999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

STRONG COMPARISON PRINCIPLES FOR SOME NONLINEAR DEGENERATE ELLIPTIC EQUATIONS?

2018-11-22 09:24:04YanyanLI李巖巖

Yanyan LI(李巖巖)

School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China;

Department of Mathematics,Rutgers University,110 Frelinghuysen Rd,Piscataway,NJ 08854,USA

E-mail:yyli@math.rutgers.edu

Bo WANG(王博)

Corresponding author.School of Mathematics and Statistics,Beijing Institute of Technology,Beijing 100081,China

E-mail:wangbo89630@bit.edu.cn

Abstract In this paper,we obtain the strong comparison principle and Hopf Lemma for locally Lipschitz viscosity solutions to a class of nonlinear degenerate elliptic operators of the form ?2ψ+L(x,?ψ),including the conformal hessian operator.

Key words Hopf lemma;strong comparison principle;degenerate ellipticity;conformal invariance.

1 Introduction

In this paper,we establish the strong comparison principle and Hopf Lemma for locally Lipschitz viscosity solutions to a class of nonlinear degenerate elliptic operators.

For a positive integer n ≥ 2,let ? be an open connected bounded subset of Rn,the ndimensional euclidean space.For any C2function u in ?,we consider a symmetric matrix function

One such matrix operator is the conformal hessian operator(see e.g.[21,27]and the references therein),that is,

where I denotes the n×n identity matrix,and for p,q∈Rn,p?q denotes the n×n matrix with entries(p ? q)ij=piqj,i,j=1,···,n.Some comparison principles for this matrix operator have been studied in[22–25].Comparison principles for other classes of(degenerate)elliptic operators are available in the literature.See[1–5,7–20,26]and the references therein.

Let U be an open subset of Sn×n,satisfying

where P is the set of all non-negative matrices.Furthermore,in order to conclude that the strong comparison principle holds,we assume Condition Uν,as introduced in[25],for some unit vector ν in Rn:there exists μ = μ(ν)>0 such that

Here Cμ(ν):={t(ν ? ν +A):A ∈ Sn×n,kAk< μ,t>0}.Some counter examples for the strong maximum principle were given in[25]to show that the condition(1.3)cannot be simply dropped.

Remark 1.1If U satis fies(1.2),

where O(n)denotes the set of n×n orthogonal matrices,then it is easy to see that U satis fies(1.3).

in the viscosity sense,if for any x0∈ ?,? ∈ C2(?),(? ?u)(x0)=0((? ?v)(x0)=0)and

We have the following strong comparison principle and Hopf Lemma.

Theorem 1.2(strong comparison principle) Let ? be an open connected subset of Rn,n ≥ 2,U be an open subset of Sn×n,satisfying(1.2)and Condition Uνfor every unit vector ν in Rn,and F be of the form(1.1)with(1.4)in the viscosity sense,u ≥ v in ?.Then either u>v in ? or u ≡ v in ?.

Theorem 1.3(Hopf lemma) Let ? be an open connected subset of Rn,n ≥ 2,?? be C2near a pointand U be an open subset of Sn×n,satisfying(1.2)and Condition Uνforthe interior unit normal of?? at?x,and F be of the form(1.1)withAssume that u,vsatisfy(1.4)in the viscosity sense,u>v in ? andThen we have

Remark 1.4If u and v∈C2,then Theorems 1.2 and 1.3 were proved in[25].

2 Proof of Theorem 1.2

Proof of Theorem 1.2We argue by contradiction.Suppose the conclusion is false.Sinceis non-negative,the set{x ∈ ? :u=v}is closed.Then there exists an open ball B(x0,R)??? centered at x0∈? with radius R>0 such that

Indeed,the first part of(2.6)follows from the de finitions of u?and v?,and the fact that.Now we prove the second part of(2.6).By theorem 5.1(a)in[6],we have that

It follows that for any M>0,there exists ?0(M)>0 such that

for any 0

It follows from(2.6)that there existssuch that for any η∈(0,ˉη),there existssuch that

And by lemma 3.5 in[6],we have

which implies that the Lebesgue measure ofis positive.Then there exists x?,η∈such that both of v?and u?are punctually second order di ff erentiable at

where C1and C2are two universal positive constant independent of ? and η.

Since u?is punctually second order di ff erentiable at x?,η,we have

By the de finition of u?,we have

and therefore,in view of(2.13),

We can firstly fix the value of small δ>0 and a large α >1,then fix the value of small0,and lastly fix the value of small ? and η>0 such that

whereμis obtained from condition(1.3).

Therefore,by(1.3)and(2.21),we have that

which is a contradiction with(2.16).Theorem 1.2 is proved.

3 Proof of Theorem 1.3

Proof of Theorem 1.3Since?? is C2near,there exists an open ball B(x0,R)??such that

Once the claim is proved,then we have that

Therefore,in order to finish the proof of Theorem 1.3,we only need to prove the above claim.Suppose the contrary,that is,

Now we can follow the argument as in the proof of Theorem 1.2 to get a contradiction.Theorem 1.3 is proved.

主站蜘蛛池模板: 日韩在线1| 欧美激情首页| 日韩人妻精品一区| 日本欧美一二三区色视频| 一区二区理伦视频| 在线精品亚洲一区二区古装| 国产91熟女高潮一区二区| 看你懂的巨臀中文字幕一区二区| AV老司机AV天堂| 免费国产黄线在线观看| 亚洲丝袜中文字幕| 国产免费人成视频网| 久草视频精品| 成人免费黄色小视频| 亚瑟天堂久久一区二区影院| 国产精品视频观看裸模| 亚洲最黄视频| 欧美一级黄片一区2区| 5555国产在线观看| 91精品国产综合久久香蕉922| 久久香蕉国产线看观| 99草精品视频| 91视频首页| 日韩无码真实干出血视频| www中文字幕在线观看| 亚洲国产成人麻豆精品| 54pao国产成人免费视频| 国产精品成人免费视频99| 精品欧美一区二区三区在线| 国产亚洲精品yxsp| 亚洲国产欧洲精品路线久久| 九九这里只有精品视频| 国产精品久久久久鬼色| 国产成人综合久久精品下载| 日本伊人色综合网| 欧美成人手机在线视频| 欧美一级高清片久久99| 久久黄色小视频| 免费国产高清视频| 野花国产精品入口| 国产尤物视频在线| 亚洲大学生视频在线播放| 中文字幕无码av专区久久| 欧美一区中文字幕| 99中文字幕亚洲一区二区| 国产网友愉拍精品视频| 国产xxxxx免费视频| 亚洲成a人在线播放www| 伊人色在线视频| 欧美精品一二三区| 一级不卡毛片| 一区二区三区毛片无码| 国产a v无码专区亚洲av| 国产精品高清国产三级囯产AV| 99热这里只有成人精品国产| 免费无码又爽又黄又刺激网站 | 久久国产亚洲欧美日韩精品| 国产爽歪歪免费视频在线观看| 国产精品污污在线观看网站| 无码电影在线观看| 91无码视频在线观看| 亚洲无码精彩视频在线观看| 国产成人1024精品下载| 狠狠色狠狠综合久久| 无码区日韩专区免费系列 | 欧美无遮挡国产欧美另类| 青草娱乐极品免费视频| 精品国产免费观看| 无码中文字幕加勒比高清| 久久久久88色偷偷| 欧美一级高清片欧美国产欧美| 国产精品jizz在线观看软件| 在线看国产精品| 麻豆国产精品视频| 高清国产在线| 这里只有精品在线播放| 国产特一级毛片| 成人免费一级片| 欧美天堂在线| 亚洲综合第一页| 亚洲不卡影院| 欧洲免费精品视频在线|