南京郵電大學 仲維揚
同軸線濾波器是被廣泛使用的微波傳輸結構。應用高低階躍阻抗技術,通過實現高低阻同軸線間的耦合,設計了應用15G的低通濾波器。EM仿真結果表明,該基于同軸線的低通濾波器通帶回波損耗小于-22dB,帶內最小插入損耗小于0.5dB。仿真結果表明該濾波器具有較好的性能,滿足設計要求。
低通,帶通,帶阻濾波器通常用于抑制功率放大器和整流器中的高次諧波和雜散信號。一些濾波器已經很成熟,如開路短截線濾波器和階躍阻抗諧振器(Stepped-impedance resonator,SIR)濾波器。開路短截線結構更容易控制工作頻率,而SIR濾波器結構往往更緊湊?,F代衛星通信系統和整流天線需要具有低插入損耗和寬阻帶的小型高性能低通濾波器。SIR可以在諧振器的無負載Q因子不變的情況下顯小諧振器的長度。為了實現尖銳的截止頻率和寬阻帶,需要更多的SIR組,這意味著更高的損耗和更大的尺寸。因此,由SIR和開路短截線組成的具有奇模和偶模的步進阻抗諧振器,通過調節開路短截線的尺寸,可以在通帶中實現最小尺寸和良好的選擇性。
在本文中,介紹了一種新型的階躍阻抗諧振器諧振器(SIR)及其集總電路(LC)分析,然后在諧振器中間采用了糖葫蘆型的同軸線來銳化過渡,最終實現了具有優異性能的緊湊型濾波器。
同軸傳輸線幾何結構如圖1所示,其中內導體的電位為Vo伏,外導體的電壓為零伏。圖中的場可以從標量勢函數Φ(ρ,φ)導出,這是拉普拉斯方程的解。在圓柱坐標系中,拉普拉斯方程形式為:

該方程必須根據邊界條件求解Φ(ρ,φ),邊界條件是:

通過變量分離的方法,將Φ(ρ,φ)表示為:


圖1 同軸線幾何結構
把上式帶入拉普拉斯方程,得到:

通過通常的變量分離參數,其中的兩個項必須等于常數,這樣有:

其中kφ=n必須是整數,因為將φ增加2π的倍數不應改變結果。因為邊界條件不隨φ變化,所以電位Φ(ρ,φ)不應隨φ變化。因此,n必須為零,這意味著kρ也必須為零,因此R(ρ)的等式減少到:

R(ρ)的解為:R(ρ)=C ln ρ+D,等價于:
Φ(ρ,φ)=C ln ρ+D.
常數C與D由邊界條件確定:
Φ(a,φ)=Vo=C ln a+D,Φ(b,φ)=0=C ln b+D。
最終可得同軸線的場為:

對于二端口濾波器網絡,其網絡響應特性的數學描述,即S21的數學表達式,是它的傳遞函數,在許多情況下,定義了無損無源濾波器網絡的幅度平方傳遞函數:

其中ε是紋波常數,Fn(Ω)表示濾波或特征函數,并且Ω是頻率變量。對于我們在這里的討論,方便的是表示低通原型濾波器的弧度頻率變量,其截止頻率為Ω=Ωc,Ωc=1(rad/s)。
對于上式的給定傳遞函數,濾波器的插入損耗響應如下:

Chebyshev響應表現出等紋波通帶并且通帶平坦度最大。描述這種響應的幅度平方傳遞函數是:

Tn(Ω)是第一類n階的Chebyshev函數,其定義為:

切比雪夫低通響應如圖2所示。

圖2 切比雪夫低通響應
圖3顯示了階梯阻抗低通微帶濾波器的一般結構,它使用交替的高阻抗和低阻抗傳輸線的級聯結構。它們比相關的引導波長短得多,從而起到半成品元件的作用。高阻抗線用作串聯電感,低阻抗線用作并聯電容。因此,該濾波器結構直接實現了圖4的L-C梯形低通濾波器。

圖3 階梯阻抗低通微帶濾波器的一般結構

圖4 L-C梯形低通濾波器等效電路。
利用相同的原理,我們利用高低阻抗的同軸線,設計了同軸線的階躍阻抗低通濾波器,電路模型如圖5所示。

圖5 同軸線階躍阻抗低通濾波器電路模型

圖6 糖葫蘆型低通濾波器模型

圖7 濾波器仿真結果
使用不同內徑的同軸線相連實現階躍阻抗,考慮到我們使用的50Ω同軸線內外徑分別為2mm、4.7mm,我們采用內徑1mm,阻抗92.8Ω高阻線和內徑3.6mm,阻抗16Ω的低阻線構成濾波器。
在HFSS中建立圖6所示的整體模型。經過優化后,仿真結果如圖7所示。可以看到在通帶15G內,濾波器回波損耗低于-20dB,同時帶外抑制性能良好。
設計了一款基于同軸線的階躍阻抗低通濾波器,濾波器采用糖葫蘆型結構。設計過程簡單,在15G通帶內,濾波器回波損耗低于-20dB。帶外抑制大于20dBc。該濾波器易加工、成本低、易集成,適合廣泛應用于微波電路與系統。
參考:A.Rusakov, N.Jankovi and V.Crnojevi -Bengin, “A compact tri-band bandpassfilter based on grounded tri-mode steppedimpedance stub-loaded resonator,” 2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Nis, 2013;S.Tantiviwat, N.Intarawiset and R.Jeenawong,“Wide-stopband, compact microstrip diplexer with common resonator using stepped-impedance resonators,” IEEE 2013 Tencon - Spring, Sydney, NSW, 2013;P.Arunvipas, “Cross-coupled stepped-impedance resonators improved bandpass filter charateristic,” TENCON 2014 - 2014 IEEE Region 10 Conference, Bangkok, 2014, pp.1-5.doi: 10.1109/TENCON.2014;J.Zhou,W.Che and W.Feng, “Ultra-wideband bandpass filter using symmetric stub-loaded resonator and stepped impedance resonators,” 2013 European Microwave Conference, Nuremberg, 2013;Hitoshi Miki,Zhewang Ma and Yoshio Kobayashi,“A novel bandpass filter with sharp attenuations and wide stopband developed through the combined use of composite resonators and stepped impedance resonators,” 2006 Asia-Pacific Microwave Conference,Yokohama,2006,pp.1683-1686.doi: 10.1109/APMC.2006.;H.Liu, P.Wen, H.Jiang and Y.He,“Wideband and Low-Loss High-Temperature Superconducting Bandpass Filter Based on Metamaterial Stepped-Impedance Resonator,” in IEEE Transactions on Applied Superconductivity, vol.26, no.3, pp.1-4,April 2016.