to studythe synthesis and activities of tetrahydroquina- zolines derivatives, the title compound (14S)-2,14-diphenyl-6,6a,11,12-tetrahydro-5H,10H,14H-[1,8]naphthyridino[1,2-c]pyrido[3,2,1-ij]quinazoline-3-carbonitrile was prepared from low-cost 2-amino- nicotinaldehyde, and further characterized by1H-NMR and ESI spectrum.And its crystal structure was also determined by single-crystal X-ray diffrac- tion.

2 EXPERIMENTAL

2.1 Synthesis of the title compound

All analytical grade chemicals and solvents were purchased commercially and used without further purification.

The1H-NMR spectrum of the title compound was tested on a Mercury Plus-500 spectrometer by using TMS as the internal standard and CDCl3as the solvent.Mass spectra were recorded on a thermo Finnigan LCQ Advantage LC/Mass detector instrument.

The synthetic route of the title compound 6 was outlined in Scheme 1.

Scheme 1. Procedure for the preparation of compound 6

The title compound 6 was prepared as follows:

The preparation of 2-phenyl-1,8-naphthyridine-3- carbonitrile 3 was similar to the literature proce- dures[11].2-Aminonicotinaldehyde 1 (5 mmol), 3- oxo-3-phenylpropanenitrile 2 (5 mmol),-BuOK (20 mol %), and ethanol (10 mL) were introduced in a flask (50 mL).Then, it was stirred at 50oC under atmosphere for 2 h.After cooling down to room temperature, the reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by column chromatography and eluted with petroleum ether/ethyl acetate (4:1, v/v) to give a yellow solid 3 with the yield of 82%.1H NMR (400 MHz, CDCl3):9.27 (s, 1H), 8.75 (s, 1H), 8.30 (d,= 7.9 Hz, 1H), 8.13 (s, 2H), 7.68~7.50 (m, 4H).13C NMR (101 MHz, CDCl3):161.27, 156.98, 155.94, 145.63, 137.03, 136.84, 130.75, 129.51, 128.68, 123.47, 119.96, 117.33, 106.70.MS (EI, m/z): 231.1 [M]+.

Procedure for the synthesis of 5: Under N2atmosphere, tetrahydroquinoline 4 (0.3 mmol), 2-phenyl-1,8-naphthyridine-3-carbonitrile 3 (0.2 mmol), [Cp*IrCl2]2(1 mol %), and-amyl alcohol (1.0 mL) were introduced into a Schlenk tube (25 mL) successively.Then, the Schlenk tube was closed and the resulting mixture was stirred at 130 °C for 18 h.After cooling down to room temperature, the reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica, eluting with petroleum ether (60~90 °C): ethyl acetate (5:1) to give 5.Yellow solid (52.7 mg, 0.144 mmol, 72% yield), m.p: 189~191 °C.1H NMR (400 MHz, CDCl3):7.86~7.80 (m, 2H), 7.49~7.43 (m, 4H), 6.94 (dd,= 11.3, 7.6 Hz, 2H), 6.60 (t,= 7.5 Hz, 1H), 5.85 (s, 1H), 4.61~4.47 (m, 1H), 3.38~3.27 (m, 2H), 2.85~2.71 (m, 4H), 2.20~2.03 (m, 2H), 1.93~1.85 (m, 2H).13C NMR (101 MHz, CDCl3):159.65, 157.72, 141.51, 139.85, 137.93, 129.53, 129.18, 128.67, 128.43, 124.62, 122.25, 119.85, 116.56, 114.71, 94.25, 51.86, 42.16, 27.64, 24.90, 24.47, 21.76.IR (KBr): 3407, 3057, 2940, 2844, 2211, 1602, 1507, 1435, 1279, 1188, 1123, 918 cm-1.HRMS (ESI): calcd.for C24H23N4[M+H]+: 367.1917; found: 367.1922.

Procedure for the synthesis of 6: Compounds 5 was treated with benzaldehyde in acetic acid at 70oC for 5 h, which underwent effective intermolecular condensation to afford the cyclization products 6.Brownish solid (32.7 mg, 0.072 mmol, 72% yield); m.p: 101~103 °C;1H NMR (400 MHz, CDCl3):7.98 (d,= 6.8 Hz, 2H), 7.57~7.47 (m, 4H), 7.45 (s, 1H), 7.37 (d,= 6.8 Hz, 2H), 7.35~7.27 (m, 3H), 6.94 (d,= 7.3 Hz, 1H), 6.89 (d,= 7.6 Hz, 1H), 6.61 (t,= 7.5 Hz, 1H), 4.54 (t,= 5.0 Hz, 1H), 3.51~3.35 (m, 2H), 2.93~2.72 (m, 4H), 2.35~2.22 (m, 2H), 2.13~1.96 (m, 2H).13C NMR (101 MHz, CDCl3):158.67, 155.60, 140.39, 140.21, 139.90, 138.24, 129.55, 128.73, 128.70, 128.42, 128.08, 127.91, 126.99, 122.27, 121.55, 120.76, 119.74, 116.62, 115.86, 94.84, 69.05, 50.03, 48.34, 27.69, 24.70, 23.92, 21.55.IR (KBr): 3059, 2924, 2336, 2213, 1598, 1493, 1314, 1270, 1016, 699 cm-1.HRMS (ESI): Calcd.for C31H27N4[M+H]+: 455.2230; found: 455.2233.

2.2 Crystal data and structure determination

The crystals of the title compound suitable for X-ray structure determination were obtained by slowly evaporating an ethanol solution for about a week at room temperature.A yellow single crystal of the title compound 6 with dimensions of 0.21mm × 0.2mm × 0.19mm was put on a Bruker P4 diffrac- tometer equipped with a graphite-monochromatized Moradiation (= 0.71073 ?).Intensity data were collected at 296(2) K by using anscan mode in the range of1.417≤≤25.208o with the following index ranges: –10≤≤10, –10≤≤14 and –17≤≤17.A total of 9249 reflections were collected and 5041 were independent (int= 0.0261), of which 5041 were observed (> 2()).The structure was refined on2by full-matrix least-squares procedure with SHELXL-97[12]package.All non-hydrogen atoms were refined with anisotropic thermal parameters.The hydrogen atoms were located from difference Fourier map, added theoretically, and then refined isotropically with riding model position parameters.The final cycle of refinement gave= 0.0484 and= 0.1388 (= 1/[2(F2) + (0.0708)2], where= (F2+ 2F2)/3) with 316 parameters.= 0.966, (Δ)max= 0.186, (Δ)min= –0.229 e/?3and (Δ/)max= 0.001.

2.3 Antitumor activity evaluation

Two samples, 5-fluorouracil and docetaxol, were dissolved in DMSO to prepare the DMSO solution, respectively.These solutions were subjected to MTT assay.5-Fluorouracil and docetaxol were used as positive control and DMSO as the blank control.The assay was run in triplicate on human cancer K562, HL-60, HeLa and BGC-823 cell lines by the method that we have previously reported[13].

3 RESULTS AND DISCUSSION

The structure of the title compound 6 wastestified by1H-NMR,13C NMR, IR,HRMS (ESI) and single-crystal X-ray analysis.The molecular struc- ture of the title compound 6 is shown in Fig.1 and the selected bond lengths and bond angles are listed in Table 1.

Fig.1. Molecular structure of the title compound 6

Table 1. Selected Bond Lengths (?) and Bond Angles (°) for the Title Compound 6

The title molecule consists of seven six-membered rings (rings a, b, c, d, e, f and g).The first benzene ring (ring a) consisting of the C(1), C(2), C(3), C(4), C(5) and C(6) atoms, the second benzene ring (ring c), composed of the C(11), C(12), C(13), C(14), C(15) and C(16) atoms, the third benzene ring (ring g), built by the C(25), C(26), C(27), C(28), C(29) and C(30) atoms, and the pyridine ring (ring f) made up of the C(20), C(21), C(22), C(24), N(3) and C(31) atoms, are coplanar.The dihedral angles between the three benzene rings are 82.66° (ring a and c), 86.34° (ring a and g) and 59.47° (ring c and g), respectively, and those between the pyridine ring and three benzene rings are 83.37° (ring a and f), 25.80° (ring c and f) and 33.67° (ring g and f), respectively.Three noncoplanar rings (ring b, d and e) display half-chair conformation[14].As shown in Table 1, for the title compound 6, the bond lengths of N(1)–C(16) (1.394(2) ?) and N(2)–C(31) (1.366(2) ?) are shorter than the typical C–N (1.47 ?) and longer than the typical C=N (1.35 ?), which confirm these bonds have some characters of a double or conjugated bond[15].The bond length of N(4)–C(23) is 1.144(3) ?, which confirms it is the typical C≡N (1.15 ?).The bond angles of four coplanar rings are close to 120o, but many bond angles in the other rings are 110o.

Theantitumor activities of the title com- pound were evaluated against human cancers K562, HL-60, HeLa and BGC-823 cell lines by the MTT assay.As described in Table 2, it displays different inhibition activities against human cancer K562, HL-60, HeLa and BGC-823.The title compound 6 has a better antitumor activity against K562 than against HeLa.Although it is weaker than 5-fluo- rouracil and Docetaxol in 100 μg·mL-1, the title compound 6 has a better antitumor activity than compound 3.So, the target derivative is expected to be developed as a novel antitumor agent though further structural optimization.

Table 2. Antitumor Activities of Compounds 6 against Human Cancer K562, HL-60, HeLa and BGC-823 Cell Lines

(1) Hutchinson, J.H.; Halczenko, W.; Brashear, K.M.; Breslin, M.J.; Coleman, P.J.; Duong, L.T.; Fernandez-Metzler, C.; Gentile, M.A.; Fisher, J.E.; Hartman, G.D.; Huff, J.R.; Kimmel, D.B.; Leu, C.T.; Meissner, R.S.; Merkle, K.; Nagy, R.; Pennypacker, B.; Perkins, J.J.; Prueksaritanont, T.; Rodan, G.A.; Varga, S.L.; Wesolowski, G.A.; Zartman, A.E.; Rodan, S.B.; Duggan, M.E.Nonpeptide alphavbeta3 antagonists.8.In vitro and in vivo evaluation of a potent alphavbeta3 antagonist for the prevention and treatment of osteoporosis.2003, 46, 4790–4798.

(2) Hartner, F.W.; Hsiao, Y.; Eng, K.K.; Rivera, N.R.; Palucki, M.; Tan, L.; Yasuda, N.; Hughes, D.L.; Weissman, S.; Zewge, D.; King, T.; Tschaen, D.; Volante, R.P.Methods for the synthesis of 5,6,7,8-tetrahydro-1,8-naphthyridine fragments forV3integrin antagonists.2004, 69, 8723–8730.

(3) Breslin, M.J.; Duggan, M.E.; Halczenko, W.; Hartman, G.D.; Duong, L.T.; Fernandez-Metzler, C.; Gentile, M.A.; Kimmel, D.B.; Leu, C.T.; Merkle, K.; Prueksaritanont, T.; Rodan, G.A.; Rodan, S.B.; Hutchinson, J.H.Nonpeptidev3antagonists.Part 10: In vitro and in vivo evaluation of a potent 7-methyl substituted tetrahydro-[1,8]naphthyridine derivative.2004, 14, 4515–4518.

(4) Fernandez, M.C.; Escribano, A.; Mateo, A.I.; Parthasarathy, S.; Martin de la Nava, E.M.; Wang, X.; Cockerham, S.L.; Beyer, T.P.; Schmidt, R.J.; Cao, G.; Zhang, Y.; Jones, T.M.; Borel, A.; Sweetana, S.A.; Cannady, E.A.; Stephenson, G.; Frank, S.; Mantlo, N.B.Design, synthesis and structure-activity-relationship of 1,5-tetrahydronaphthyridines as CETP inhibitors.2012, 22, 3056–3062.

(5) Nam, T.G.; Rector, C.L.; Kim, H.Y.; Sonnen, A.F.P.; Meyer, R.; Nau, W.M.; Atkinson, J.; Rintoul, J.; Pratt, D.A.; Porter, N.A.Tetrahydro-1,8-naphthyridinol analogues of-tocopherol as antioxidants in lipid membranes and low-density lipoproteins.2007, 129, 10211–10219.

(6) Seefeld, M.A.; Miller, W.H.; Newlander, K.A.; Burgess, W.J.; DeWolf, W.E.; Elkins, P.A.; Head, M.S.; Jakas, D.R.; Janson, C.A.; Keller,P.M.;Manley, P.J.; Moore, T.D.; Payne, D.J.; Pearson, S.; Polizzi, B.J.; Qiu, X.; Rittenhouse, S.F.; Uzinskas, I.N.; Wallis, N.G.; Huffman, W.F.Indole naphthyridinones as inhibitors of bacterial Enoyl-ACP reductases FabI and FabK.2003, 46, 1627–1635.

(7) Olepu, S.; Suryadevara, P.K.; Rivas, K.; Yokoyama, K.; Verlinde, C.L.; Chakrabarti, D.; Voorhis, W.C.V.; Gelb, M.H. 2-Oxo-tetrahydro-1,8-naphthyridines as selective inhibitors of malarial protein farnesyltransferase and as anti-malarials.2008, 18, 494–497.

(8) Briones, J.F.; Basarab, G.S.Expedient synthesis of tetrahydroquinoline-3-spirohydantoin derivativesthe Lewis acid-catalyzed-amino effect reaction.2016, 52, 8541–8544.

(9) Malancona, S.; Donghi, M.; Ferrara, M.; Martin Hernando, J.I.; Pompei, M.; Pesci, S.; Ontoria, J.M.; Koch, U.; Rowley, M.; Summa, V.Allosteric inhibitors of hepatitis C virus NS5B polymerase thumb domain site II: Structure-based design and synthesis of new templates.2010, 18, 2836–2848.

(10) Sawatzky, E.; Wehle, S.; Kling, B.; Wendrich, J.; Bringmann, G.; Sotriffer, C.A.; Heilmann, J.; Decker, M.Discovery of highly selective and nanomolar carbamate-based butyrylcholinesterase inhibitors by rational investigation into their inhibition mode.2016, 59, 2067–2082.

(11) Moya, S.A.; Gajardo, J.; Araya, J.C.; Cornejo, J.J.; Guerchais, V.; Bozec, H.L.; Carles Bayón, J.; Pardey , A.J.; Aguirre, P.Y.Synthesis and characterization of new complexes of the type [Ru(CO)2Cl2(2-phenyl-1,8-naphthyridine-kN)(2-phenyl-1,8-naphthyridine-Kn)].Preliminary applications in homogeneous catalysis.2008, 22, 471–478.

(12) Sheldrick, G.M.A short history of SHELX..2008, A64, 112–122.

(13) Chen, X.W.; Li, C.W.; Cui, C.B.; Hua, W.; Zhu, T.J.; Gu, Q.Q.Nine new and five known polyketides derived from a deep sea-sourcedsp.16-02-1.2014, 12, 3116–3137.

(14) Chen, C.Y.; He, Q.T.; Sun, D.D.; Hu, J.S.Crystal structure and antiproliferative activity of ethyl 3,9-dihydroxy-9-methyl-7-phenyl-7,8,10- trihydro-6Hdibenzo [b,d]pyran-6-one-8-carboxylate.2016, 35, 199–204.

(15) Xu, Z.Y.; Zhong, Y.; Liu, Y.L.; Xu, Y.; Li, P.; Wu, B.Synthesis, crystal structure and neuroprotective activity of (E)-1-(4-(4-chlorobenzyl) piperazin-1-yl)- 3-(benzo[d][1,3]dioxol-5-yl)prop-2-en-1-one.2016, 35, 1348–1354.

24 January 2018;

11 April 2018 (CCDC 1831611)

①This work was supported by the Natural Science Foundation of Hunan Province (No.2018JJ3196), the opening project of key laboratory of comprehensive utilization of advantage plants resources in Hunan south, Hunan university of science and engineering (No.XNZW17C04, XNZW17C05), and aid program for science and technology innovative research team in higher educational institutions of Hunan province (No.2012-318)

Wang Zong-Cheng.E-mail: wangzongche@163.com

10.14102/j.cnki.0254-5861.2011-1958

主站蜘蛛池模板: 亚洲欧美日韩综合二区三区| 亚洲无码视频一区二区三区| 久久亚洲中文字幕精品一区| 99人妻碰碰碰久久久久禁片| 欧美日韩亚洲国产| 亚洲精品第一在线观看视频| 视频二区中文无码| 午夜国产大片免费观看| a毛片在线| 欧美在线精品怡红院| 亚洲成人在线网| 美女被操91视频| 日韩一二三区视频精品| 成年片色大黄全免费网站久久| A级毛片高清免费视频就| 亚欧成人无码AV在线播放| 亚洲无限乱码一二三四区| 伊人久久久久久久久久| 无码人妻热线精品视频| 久久精品嫩草研究院| 国产又爽又黄无遮挡免费观看| 999国产精品永久免费视频精品久久| 国产精品99在线观看| 久久久久国产精品免费免费不卡| 欧美国产成人在线| 亚洲天堂久久久| 免费观看国产小粉嫩喷水| 国产在线拍偷自揄观看视频网站| 成人亚洲国产| 免费一级毛片完整版在线看| 婷五月综合| 欧美精品啪啪| 国产十八禁在线观看免费| 亚洲人成日本在线观看| 亚洲美女一区| 国产成本人片免费a∨短片| 一级一毛片a级毛片| 999福利激情视频| 深夜福利视频一区二区| 波多野结衣久久高清免费| 免费可以看的无遮挡av无码| 国产另类视频| 国产jizzjizz视频| 亚洲视频影院| 国产69囗曝护士吞精在线视频| 亚洲人成网站在线观看播放不卡| 国产精品视屏| 久久久亚洲色| 精品一区二区三区四区五区| 热久久这里是精品6免费观看| 玖玖精品视频在线观看| 高清码无在线看| 亚洲一区二区约美女探花| 三上悠亚精品二区在线观看| 毛片网站观看| 亚洲无码37.| 国产精品无码一区二区桃花视频| 色135综合网| 青青草原国产免费av观看| 试看120秒男女啪啪免费| 亚洲成人播放| 色婷婷综合激情视频免费看| 欧美精品成人一区二区视频一| 2020最新国产精品视频| 亚洲自拍另类| 欧美一区二区三区香蕉视| 精品自拍视频在线观看| 九色91在线视频| 欧美日韩va| 天天综合网色| 热热久久狠狠偷偷色男同| 在线视频亚洲欧美| 午夜福利在线观看成人| 狠狠色狠狠色综合久久第一次| 亚洲视频二| 中日韩一区二区三区中文免费视频 | 国产欧美在线视频免费| 国产丝袜第一页| 成人福利在线看| 国产成人亚洲精品色欲AV| 亚洲第一成人在线| 99青青青精品视频在线|