999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具有n-4個(gè)懸掛點(diǎn)的三圈圖補(bǔ)圖的最小特征值

2019-01-14 02:46:56劇宏娟雷英杰

劇宏娟 雷英杰

摘 要:為了討論給定階數(shù)為n且具有n-4個(gè)懸掛點(diǎn)的三圈圖補(bǔ)圖圖類中鄰接矩陣的最小特征值,刻畫其最小特征值達(dá)到極小的唯一圖。在只考慮簡單無向連通圖的基礎(chǔ)上,從補(bǔ)圖的結(jié)構(gòu)出發(fā)研究圖的最小特征值,通過運(yùn)用相關(guān)知識點(diǎn)分析論證了當(dāng)值為λ(G((n-4)/2,(n-4)/2)C)時(shí),給定階數(shù)為n且具有n-4個(gè)懸掛點(diǎn)的三圈圖補(bǔ)圖圖類中鄰接矩陣的最小特征值達(dá)到極小的唯一圖。結(jié)果表明:結(jié)合圖鄰接矩陣是表示頂點(diǎn)之間相鄰關(guān)系的矩陣,它的最小特征值為圖的最小特征值,較好地刻畫圖的本質(zhì)性質(zhì)。研究得出的具有n-4個(gè)懸掛點(diǎn)的三圈圖補(bǔ)圖的最小特征值達(dá)到極小的唯一圖,為后續(xù)進(jìn)一步研究補(bǔ)圖圖類中鄰接矩陣的最小特征值提供了一定的借鑒價(jià)值。

關(guān)鍵詞:圖論;三圈圖;鄰接矩陣;最小特征值;懸掛點(diǎn);補(bǔ)圖

中圖分類號:O157.5 ? 文獻(xiàn)標(biāo)志碼:A ? doi:10.7535/hbkd.2019yx06004

Abstract:In order to discuss the minimum eigenvalue of adjacency matrix in the class of complementary graphs of the tricyclic graph with a given order of n and n-4 pendent vertexes, the unique graph whose minimum eigenvalue reaches the minimum is characterized. Based on the simple undirected connected graph,the minimum eigenvalue of the graph is studied from the structure of the complement graph, and the minimum eigenvalue of the adjacency matrix in the complement graph class of the tricyclic graph with a given order of n and n-4 pendent vertexes reaches the minimum unique graph when the value is λ(G((n-4)/2,(n-4)/2)C). The result shows that the associative graph adjacency matrix is a matrix which represents the adjacency between vertices, and its minimum eigenvalue is the minimum eigenvalue of graph, which can describe the essential properties of graph well. The conclusion from this research shows that the minimum eigenvalue of the complement graph of the tricyclic graph with a given order of n and n-4 pendent vertexes reaches the minimum eigenvalue, which provides certain reference for further study of the minimum eigenvalue of the adjacency matrix in the complement graph class.

Keywords:graph theory; tricyclic graph; adjacency matrix; the minimum eigenvalue; pendent vertexes; complement graph

3 結(jié) 論

本文討論了給定階數(shù)為n且具有n-4個(gè)懸掛點(diǎn)三圈圖補(bǔ)圖圖類中鄰接矩陣的最小特征值,在只考慮簡單無向連通圖的基礎(chǔ)上,從補(bǔ)圖的結(jié)構(gòu)出發(fā)研究圖的最小特征值,從而刻畫了當(dāng)給定階數(shù)為n且具有n-4個(gè)懸掛點(diǎn)的三圈圖補(bǔ)圖圖類中鄰接矩陣的最小特征值為λ(G((n-4)/2,(n-4)/2)C)時(shí),其鄰接矩陣的最小特征值達(dá)到極小的唯一圖,并為研究此類圖最小特征值達(dá)到極小的唯一圖和后續(xù)補(bǔ)圖圖類中鄰接矩陣的最小特征征值提供了一定的理論依據(jù)。

參考文獻(xiàn)/References:

[1] BELL F K, CVETKOVIC D, ROWLINSON P, et al. Graphs for which the least eigenvalues is minimal, I[J]. Linear Algebra and Its Applications, 2008, 429(2): 234-241.

[2] BELL F K, CVETKOVIC D, ROWLINSON P, et al. Graphs for which the least eigenvalues is minimal, II [J]. Linear Algebra and Its Applications, 2008, 429(8/9): 2168-2176.

[3] FAN Yizheng, WANG Yi, GAO Yubin. Minimizing the least eigenvalues of unicyclic graphs with application to spectral spread[J]. Linear Algebra and Its Applications, 2008, 429: 577-588.

[4] HAEMERS W H. Interlacing eigenvalues and graphs[J]. Linear Algebra and Its Applications, 1995, 226(95): 593-616.

[5] TAN Yingying, FAN Yizheng. The vertex(edge) independence number, vertex(edge) cover number and the least eigenvalue of a graph[J]. Linear Algebra and Its Applications, 2010, 433 (4): 790-795.

[6] FAN Yizheng,ZHANG Feifei,WANG Yi.The least eigenvalue of the complements of trees[J]. Linear Algebra and Its Applications, 2011, 435(9):2150-2155.

[7] WANG Yi, FAN Yizheng, LI Xixin, et al. The least eigenvalue of graphs whose complements are unicyclic[J]. Discussiones Mathematics Graph Theory, 2013, 35(2):1375-1379.

[8] YU Guidong, FAN Yizheng, WANG Yi. The least eigenvalue of graphs[J]. Journal of Mathematical Research with Applications, 2012, 32(6): 659-665.

[9] HOU Xiaohua, QU Hui. The least eigenvalue for unicyclic graphs with given independence number[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2015, 48(4): 73-79.

[10] FAN Dandan, CHEN Ya, MAMATABDULLA A,et al. Tricyclic graph whose least eigenvalue is minimum[J]. Journal of Qufu Normal University, 2018, 44(1): 11-16.

[11] YE Miaolin, FAN Yizheng, LIANG Dong. The least eigenvalue of graphs with given connectivity[J]. Linear Algebra and Its Applications, 2009, 430(4): 1375-1379.

[12] ?YU Guidong, FAN Yizheng, WANG Yi. Quadratic forms on graphs with application to minimizing the least eigenvalue of signless Laplacian over bicyclic graphs[J]. Electronic Journal of Linear Algebra, 2014, 27(2): 213-236.

[13] ?YU Guidong, FAN Yizheng. The least eigenvalue of graphs whose complements are 2-vertex or 2-edge connected[J]. Operations Research Transactions, 2013, 17(2):81-88.

[14] ?YU Guidong, FAN Yizheng, YE Miaolin. The least signless Laplacian eigenvalue of the complements of unicyclic graphs[J]. Applied Mathematics and Computation, 2017, 306(1):13-21.

[15] ?LI Shuchao, WANG Shujing. The least eigenvalue of the signless Laplacian of the complements of trees[J]. Linear Algebra and Its Applications, 2012, 436(7): 2398-2405.

[16] ?PETROVIC M, BOROVICANIN B, ALEKSIC T. Bicyclic graphs for which the least eigenvalue is minimum[J]. Linear Algebra and Its Applications, 2009, 430(4):1328-1335.

[17] ?李雨,薛婷婷,孫威,等. 一種特殊補(bǔ)圖的最小特征值研究[J].廊坊師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2017,17(2):5-12.

LI Yu, XUE Tingting, SUN Wei,et al. Study on the minimum eigenvalue of a special complement graph[J]. Journal of Langfang Teachers University (Natural Science Edition), 2017, 17(2): 5-12.

[18] 王禮想,蘆興庭.具有n-3個(gè)懸掛點(diǎn)的單圈圖補(bǔ)圖的最小特征值[J].安慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,23(4):22-24.

WANG Lixiang, LU Xingting. Least eigenvalue of the complement of unicyclic graphs with n-3 pendent vertexes[J]. Journal of Anqing Normal University (Natural Science Edition), 2017, 23(4): 22-24.

[19] 蘆興庭,余桂東,嚴(yán)亞偉,等.補(bǔ)圖是獨(dú)立數(shù)為n-2的雙圈圖的最小特征值[J].安慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,24(1):8-11.

LU Xingting, YU Guidong, YAN Yawei, et al. Least eignvalue of graphs whose complements are bicyclic graphs with independence number n-2 [J].Journal of Anqing Normal University (Natural Science Edition), 2018,24(1): 8-11.

[20] ?孫威,余桂東,蘆興庭,等.一類特殊圖的最小特征值[J].安慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,23(3):32-34.

SUN Wei, YU Guidong, LU Xingting, et al. The least eignvalue of the special graphs[J]. Journal of Anqing Normal University (Natural Science Edition), 2017, 23(3): 32-34.

[21] 余桂東,孫威,蘆興庭.補(bǔ)圖具有懸掛點(diǎn)且連通的圖的最小特征值[J].運(yùn)籌學(xué)學(xué)學(xué)報(bào),2019,23(1):90-96.

YU Guidong, SUN Wei, LU Xingting. The least eigenvalue of the graphs whose complement are connected and have pendant vertices[J]. Operations Research Transactions, 2019, 23(1): 90-96.

主站蜘蛛池模板: 成年午夜精品久久精品| 久久亚洲国产最新网站| 国产菊爆视频在线观看| 91无码网站| 亚洲 欧美 偷自乱 图片| 中文字幕有乳无码| 亚洲无码高清一区二区| 99热这里只有精品2| 中国丰满人妻无码束缚啪啪| 亚洲 欧美 偷自乱 图片 | 亚洲色大成网站www国产| 丝袜久久剧情精品国产| 欧美综合区自拍亚洲综合绿色| 无码免费的亚洲视频| 日本道综合一本久久久88| 精品久久久久成人码免费动漫| 日韩欧美中文| igao国产精品| 国产午夜不卡| 欧美精品导航| 亚洲欧美日韩另类在线一| 日韩区欧美国产区在线观看| 91精品网站| 乱人伦视频中文字幕在线| 日韩高清在线观看不卡一区二区 | 国产成人狂喷潮在线观看2345| 国产成人亚洲精品无码电影| 东京热高清无码精品| 亚洲午夜天堂| 97久久精品人人做人人爽| 日韩天堂在线观看| 老熟妇喷水一区二区三区| 日韩精品一区二区三区免费| 欧美啪啪一区| 亚洲av日韩综合一区尤物| 永久天堂网Av| 国产视频欧美| 亚洲天堂区| 欧美日韩国产在线观看一区二区三区 | 久久a级片| 欧美激情综合一区二区| 911亚洲精品| 97精品伊人久久大香线蕉| 成人午夜视频免费看欧美| 国产亚洲欧美另类一区二区| 五月天在线网站| 国产一级在线播放| 青草精品视频| 高清无码手机在线观看| 国产精品hd在线播放| 自偷自拍三级全三级视频| 国产精品三级专区| 亚洲成AV人手机在线观看网站| 免费看一级毛片波多结衣| 国产欧美精品一区aⅴ影院| 国产精品xxx| 国产成人免费| 亚洲动漫h| 日韩小视频在线观看| 制服丝袜一区| 四虎综合网| 最新午夜男女福利片视频| 精品三级在线| 欧美亚洲一二三区| 美美女高清毛片视频免费观看| 国产精欧美一区二区三区| 国产精品微拍| 午夜精品影院| 人人爱天天做夜夜爽| 国产精品福利导航| 国产 日韩 欧美 第二页| 午夜日韩久久影院| 亚洲AV无码久久精品色欲| 久久免费看片| 欧美成人怡春院在线激情| 亚洲人成网址| 国产免费人成视频网| 国产理论最新国产精品视频| 色偷偷一区| 国产成人高清精品免费| 在线国产综合一区二区三区| 91久久偷偷做嫩草影院精品|