999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

蘋果MdWRKY18和MdWRKY40參與鹽脅迫途徑分子機理研究

2018-12-12 01:16:14許海峰楊官顯張靜鄒琦王意程曲常志姜生輝王楠陳學森
中國農業科學 2018年23期
關鍵詞:植物

許海峰,楊官顯,張靜,鄒琦,王意程,曲常志,姜生輝,王楠,陳學森

?

蘋果MdWRKY18和MdWRKY40參與鹽脅迫途徑分子機理研究

許海峰,楊官顯,張靜,鄒琦,王意程,曲常志,姜生輝,王楠,陳學森

(山東農業大學園藝科學與工程學院/作物生物學國家重點實驗室,山東泰安 271018)

【目的】研究蘋果WRKY轉錄因子MdWRKY18和MdWRKY40蛋白結構、表達水平及在鹽脅迫中的功能,為進一步完善鹽脅迫分子機理的研究提供參考。【方法】以‘紅脆2號’蘋果為試材,克隆和,對其蛋白結構進行分析;采用qRT-PCR測定該基因在鹽脅迫條件下的表達水平,并通過GUS染色分析它們啟動子活性,利用酵母雙雜分析其互作關系,并通過轉基因驗證其功能。【結果】蛋白結構分析表明MdWRKY18和MdWRKY40均含有一個WRKY、Cx5C以及HxH結構域;和表達水平和啟動子活性受150 mmol·L-1NaCl誘導,酵母雙雜交試驗表明,MdWRKY18和MdWRKY40能夠和自身互作形成同源二聚體,且MdWRKY18也能和MdWRKY40互作形成異源二聚體;在‘王林’愈傷中分別過表達和時,能夠促進和的表達,并提高‘王林’愈傷在鹽脅迫處理下的生長量,在‘王林’愈傷中共表達和時,同樣能夠促進和的表達,但對提高‘王林’愈傷的生長量要高于分別過表達和。【結論】蘋果和受鹽脅迫的誘導,可以形成同源或異源二聚體,并增強‘王林’愈傷對鹽脅迫的耐性。

蘋果;WRKY轉錄因子;鹽脅迫;GUS染色;酵母雙雜交

0 引言

【研究意義】土壤鹽漬化是對植物生長和作物產量產生不利影響的主要非生物脅迫之一[1-2],了解植物響應鹽脅迫信號及抗鹽脅迫反應的機制,對于提高作物抗鹽能力至關重要。因此,研究WRKY家族中MdWRKY18和MdWRKY40在鹽脅迫中的功能,對完善鹽脅迫代謝機理具有重要意義。【前人研究進展】許多物理和化學方法能夠提高植物的耐鹽性,然而越來越多的研究都集中在培育新的耐鹽品種,目前,耐鹽機制在很多作物(玉米[3]、水稻[4-5]、小麥[6]、大豆[7]、草莓[8]、葡萄[9]和蘋果[10]等)中得到廣泛研究。在植物細胞中,鹽脅迫會增加Na+和Cl-濃度,干擾K+濃度,導致離子毒性,影響離子穩態和代謝紊亂,植物通過自身生理和生化變化來抵抗鹽脅迫[11-12],如,質膜上的Na+/H+逆轉蛋白SOS1,定位于液泡膜的Na+/H+交換蛋白NHX1[13]。此外,越來越多的轉錄因子參與鹽脅迫代謝,包括MYB家族、bHLH家族、bZIP家族和WRKY家族[14-17],其中,AtbHLH92能夠影響活性氧介導的信號途徑適應高鹽脅迫[18],OsMYB91可以協調水稻的植物生長和耐鹽性[5]。【本研究切入點】WRKY家族在植物非生物脅迫代謝調控中發揮重要作用,OsWRKY11能夠提高水稻對熱脅迫和干旱的耐性[19],AtWRKY57參與擬南芥中ABA和干旱脅迫的響應[20],AtWRKY25和AtWRKY33參與擬南芥中鹽脅迫代謝調控[21],但蘋果WRKY家族參與鹽脅迫代謝的研究尚未見報道。【擬解決的關鍵問題】本研究通過克隆和,對其蛋白結構進行分析;并采用qRT-PCR及GUS分析測定該基因在鹽脅迫條件下的表達,通過酵母雙雜交驗證其互作關系,并通過轉基因驗證其功能,旨在為進一步完善鹽脅迫分子機理的研究提供參考。

1 材料與方法

1.1 植物材料與處理

植物材料為從新疆紅肉蘋果(f.)中的‘塔爾阿爾瑪’與‘煙富3號’(cv. Fuji)雜種一代選育出的‘紅脆2號’優株果實及‘王林’蘋果愈傷組織。

1.2 總RNA的提取及qRT-PCR分析

參考Xu等[22]方法提取RNA及qRT-PCR分析。RNA提取試劑盒(DP432)、反轉錄試劑盒(KR106)、SYBR染料(FP205)均購自北京天根公司,以蘋果為內參,3次重復,采用2-ΔΔCT方法進行數據分析[23]。

1.3‘王林’蘋果愈傷組織的轉化

用引物(MdWRKY18F:5′-gtcgacATGGACTCAA CGTGGGTGA-3′和MdWRKY18R:5′-ggatccTCATGA GTGGTCTGAAATTCTTC-3′及MdWRKY40F:5′- ccatggATGGACCATTCAGCTGCAT-3′和MdWRKY40R:5′-gctagcTTAG TAAGTATTGTGTTGAAGTATTC-3′,小寫字母分別為Ⅰ、HⅠ、Ⅰ和Ⅰ位點)分別擴增和,電泳檢測,回收、連接、轉化。構建重組表達載體pRI101- MdWRKY18和pCAMBIA1301-MdWRKY40。將重組質粒導入農桿菌LBA4404,得到重組農桿菌,28℃,用30 mL含50 μg·mL-1卡那霉素和50 μg·mL-1利福平的YEP液體培養基培養重組農桿菌至OD600nm=0.6,12 000 r/min離心收集菌體,用30 mL ddH2O懸浮,加入乙酰丁香酮并使其濃度為100 μmol·L-1,得到侵染液。取生長2周齡的‘王林’愈傷組織浸到侵染液中,室溫振蕩25 min,取愈傷組織置于含0.5 mg·L-16-BA+1 mg·L-12,4-D的MS固體培養基上,28℃暗培養2 d。隨后轉移到含0.5 mg·L-16-BA+1 mg·L-12,4-D+50 μg·mL-1卡那霉素+250 μg·mL-1羧芐青霉素的MS固體培養基暗培養5周左右。

1.4 GUS表達載體構建、轉化及GUS染色

用引物(MdWRKY18-1F:5′-tctagaACCTTACCAC ATGGCAAGTT-3′和MdWRKY18-1R:5′-ccatggTGTT GATGAAGATCAAAAGGCT-3′及MdWRKY40-1F:5′- tctagaCAGCAGAGGCTTGACAATTC-3′和MdWRKY40- 1R:5′-ccatgg CCTTTGAAAGTAACAACACTAGTTC- 3′)分別擴增和的啟動子序列。GUS表達載體為pCAMBIA1305,構建重組表達載體及‘王林’蘋果愈傷組織的轉化,方法同1.3。染色液配置為100 mmol·L-1磷酸鈉、10 mmol·L-1EDTA、1 mmol·L-1X-Gluc和0.1% Triton X-100。取1 g過表達或啟動子的‘王林’愈傷置于5 mLGUS染色液中,37℃染色10—12 h。

1.5 酵母雙雜交試驗

用引物(MdWRKY18-2F:5′-catatgATGGACTCA ACGTGGGTGA-3′和MdWRKY18-2R:5′-gtcgacTCAT GAGTGGTCTGAAATTCTTC-3′及MdWRKY40-2F:5′-catatgATGGACCATTCAGCTGCAT-3′和MdWRKY40 -2R:5′-TTA GTAAGTATTGTGTTGAAGTATTC-3′)分別擴增和的編碼框序列。分別構建pGADT7-MdWRKY18、pGBKT7- MdWRKY18、pGADT7-MdWRKY40和pGBKT7-MdWRKY40重組載體,方法如1.3。按照YeastmakerTMYeast Transformation System 2試劑盒(Clontech)說明書方法,將重組質粒共轉化酵母Y2H感受態細胞,先在-T-L選擇性培養基(-Leu/Trp,Clontech)上培養,然后將生長的細胞在-T-L-H-A選擇性培養基(-Ade/- His/-Leu/-Trp,Clontech)上培養,最后用X-α-gal作為底物添加到-T-L-H-A培養基中檢測β-galactosidase。

1.6 數據分析

實時熒光定量分析數據用Excel 2007進行作圖和標準差分析,用DPS 7.05軟件(http://www.chinadps. net)進行顯著性檢驗,顯著性水平用i、ii、iii和iv來表示。

2 結果

2.1 MdWRKY18和MdWRKY40蛋白結構分析

根據WRKY結構域的數量和鋅指結構的特征可以將WRKY轉錄因子家族大體分為3類。利用SMART網站(http://smart.embl-heidelberg.de/smart/ set_mode.cgi?GENOMIC=1)對蛋白結構功能域分析,發現MdWRKY18和MdWRKY40與擬南芥AtWRKY18和AtWRKY40結構類似,都含有1個WRKY、Cx5C以及HxH結構域(圖1),依據進化樹、保守結構域及內含子位置將WRKY家族重新分類,MdWRKY18、MdWRKY40和AtWRKY18、AtWRKY40都屬于Ⅱa+Ⅱb類[24]。

圖1 MdWRKY18和MdWRKY40蛋白結構分析

2.2 鹽脅迫誘導MdWRKY18和MdWRKY40的表達

通過對生長2周齡的‘王林’愈傷組織進行150 mmol·L-1NaCl處理(圖2),結果顯示,MdWRKY18和MdWRKY40的表達水平受鹽脅迫誘導,在24 h達到最大,32 h略有下降;對過表達MdWRKY18和MdWRKY40啟動子的‘王林’愈傷進行GUS染色,150 mmol·L-1NaCl處理的轉基因愈傷要比不處理的顏色要深(圖3)

2.3 MdWRKY18和MdWRKY40之間蛋白相互作用分析

酵母雙雜交結果如圖4所示,WRKY18-BD和WRKY18-AD共轉Y2H后,在二缺、四缺及四缺+X- α-gal均生長,說明MdWRKY18能與自身互作形成同源二聚體,并且MdWRKY18也能和MdWRKY40互作形成異源二聚體,MdWRKY40同樣也可以與自身互作形成同源二聚體。

2.4 MdWRKY18和MdWRKY40在‘王林’蘋果愈傷中超表達后的功能分析

通過對‘王林’蘋果愈傷的不同轉基因進行處理(圖5和圖6),發現未處理的4種愈傷重量基本無差異,而150 mmol·L-1NaCl處理后,過表達和過表達的愈傷之間重量基本無差異,但顯著高于‘王林’愈傷,顯著低于共表達和的愈傷。

圖2 150 mmol·L-1 NaCl處理下MdWRKY18和MdWRKY40的表達水平

圖3 150 mmol·L-1 NaCl處理條件下MdWRKY18和MdWRKY40啟動子的GUS染色分析

圖4 MdWRKY18和MdWRKY40酵母雙雜交分析

圖5 150 mmol·L-1 NaCl處理條件下過表達MdWRKY18和MdWRKY40的‘王林’愈傷形態

1:Orin;2:OEWRKY18;3:OEWRKY40;4:OEWRKY18+OEWRKY40

2.5 4種愈傷相關基因表達水平的分析

由圖7可得,過表達的愈傷,的表達水平是‘王林’愈傷的16.58倍,但對的表達水平沒有影響;過表達的愈傷,的表達水平是‘王林’愈傷的18.08倍,但對的表達水平沒有影響;共表達和的愈傷,和的表達水平分別是‘王林’愈傷的17.43倍和18.47倍;與‘王林’愈傷相比,過表達的愈傷,過表達的愈傷以及共表達和的愈傷中和的表達水平均上調表達。

3 討論

3.1 蘋果MdWRKY18和MdWRKY40受鹽脅迫誘導并提高‘王林’愈傷的鹽耐性

WRKY蛋白是最近發現的一類序列特異性DNA結合轉錄因子,因其具有高度保守的WRKY結構域而得名[25],在擬南芥中發現了70多個WRKY蛋白,在水稻中發現了100多個WRKY蛋白[24,26]。WRKY蛋白能夠調節植物發育與繁殖,酚類化合物生物合成,激素信號傳導或衰老有關的多個過程[27-29],然而,WRKY蛋白的基礎性作用在于參與植物防御信號傳導以及非生物脅迫耐受性[30-31]。鹽脅迫是重要的非生物脅迫之一,在大豆中,64個測試的WRKY基因中,有25個響應鹽脅迫[32],并且在擬南芥,小麥和水稻等中也已經報道了類似的結果[33-35]。在許多植物物種中進行了WRKY蛋白響應鹽脅迫的功能研究,小麥TaWRKY2、TaWRKY19、TaWRKY44和TaWRKY93能夠通過增強滲透保護劑(脯氨酸和可溶性糖)積累和改善氧化應激反應來提高對鹽脅迫耐受性[35-36],棉花GHWRKY34在適度鹽脅迫下能夠增強植物的萌發和生長,減少鈉和ROS積累[37],擬南芥AtWRKY18、AtWRKY40、AtWRKY25和AtWRKY33也被報道能夠響應鹽脅迫誘導并且提高鹽耐性[38,21]。本研究發現MdWRKY18和MdWRKY40含有1個WRKY、Cx5C及HxH結構域,屬于Ⅱa+Ⅱb類WRKY蛋白,150 mmol·L-1NaCl處理下能夠增強和的啟動子活性,誘導和的表達;在‘王林’愈傷分別過表達和以及共表達和時,均能夠增強‘王林’愈傷的耐鹽性,并且能夠誘導和的表達,而和在維持胞質Na+濃度方面起著重要作用[13,39],因此MdWRKY18和MdWRKY40可能參與調控和的表達來調節‘王林’愈傷的耐鹽性。

1:Orin;2:OEWRKY18;3:OEWRKY40;4:OEWRKY18+OEWRKY40

3.2 MdWRKY18和MdWRKY40之間蛋白相互作用

具有調節功能的蛋白質很少單獨作用,它們大多以相互作用的形式在生命系統中承擔生物學功能,因此,研究蛋白質之間相互作用是理解復雜分子過程的關鍵步驟。在過去的研究中,發現了大量與信號轉錄有關的植物WRKY蛋白的相互作用蛋白,WRKY相互作用蛋白在轉錄中可影響WRKY轉錄因子與DNA的結合和轉錄調節活性,從而調控WRKY調節的下游基因表達。在擬南芥中,3種Ⅱ類型的WRKY蛋白(AtWRKY18、AtWRKY40和AtWRKY60)能夠通過N-末端的亮氨酸拉鏈基序彼此相互作用[40],AtWRKY6和AtWRKY42之間也能相互作用[41],此外,通過酵母雙雜交系統篩選了13個Ⅲ類型的WRKY蛋白發現,AtWRKY30、AtWRKY53、AtWRKY54和AtWRKY70之間存在顯著的相互作用[42]。本研究發現MdWRKY18和MdWRKY40均能夠與自身相互作用形成同源二聚體,且MdWRKY18和MdWRKY40也能夠互作形成異源二聚體,與在擬南芥中研究結果一致。

4 結論

鹽脅迫誘導和表達,且MdWRKY18和MdWRKY40之間能夠相互作用形成同源或異源二聚體,在‘王林’愈傷中,過表達和能夠促進和的表達,從而提高‘王林’愈傷的耐鹽性。

[1] MAHAJAN S, TUTEJA N. Cold, salinity and drought stresses: An overview., 2005, 444: 139-158.

[2] TUTEJA N. Mechanisms of high salinity tolerance in plants., 2007, 428: 419-438.

[3] DONG D, ZHANG L F, HANG W, LIU Z J, ZHANG Z X, ZHENG Y L. Differential expression of miRNAs in response to salt stress in maize roots., 2009, 103: 29-38.

[4] OHTA M, HAYASHI Y, NAKASHIMA A, HAMADA A, TANAKA A, NAKAMURA T, HAYAKAWA T. Introduction of a Na+/H+antiporter gene fromconfers salt tolerance to rice., 2002, 532: 279-282.

[5] NING Z, CHENG S, LIU X, HAO D, DAI M, ZHOU D X, YANG W, YU Z. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice., 2015, 236: 146-156.

[6] XUE Z Y, ZHI D Y, XUE G P, ZHANG H, ZHAO Y X, XIA G M. Enhanced salt tolerance of transgenic wheat (L.) expressing a vacuolar Na+/H+antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+., 2004, 167: 849-859.

[7] ?I?EK N, H? X. Effects of salt stress on some physiological and photosynthetic parameters at three different temperatures in six soya bean (L. Merr.) Cultivars., 2008, 194: 34-46.

[8] HUSAINI A M, ABDIN M Z. Development of transgenic strawberry (×Duch.) plants tolerant to salt stress., 2008, 174:446-455.

[9] RASHEDY A. Response of two grape rootstocks to some salt tolerance treatments under saline water conditions., 2010, 2: 93-106.

[10] XUE H, ZHANG F, ZHANG Z H, FU JF, WANG F, ZHANG B, MA Y. Differences in salt tolerance between diploid and autotetraploid apple seedlings exposed to salt stress., 2015, 190:2430.

[11] SAHI C, SINGH A, BLUMWALD E, GROVER A. Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data., 2006, 127: 1-9.

[12] HASEGAWA P M, BRESSAN R A, ZHU J K, BOHNERT H J. Plant cellular and molecular responses to high salinity., 2000, 51:463-499.

[13] BLUMWALD E, POOLE R J. Na/H antiport in isolated tonoplast vesicles from storage tissue of beta vulgaris., 1985, 78:163-167.

[14] DING Z, LI S, AN X, LIU X, QIN H, WANG D. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in., 2009, 36:17-29.

[15] ABE H, URAO T, ITO T, SEKI M, SHINOZAKI K, YAMAGUCHISHINOZAKI K.AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling., 2003, 15: 63-78.

[16] YANG O, POPOVA O V, SüTHOFF U, LüKING I, DIETZ K J, GOLLDACK D. Thebasic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance., 2009, 436: 45-55.

[17] REN X, CHEN Z, LIU Y, ZHANG H, ZHANG M, LIU Q, HONG X, ZHU J K, GONG Z. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in., 2010, 63: 417-429.

[18] JIANG Y, YANG B, DEYHOLOS M K. Functional characterization of thebHLH92 transcription factor in abiotic stress., 2009, 282: 503-516.

[19] WU X, SHIROTO Y, KISHITANI S, ITO Y, TORIYAMA K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter., 2009, 28: 21-30.

[20] JIANG Y J, LIANG G, YU D Q. Activated expression of WRKY57 confers drought tolerance in., 2012, 5: 1375-1388.

[21] JIANG Y, DEYHOLOS M. Functional characterization ofNaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses., 2009, 69: 91-105.

[22] XU H F, WANG N, LIU J X, QU C Z, WANG Y C, JIANG S H, LU N L, WANG D Y, ZHANG Z Y, CHEN X S. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes., 2017, 94: 149-165.

[23] KENNETH J L, THOMAS D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CTmethod., 2001, 25: 402-408.

[24] ZHANG Y, WANG L. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants., 2005, 5(1): 1-12.

[25] RUSHTON P J, SOMSSICH I E, RINGLER P, SHEN Q J. WRKY transcription factors., 2010, 15: 247-258.

[26] WU K L, GUO Z J, WANG H H, LI J. The WRKY family of transcription factors in rice andand their origins., 2005, 12: 9-26.

[27] GUO D, ZHANG J, WANG X, HAN X, WEI B, WANG J. The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in., 2015, 27: 3112-3127.

[28] SCHLUTTENHOFER C, YUAN L. Regulation of specialized metabolism by WRKY transcription factors., 2015, 167: 295-306.

[29] ZHANG L, GU L, RINGLER P, SMITH S, RUSHTON P J, SHEN Q J. Three WRKY transcription factors additively repress abscisic acid and gibberellins signaling in aleurone cells., 2015, 236: 214-222.

[30] CHEN L, SONG Y, LI S, ZHANG L, ZOU C, YU D. The role of WRKY transcription factors in plant abiotic stresses., 2012, 1819: 120-128.

[31] BANERJEE A, ROYCHOUDHURY A. WRKY proteins: signaling and regulation of expression during abiotic stress responses., 2015, 2015: 3-24.

[32] ZHOU Q Y, TIAN A G, ZOU H F, XIE Z M, LEI G, HUANG J, WANG C M, WANG H W, ZHANG J S, CHEN SY. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenicplants., 2008, 6: 486-503.

[33] JIANG Y, DEYHOLOS M K. Comprehensive transcriptional profiling of NaCl-stressedroots reveals novel classes of responsive genes., 2006, 6: 25.

[34] BERRI S, ABBRUSCATO P, FAIVRE-RAMPANT O, BRASILEIRO A C, FUMASONI I, SATOH K, KIKUCHI S, MIZZI L, MORANDINI P, Pè M E, PIFFANELLI P. Characterization of WRKY co-regulatory networks in rice and., 2009, 9: 120.

[35] NIU C F, WEI W, ZHOU Q Y, TIAN A G, HAO Y J, ZHANG W K, MA B, LIN Q, ZHANG Z B, ZHANG J S, CHEN S Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenicplants., 2012, 35: 1156-1170.

[36] QIN Y, TIAN Y, LIU X. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in., 2015, 464: 428-433.

[37] ZHOU L, WANG N N, GONG S Y, LU R, LI Y, LI X B. Overexpression of a cotton () WRKY gene, GhWRKY34, inenhances salt-tolerance of the transgenic plants., 2015, 96: 311-320.

[38] CHEN H, LAI Z B, SHI J W, XIAO Y, CHEN Z X, XU X P. Roles ofWRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress., 2010, 10: 281.

[39] WANG N, QU C Z, WANG Y C, XU H F, JIANG S H, FANG H C, LIU J X, ZHANG Z Y, CHEN X S. MdMYB4 enhances apple callus salt tolerance by increasing MdNHX1 expression levels., 2017, 131: 283-293.

[40] XU X, CHEN C, FAN B, CHEN Z. Physical and functional interactions between pathogen-inducedWRKY18, WRKY40, and WRKY60 transcription factors., 2006, 18: 1310-1326.

[41] CHEN Y F, LI L Q, XU Q, KONG Y H, WANG H, WU W H. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in., 2009, 21: 3554-3566.

[42] BESSEAU S, LI J, PALVA E T. WRKY54 and WRKY70 cooperate as negative regulators of leaf senescence in., 2012, 63: 2667-2679.

Molecular Mechanism of Apple MdWRKY18 and MdWRKY40 Participating in Salt Stress

XU HaiFeng, YANG GuanXian, ZHANG Jing, ZOU Qi, WANG YiCheng, QU ChangZhi, JIANG ShengHui, WANG Nan, CHEN XueSen

(College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong)

【Objective】In order to improve the molecular mechanism of salt stress, we studied several aspects of MdWRKY18 and MdWRKY40 in apple WRKY transcription factors, including the protein structure, the expression level and the function in salt stress. 【Method】We cloned theandgenes in ‘Hongcui No.2’ apple and analysed their protein structure. The expression levels ofandwere studied by the qRT-PCR under the salt stress, and their promoter activities were analyzed using the GUS staining. We analyzed the interaction relationship between MdWRKY18 and MdWRKY40 proteins by yeast two-hybrid and verified their function by transgenosis. 【Result】Analysis of protein structure showed that both MdWRKY18 and MdWRKY40 proteins contained a WRKY, Cx5C and HxH structural domains. The expression levels and promoter activities ofandwere induced by the 150 mmol·L-1NaCl. The yeast two-hybrid experiments showed that MdWRKY18 and MdWRKY40 could respectively interact with itself to form homodimers, and MdWRKY18 could also interact with MdWRKY40 to form heterodimers. Whenandwas overexpressed respectively in orin callus, they could increase the callus weight under salt stress and promote the expression ofand. Whenandwere co-overexpressed in orin callus, it could also promote the expression ofand, however, the weight of callus was heavier than the weight of callus overexpressingor. 【Conclusion】andwere induced by the salt stress, and they could form homodimers or heterodimers, overexpressingor

apple; WRKY transcription factor; salt stress; GUS staining; yeast two-hybrid

10.3864/j.issn.0578-1752.2018.23.010

2018-05-25;

2018-07-26

國家自然科學基金(31572091,31730080)、國家重點研發計劃(SQ2016YFSF030011)

許海峰,E-mail:997524744@qq.com。

陳學森,E-mail:chenxs@sdau.edu.cn

(責任編輯 李莉)

猜你喜歡
植物
誰是最好的植物?
為什么植物也要睡覺
長得最快的植物
各種有趣的植物
植物也會感到痛苦
會喝水的植物
植物的防身術
把植物做成藥
哦,不怕,不怕
將植物穿身上
主站蜘蛛池模板: 国产美女精品一区二区| 久久狠狠色噜噜狠狠狠狠97视色 | 制服丝袜无码每日更新| 亚洲中文字幕久久无码精品A| 国产视频大全| 中文字幕波多野不卡一区| 精品无码视频在线观看| 国产高颜值露脸在线观看| 日韩欧美国产三级| 日本午夜网站| 99热亚洲精品6码| 亚洲综合九九| 免费国产高清精品一区在线| 91娇喘视频| 亚洲欧美色中文字幕| 色哟哟国产精品一区二区| 日韩欧美高清视频| 欧美在线导航| 日韩123欧美字幕| 一级一级一片免费| 国产小视频在线高清播放 | 欧美日韩在线国产| 999福利激情视频| 久久综合亚洲鲁鲁九月天| 久久国产成人精品国产成人亚洲| 国产凹凸一区在线观看视频| 午夜视频日本| 亚洲第一成年人网站| 精品国产自在现线看久久| 国产剧情伊人| 亚洲精品色AV无码看| 91人妻日韩人妻无码专区精品| 国产簧片免费在线播放| 青青草原国产| 亚洲国产成人久久77| 亚洲成人www| 国产精品视频免费网站| 国产成人综合网| 大乳丰满人妻中文字幕日本| 国产电话自拍伊人| 精品乱码久久久久久久| 国产精品爽爽va在线无码观看| 国产精品亚洲欧美日韩久久| 国产精品视频第一专区| 亚洲精品手机在线| 99精品视频播放| 国模私拍一区二区| 高潮毛片免费观看| 日韩性网站| 亚洲午夜综合网| 国产网友愉拍精品视频| 国产对白刺激真实精品91| 日本黄色a视频| 欧洲av毛片| 成人小视频在线观看免费| 欧美 亚洲 日韩 国产| 伊大人香蕉久久网欧美| 国产成人乱码一区二区三区在线| 毛片免费视频| 欧美精品伊人久久| 亚洲第一黄色网| 亚洲啪啪网| 国产在线一区视频| 免费在线看黄网址| 欧美午夜一区| 亚洲日韩国产精品综合在线观看| 欧美精品啪啪一区二区三区| 免费aa毛片| 国产一区二区在线视频观看| 日韩精品视频久久| 国产精品99久久久久久董美香| 一级福利视频| 国产视频久久久久| 日韩免费成人| 亚洲日韩久久综合中文字幕| 国产视频a| 精品午夜国产福利观看| 国内丰满少妇猛烈精品播| 午夜性刺激在线观看免费| 国产精品极品美女自在线网站| 欧美在线免费| 人妻精品久久无码区|