999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

無窮區間上二階三點q-差分方程邊值問題解的存在性

2019-01-14 02:46:56禹長龍張博雅韓獲德
河北科技大學學報 2019年6期

禹長龍 張博雅 韓獲德

摘 要:為了拓展非線性量子差分方程邊值問題的基本理論,研究了一類無窮區間上非線性項含有一階q-微分的二階三點非線性q-差分方程邊值問題解的存在性。首先,給出并證明了含有無窮限廣義積分的二重q-積分的交換積分次序公式;其次,計算出了無窮區間上二階三點線性q-差分方程邊值問題的Green函數,并研究了Green函數的性質;再次,在抽象空間上構造積分算子,然后運用Leray-Schauder連續定理,獲得了無窮區間上二階三點非線性q-差分方程邊值問題解的存在性結果;最后給出實例。實例驗證表明所得結果是正確的。研究結果對量子微積分的發展及其在數學物理等領域的應用都有著重要的意義。

關鍵詞:非線性泛函分析;q-差分方程;無窮區間;三點邊值問題;Leray-Schauder連續定理

中圖分類號:O175.8 ? 文獻標志碼:A ? doi:10.7535/hbkd.2019yx06003

Abstract:In order to extend the basic theory of boundary value problems for nonlinear quantum difference equations,the existence of solutions for a class of second order three-point nonlinear q-differential equations with a first order q-differential on a nonlinear interval is studied. Firstly, changing the order of integration formula of double q-integral with infinite limit generalized integral is given and proved. Secondly, the Green function of the boundary value problem of second-order three-point linear q-difference equation on the infinite interval is calculated and the property of Green function is studied. Next, the integral operator T is constructed on the abstract space, and the Leray-Schauder continuous theorem is used to obtain the existence of the solution of the boundary value problems for the second-order three-point nonlinear q-difference equation on the infinite interval. Finally, an example is given to illustrate the validity of the results. The research results have important significance for the development of quantum calculus and its application in the fields of mathematical physics.

Keywords:nonlinear functional analysis; q-difference equation; infinite interval; three-point boundary value problem; Leray-Schauder continuation theorem

最早起源于20世紀初,由JACKSON提出的量子微積分,又名q-微積分,是一類無極限的微積分,參見文獻\[1—2\]。由量子力學的知識可知,時間和空間是不連續的,不能任意分割,也不存在小于普朗克尺度的量,這足以說明用經典微積分描述的物理現象與真實世界必然會存在偏差。此時,量子微積分應運而生。q-微積分被廣泛地應用于數學、物理等科學領域,如宇宙弦與黑洞、適形量子力學、核和高能物理、數值理論、組合、正交多項式、基本超幾何函數和其他科學的量子理論、力學和相對論等領域[3-9]。

參考文獻/References:

[1] JACKSON F H. On q-functions and a certain difference operator[J]. Transactions of the Royal Society of Edinburgh, 1908, 46: 253-281.

[2] JACKSON F H. On q-definite integrals[J]. The Quarterly Journal of Pure and Applied Mathematics, 1910, 41: 193-203.

[3] JACKSON F H. On q-difference equations[J]. American Journal of Mathematics,1910, 32: 305-314.

[4] CARMICHAEL R D. The general theory of linear q-difference equations[J]. American Journal of Mathematics, 1912, 34: 147-168.

[5] MASON T E. On properties of the solutions of linear q-difference equations with entire function coefficients[J]. American Journal of Mathematics,1915, 37: 439-444.

[6] ADAMS C R. On the linear ordinary q-difference equation[J]. Annals of Mathematics,1928, 30:195-205.

[7] PAGE D N. Information in black hole radiation[J].Physical Review Letters,1993, 71(23): 3743-3746.

[8] YOUM D. q-deformed conformal quantum mechanics[J]. Physical Review D,2000, 62(9): 276-284.

[9] ANNABY M H, MANSOUR Z S. q-Fractional Calculus and Equations[M]. Berlin: Springer, 2012.

[10] AHMAD B. Boundary value problems for nonlinear third-order q-difference equations[J]. Electronic Journal of Differential Equations,2011, 94:1-7.

[11] AHMAD B, NIETO J J. On nonlocal boundary value problem of nonlinear q-difference equations[J]. Advances in Difference Equation,2012:2012-81.

[12] YU Changlong, WANG Jufang. Existence of solutions for nonlinear second-order q-difference equations with first-order q-derivatives[J]. Advances in Difference Equation,2013:2013-124.

[13] EL-SHAHED M, HASSAN H A. Positive solutions of q-difference equation[J]. Proceedings of the American Mathematical Society,2010, 138: 1733-1738.

[14] AHMAD B, NTOUYAS S K. Boundary value problems for q-difference inclusions[J]. Abstract and Applied Analysis,2011(3/4):292860.

[15] AHMAD B, NIETO J J. Basic theory of nonlinear third-order q-difference equations and inclusions[J]. Mathematical Modelling and Analysis,2013, 18(1): 122-135.

[16] O'REGAN D. Theory of Singular Boundary Value Problems[M]. Singapore:World Scientific,1994.

[17] BAXLEY J V. Existence and uniqueness for nonlinear boundary value problems on infinite interval[J]. Journal of Mathematical Analysis and Applications,1990, 147: 127-133.

[18] GUO D. Second order impulsive integro-differential equations on unbounded domains in Banach spaces[J]. Nonlinear Analysis,1999, 35: 413-423.

[19] AGARWAL R P, O′REGAN D. Fixed point theory for self maps between Fréchet spaces[J]. Journal of Mathematical Analysis and Applications,2001,256(2):498-512.

[20] FRIGON M, O'REGAN D. Fixed point of cone-compressing and cone-extending operators in Fréchet spaces[J]. Bulletin of the London Mathematical Society,2003, 35(5):672-680.

[21] LIAN Hairong, GE Weigao. Solvability for second-order three-point boundary value problems on a half-line[J].Applied Mathematics Letters, 2006, 19(10):1000-1006.

[22] KAC V, CHEUNG P. Quantum Calculus[M]. New York:Springer,2002.

[23] AGARWAL R P, O'REGAN D. Infinite Interval Problems for Differential, Difference and Integral Equations[M]. Netherlands:Kluwer Academic Publisher,2001.

主站蜘蛛池模板: 午夜不卡福利| 一级一毛片a级毛片| 国产福利免费视频| 一级毛片免费不卡在线| 91一级片| 免费a级毛片视频| 中文字幕色在线| 亚洲欧美国产五月天综合| 国产成人亚洲无码淙合青草| 成人国产精品网站在线看| 久久无码高潮喷水| 性69交片免费看| 丁香五月激情图片| 亚洲一区无码在线| 无码区日韩专区免费系列| 在线欧美a| 日韩在线第三页| 欧美成人免费一区在线播放| 国产欧美日韩综合在线第一| 青青草国产一区二区三区| 91视频区| 亚洲欧美人成人让影院| 国产午夜看片| 色AV色 综合网站| 九色在线观看视频| 找国产毛片看| 午夜精品影院| 亚洲激情区| 欧美日韩免费| 精品国产福利在线| 谁有在线观看日韩亚洲最新视频| 天堂在线www网亚洲| 一区二区理伦视频| 日韩美一区二区| 亚洲天堂视频网站| 亚洲成人在线网| 国产色婷婷视频在线观看| 国产精品欧美亚洲韩国日本不卡| 久久毛片网| 国产无码性爱一区二区三区| 国产美女精品一区二区| 色噜噜久久| 亚洲视频三级| 四虎精品免费久久| 久久久久人妻一区精品色奶水 | 久久这里只有精品免费| 日韩欧美国产精品| 日韩欧美网址| 99视频免费观看| 欧美在线三级| 国产亚洲欧美在线人成aaaa| 成年A级毛片| 亚洲国产日韩欧美在线| 91香蕉国产亚洲一二三区| 婷婷伊人久久| 亚洲欧洲日本在线| 97在线免费| 国产国语一级毛片| 伊人久久综在合线亚洲2019| 这里只有精品在线| 色有码无码视频| 国产成人精品在线| 成人在线不卡| 亚洲精品第一页不卡| 天堂亚洲网| 国产一区二区三区夜色| 国产亚洲高清视频| 思思热精品在线8| 久久精品国产亚洲麻豆| 成人精品在线观看| 精品无码日韩国产不卡av| 亚洲国产成人超福利久久精品| 国产99精品视频| 久久91精品牛牛| 久久综合伊人77777| 免费大黄网站在线观看| 精品国产免费观看| 少妇高潮惨叫久久久久久| a欧美在线| 精品国产亚洲人成在线| 成人午夜亚洲影视在线观看| 亚洲第一在线播放|