999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

New modulus-based synchronous multisplitting methods based on block splitting for linear complementarity problems

2018-11-26 05:46:48ZHANGLitaoZHANGGuohuiZHAOYinchao
浙江大學學報(理學版) 2018年6期

ZHANG Litao , ZHANG Guohui, ZHAO Yinchao

(1. College of Science, Zhengzhou University of Aeronautics, Zhengzhou 450015, China; 2. College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Henan Province, China; 3. Henan Province Synergy Innovation Center of Aviation Economic Development, Zhengzhou 450015, China; 4. School of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450015, China; 5. Public Art Teaching, Zhengzhon University of Aeronautics, Zhengzhou 450015, China)

Abstract: Based on the existing algorithms, we further study relaxed modulus-based synchronous block multisplitting multi-parameters methods for linear complementarity problem. Furthermore, we give the weaker convergence results of our new method in this paper when the system matrix is a block H+-matrix. Therefore, our results provide a guarantee for the optimal relaxation parameters.

Key Words: relaxed modulus-based method; linear complementarity problem; block splitting; block H+-matrix; synchronous multisplitting

0 Introduction

Consider the linear complementarity problem abbreviated as LCP(q,A), for finding a pair of real vectorsrandz∈Rnsuch that

r: =Az+q≥0,z≥0 andzT(Az+q)=0,

(1)

whereA=(aij)Rn×nis a given large, sparse and real matrix andq=(q1,q2,…,qn)T∈Rnis a given real vector. Here,zTand ≥ denote the transpose of the vectorzand the componentwise defined partial ordering between two vectors, respectively.

Many problems in scientific computing and engineering applications may lead to solutions of LCPs of the form (1). For example, the linear complementarity problem may arise from application problems such as the convex quadratic programming, the Nash equilibrium point of the bimatrix game, the free boundary problems of fiuid dynamics etc[1-2]. Some solvers for LCP(q,A) with a special matrixAwere proposed[3-12]. Recently, many researches have focused on the solver of LCP(q,A) with an algebra equation[8-22]. In particular, BAI et al[8-9]proposed a modulus-based matrix multisplitting iterative method for solving LCP(q,A) and presented convergence analysis for the proposed methods . ZHANG et al[13]extended the condition of a compatibleHsplitting to that of anH-splitting. LI[23]extended the modulus-based matrix splitting iteration method to more general cases. BAI[24]presented parallel matrix block multisplitting relaxation iterative methods, and established the convergence theory of these new methods in a thorough manner. LI et al[25]studied synchronous block multisplitting iterative methods. ZHANG et al[15]generalized the methods of BAI et al[26]and studied modulus-based synchronous multisplitting multi-parameters methods for linear complemen-tarity problem.

In this paper, we generalize the corresponding methods of BAI et al[26]and ZHANG et al[15]from point form to block form according to the modulus-based synchronous multisplitting iteration methods and consider relaxed modulus-based synchronous multisplitting multi-parameter method based on block splitting for solving LCP(q,A). Moreover, we give some theoretical analysis and improve some existing convergence results in [25-26].

The rest of this paper is organized as follows: In section 1, we give some notations and lemmas. In section 2, we propose relaxed modulus-based synchronous block multisplitting multi-parameters method for solving LCP(q,A). In section 3, we give the convergence analysis for the proposed method.

1 Notations and lemmas

In order to study mudulus-based synchronous block multisplitting iteration methods for solving LCP(q,A), let us introduce some definitions and lemmas.

Definition1[24]Define the set:

(1)Ln,I(n1,n2,…,np)={A=Aij∈Ln(n1,n2,…,np)|Aii∈L(Rni) is nonsingular (i=1,2,…,p)};

Definition2[27]LetA∈Ln,I(n1,n2,…,np), and (I)-type block comparison matrix 〈M〉=(〈M〉ij)∈L(Rn) and (II)-type block comparison matrix 〈〈M〉〉=(〈〈M〉〉ij)∈L(Rn) are defined as

respectively.

Moreover, based on block matrixA∈Ln,I(n1,n2,…,np), andL∈Ln,I(n1,n2,…,np), letD(L)=diag (L11,L22,…,Lpp),B(L)=D(L)-L,J(A)=D(A)-1B(A),μ1(A)=ρ(J〈A 〉),μ2(A)=ρ(I-〈〈A〉〉), using definition 2, we easily verify

〈I-J(A)〉=〈〈I-J(A)〉〉=〈〈A〉〉,
μ2(A)≤μ1(A).

Definition4[27]LetA∈Ln,I(n1,n2,…,np), then [A]=(‖Mij‖)∈L(Rn) is called block absolute value of block matrixA. Similarly, we may define block absolute value of block vectorx∈Vn(n1,n2,…,np) as [x]∈Rn.

Lemma1[24]LetA,B∈Ln,I(n1,n2,…,np),x,y∈Vn(n1,n2,…,np),γ∈R1, then

(1) |[A]-[B]|≤[A+B]≤[A]+[B](|[x]-[y]|)≤[x+y]≤[x]+[y];

(2) [AB]≤[A][B]([Ax]≤[A][x]);

(3) [γA]≤|γ|[A]([γx]≤|γ|[x]),q∈Rn;

(4)ρ(A)≤ρ(|A|)≤ρ([A]).

(1)Ais nonsingular;

(2) [(PAQ)-1]≤〈PAQ〉-1;

(3) μ1(PAQ)<1.

(1)Ais nonsingular;

(2) [(PAQ)-1]≤〈〈PAQ〉〉-1[D(PAQ)-1];

(3)μ2(PAQ)<1.

Definition5[24]Define the set:

Express the same mode set of (I)-type and (II)-type associated with the matrixM=(Mij)∈Ln,I(n1,n2,…,np), respectively.

Lemma4[28]LetAbe anH-matrix. ThenAis nonsingular, and |A-1|≤〈A〉-1.

Lemma5[29]LetA=(aij)∈Zn×nwhich has all positive diagonal entries.Ais anM-matrix if and only ifρ(B)<1, whereB=D-1C,D=diag(A),A=D-C.

Lemma6[5]LetA∈Rn×nbe anH+-matrix. Then LCP(q,A) has a unique solution for anyq∈Rn.

Lemma7[8]LetA=M-Nbe a splitting of the matrixA∈Rn×n,Ωbe a positive diagonal matrix, andγbe a positive constant. Then, for the LCP(q,A), the following statements hold true:

(Ω+M)x=Nx+(Ω-A)|x|-γq;

(2)

(ii) Ifxsatisfies the implicit fixed-point equation (2), then

z=γ-1(|x|+x) ,r=γ-1Ω(|x|-x)

(3)

is a solution of the LCP(q,A).

2 RMS-BMMTOR methods

Firstly, we introduce the concept of multisplitting method and the detailed process of parallel iterative method.

1)A=Mk-NK,det(Mk)≠0 is a splitting fork=1,2,…,l;

Given a positive diagonal matrixΩand a positive constantγ, form lemma 7, we know that ifxsatisfies either of the implicit fixed-point equations

(Ω+Mk)x=Nkx+ (Ω-A)|x-γq,

k= 1, 2,…,l,

(4)

then

z=γ-1(|x| +x),r= γ-1Ω(|x|-x)

(5)

is a solution of the LCP(q,A).

Based on block matrixA∈Rm×m, the corresponding block diagonal matrix isD= diag(A11,A22,…,App), andLk,Fkis block strictly triangular matrices,Uk=D-Lk-FkA, then (D-Lk-Fk,Uk,Ek) is a multisplitting of block matrixA∈Rm×m. With the equivalent reformulations (4), (5) and TOR method[16]of the LCP(q,A), we can establish the following relaxed modulus-based synchronous block multisplitting multi-parameters TOR method (RMSBMMTOR), which is similar to method 3.1 in [2] and method 3.1 in [15].

Method1(The RMS-BMMTOR method for LCP(q,A))

andx(m,k)∈Rnaccording to

wherex(m,k),k=1,2,…,lare obtained by solving the linear systems

(αkΩ+D-(βkLk+γkFk))x(m,k)=[(1-αk)D+

(αk-βk)Lk+(αk-γk)Fk+αkUk]x(m)+

αk[(Ω-A)|x(m)|-γq],k=1,2,…,l,

(6)

respectively.

Remark1In method 1, when the coefficient matrixAis point form andαk=α,βk=β,γk=γ,ω=1, the RMS-BMMTOR method reduces to the MSMTOR method; When the coefficient matrixAis point form andαk=α,βk=β=γk,ω= 1, the RMS-BMMTOR method reduces to the MSMAOR method[26]; When the coefficient matrixAis point form andω=1, the RMS-BMMTOR method reduces to the MSMMTOR method; When the coefficient matrixAis point form andγk=βk,ω=1, the RMS-BMMTOR method reduces to the MSMMAOR method[15]; Whenω= 1, the RMS-BMMTOR method reduces to the MSBMMTOR method; Whenγk=βk,ω=1, the RMS-BMMTOR method reduces to the MSBMMAOR method[25]; When the parameters (αk,βk,γk,ω) = (αk,αk,αk, 1), (1, 1, 1, 1) and (1, 0, 0, 1), the RMS-BMMTOR method reduces to the MSBMMSOR, MSBMGS and MSBMJ methods, respectively; When the parameters (αk,βk,ω) = (αk,αk,αk,ω), (1, 1, 1,ω) and (1, 0, 0,ω), the RMS-BMMTOR method reduces to the RMS-BMMSOR, RMSBMGS and RMSBMJ methods, respectively.

3 Convergence analysis

Based on the modulus-based synchronous multisplitting AOR method, BAI et al[26]obtained the following results in 2013 .

Based on the modulus-based synchronous block multisplitting AOR method, LI et al[25]analyzed the following results in 2013.

Based on the modulus-based synchronous multisplitting multi-parameters AOR method, ZHANG et al[15]gave the following results in 2014.

Based on the global relaxed non-stationary multisplitting multi-parameter TOR method (GRNMMTOR) for the large sparse linear systems, ZHANG et al[16]obtained the following convergence theorem in 2008.

Theorem4[16]LetA∈Rn×nbe anH-matrix, and fork=1,2,…,l,LkandFkbe strictly lower triangular matrices. Define the matrixUk,k=1,2,…,l, such thatA=D-Lk-Fk-Uk. Assume that we have 〈A〉=|D|-|Lk|-|Fk|-|Uk|=|D|-|B|. If

Based on relaxed modulus-based synchronous block multisplitting multi-parameters TOR method, we will present a convergence results of the multisplitting methods for the linear complementarity problem when the system matrix is a blockH+-matrix, which is as follows:

(7)

max{βk,γk}. Moreover,βk,γkshould be greater or less thanαkat once.

ProofFrom lemma 6 and (6), for the RMS-BMMTOR method, it holds that

αk[(Ω-H)|x*|-γq],k=1,2,…,l.

(8)

By subtracting (8) and (6), we have

(1-ω)(x(m)-x*).

(9)

By taking absolute values on both sides of the equality (9), estimating |[x(m)]-[x*]|≤[x(m)-x*] and amplifying, we may obtain

αk[Ω-H][x(m)-x*]+|1-ω|[x(m)-x*].

αk[Ω-H]][x(m)-x*]+(1-ω)[x(m)-x*]≤

αk〈Ω〉][x(m)-x*]+(1-ω)[x(m)-x*]=

(10)

where

HRMSBMMTOR=αk〈Ω〉+D〈H〉-(βk[Lk]+

γk[Fk]))-1[(|1-αk|-αk)D〈H〉+(|αk-βk|+

(11)

The error relationship (10) is the base for proving the convergence of RMS-BMMTOR method. By making use of lemmas 1 and 2, definingε(m)=x(m)-x*and arranging similar terms together, we can obtain

Mk=αk〈Ω〉+D〈H〉-(βk[Lk]+γk[Fk]),

Mk-2αkD〈H〉+2αkB〈H〉.

So, we have

Through further analysis, we have

(J〈H〉+εeeT)xε=ρεxε,

whereρε=ρ(J〈H〉+εeeT)=ρ(Jε). Moreover, ifε>0 is small enough, we haveρε<1 by continuity of the spectral radius. Because of 0<αk≤1, we also have 1-2αk+2αkρ<1, and 1-2αk+2αkρε<1. So

(1-2αk+2αkρ(Jε))xε.

|1-ω|xε≤ω(1-2αk+2αkρε)xε+

|1-ω|xε≤(ωρ′+|1-ω|)xε=θ1xε(ε→0+),

whereθ1=ωρ′+|1-ω|<1.

Subcase1αk≥βkandαk≥γk. Define

Mk-2D〈H〉+2αkB〈H〉.

So

2αkρ-1<1 and 2αkρε-1<1.

So

|1-ω|xε≤ω(2αkρε-1)xε+|1-ω|xε≤

(ωρ′+|1-ω|)xε=θ2xε(ε→0+),

where

θ2=ωρ′+|1-ω|<1.

Subcase2αk≤βkandαk≤γk. Define

Mk-2D〈H〉+2δkB〈H〉,

whereδk=max{βk,γk}. So

2δkρ-1<1 and 2δkρε-1<1.

So

[HRMS-BMMTOR]xε≤xε-2[1-δkρ(Jε)]xε=

(2δkρ(Jε)-1)xε.

|1-ω|xε≤ω(2δkρε-1)xε+|1-ω|xε≤

(ωρ′+|1-ω|)xε=θ3xε(ε→0+),

whereθ3=ωρ′+|1-ω|<1.

Remark2In the fact application, the parameters can be adjusted suitably so that the convergence property of method can be substantially improved. That is to say, we have more choices for the splittingA=B-Cwhich makes the multisplitting iteration methods converge.Therefore, our convergence theories extend the scope of multisplitting iterative methods in applications.

Through the similar proving process of theorem 4, we can obtain the following con-vergence results.

(7)

Remark3From table 1, we obviously see that the MSMMAOR method in [30] and the MSBMAOR method in [23] use the same parametersα,βin different processors, but the RMS-BMMTOR method in this paper uses different parametersαk,βk,γk(k=1,2,…,l)in different processors. Moreover, when computingx(m+1)in method 2, we utilize relaxation extrapolation technique and add a relaxation parameter. Therefore, we may choose proper relaxation parameters to increase convergence speed and reduce the computation time when doing numerical experiments. In RMS-BMMTOR method, we may choose properEkto balance the load of each processor and avoid synchronization.

4 Conclusions

The manuscript discusses relaxed modulus-based synchronous block multisplitting multi-parameters methods for linear complementarity problems. We have analyzed and got the new convergence theorem under certain conditions. However, table 1 shows some existing methods for linear complementarity problems are special cases of new methods with appropriate parameters. Moreover, new convergence theorems are more general and practical.

Table 1 The modulus-based synchronous (blokc) multisplitting multi-parameters method and the corresponding convergence results


登錄APP查看全文

主站蜘蛛池模板: 人妻无码AⅤ中文字| 亚洲国产综合精品一区| 成人欧美在线观看| 精品无码视频在线观看| 精品精品国产高清A毛片| 一区二区三区在线不卡免费| 欧美色香蕉| 蜜芽国产尤物av尤物在线看| 亚洲成在线观看 | 欧美精品伊人久久| 国产精品欧美日本韩免费一区二区三区不卡 | 久青草国产高清在线视频| 欧美日韩一区二区在线播放| 亚洲嫩模喷白浆| 欧美日韩国产一级| 亚洲日本韩在线观看| 免费精品一区二区h| 亚洲国产看片基地久久1024| 欧美亚洲香蕉| 日本精品中文字幕在线不卡| 国产成人午夜福利免费无码r| 亚洲天堂久久新| 精品欧美一区二区三区在线| 97精品国产高清久久久久蜜芽| 成年人久久黄色网站| 欧美精品v欧洲精品| 亚洲精品高清视频| 国产成人亚洲日韩欧美电影| 国产成人精品男人的天堂下载| 国产成人乱无码视频| 色综合成人| 欧美在线精品一区二区三区| 香蕉视频在线观看www| 久久人搡人人玩人妻精品一| 成人va亚洲va欧美天堂| 中文精品久久久久国产网址| 激情网址在线观看| 国产午夜看片| 波多野结衣视频一区二区| 强奷白丝美女在线观看| 国产91视频免费观看| 亚洲中文字幕在线观看| 国产无人区一区二区三区| 亚洲中文字幕无码爆乳| 国产成年女人特黄特色毛片免| 人妻无码中文字幕第一区| 在线亚洲小视频| 青青青草国产| 国产综合色在线视频播放线视| 在线网站18禁| 日韩AV无码免费一二三区| 亚洲第一成年人网站| 午夜激情福利视频| 无码一区18禁| 亚洲欧美综合另类图片小说区| 99热这里只有精品免费国产| 亚洲日本中文字幕天堂网| 99热这里只有精品久久免费 | 日韩高清成人| 在线观看免费黄色网址| 亚洲第一成年网| 国产精品xxx| 国产精品久久久久鬼色| 亚洲永久免费网站| www中文字幕在线观看| 国产精品无码久久久久久| 女人18毛片一级毛片在线 | 国产成人艳妇AA视频在线| 亚洲精品国产首次亮相| 亚洲福利一区二区三区| 日韩免费无码人妻系列| 69视频国产| 久久久久无码精品国产免费| 久久久久久久97| 国产午夜小视频| 欧美日韩国产在线观看一区二区三区| 国产老女人精品免费视频| 91色国产在线| 免费看a级毛片| 国产无码高清视频不卡| 亚洲三级电影在线播放| 无码网站免费观看|