999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

帶有Hatree和對數非線性項的Schrodinger方程非平凡解的存在性

2019-01-14 02:46:56郝劍偉黃永艷
河北科技大學學報 2019年6期
關鍵詞:利用方法

郝劍偉 黃永艷

摘 要:為了深入闡述變號勢對對數非線性項和Hatree非線性項造成的影響,利用Ekeland變分方法,將方程轉化為求能量泛函的臨界點,然后利用Hatree非線性項的性質和對對數非線性項的技巧性處理,證明了帶變號勢,對數非線性項和Hatree非線性項的Schrodinger問題的能量泛函滿足山路型結構,利用序列的有界性得到了(PS)條件。結果表明,結合山路結構,能夠獲得問題非平凡解的存在性。研究方法在理論證明得到了良好的預期結果,對研究帶有雙變號勢的對數非線性項的Schrodinger方程解的存在性具有一定的借鑒意義。

關鍵詞:非線性泛函分析;Schrodinger方程;變號的勢函數;對數不等式;變分方法;非平凡解

中圖分類號:O175 ? 文獻標志碼:A ? doi:10.7535/hbkd.2019yx06001

Abstract:In order to expound the influence of sign-changing potential on logarithmic nonlinearity and Hatree nonlinearity. By the variational method, a weak solution to the problem is a critical point of the energy functional. Then, by the logarithmic inequality, the energy functional of Schrodinger problem satisfies the mountain geometry and (PS) condition. The existence of nontrivial solutions is obtained by mountain pass theorem. The research method has good expected results in theoretical proof and laid a good foundation for the study of Schrodinger problem with logarithmic nonlinearity with double sign-changing potential.

Keywords:nonlinear functional analysis; Schrodinger equation; sign-changing potential; logarithmic inequality; variational method; nontrivial solution

參考文獻/References:

[1] ELLIOTT H L. Existence and uniqueness of the minimizing solution of choquard\"s nonlinear equation [J]. Studies in Applied Mathematics, 1977, 57(2):93-105.

[2] LIONS P L. The Choquard equation and related questions [J]. Nonlinear analysis:Theory,Methods & Applications, 1980, 4(6):1063-1072.

[3] MOROZ V, SCHAFTINGEN J V. Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asympto-tics[J]. Journal of Functional Analysis, 2013, 265(2):153-184.

[4] GAO Fashun, YANG Minbo. On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents[J]. Journal of Mathematical Analysis and Applications, 2017, 448(2):1006-1041.

[5] DAVID R, SCHAFTINGEN J V. Odd symmetry of least energy nodal solutions for the Choquard equation [J]. Journal of Differential Equations, 2016:S0022039617305193.

[6] LI Guidong, LI Yongyong, TANG Chunlei, et al. Existence and concentrate behavior of ground state solutions for critical Choquard equation [J]. Applied Mathematics Letters,2019,81:96.

[7] MOROZ V, SCHAFTINGEN J V. A guide to the Choquard equation [J]. Journal of Fixed Point Theory and Applications, 2017,19(1):773-813.

[8] TIAN Shuying. Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity [J]. Journal of Mathematical Analysis & Applications, 2017,454(2):816-828.

[9] SQUASSINA M, SZULKIN A. Multiple solutions to logarithmic Schrodinger equations with periodic potential [J]. Calculus of Variations and Partial Differential Equations, 2015, 54(1):585-597.

[10] KAZUNAGA T, ZHANG Chengxiang. Multi-bump solutions for logarithmic Schrodinger equations [J]. Calculus of Variations and Partial Differential Equations, 2017, 2(2):33-56.

[11] ARDILA A H, SQUASSINA M. Gausson dynamics for logarithmic Schrodinger equations [J]. Asymptotic Analysis, 2017, 107(3/4):203-226.

[12] JI Chao, SZULKIN A. A logarithmic Schrodinger equation with asymptotic conditions on the potential[J]. Journal of Mathematical Analysis and Applcations,2016, 437(1): 241-254.

[13] CARRILLO J A, NI Lei. Sharp logarithmic Sobolev inequalities on gradient solitons and applications [J]. Communications in Analysis & Geometry, 2009, 17(4):721-753.

[14] JIA Wenyan, WANG Zuji. Multiple solution of p-Laplacian equation with the logarithmic nnlinearity[J]. Journal of North University of China, 2019,40(1):26-33.

[15] ZHAO Li, HUANG Yongyan. The existence of the solution for Kirchhoff problem with sign-changing potential and logarithmic nonlinearity [J]. Journal of Shaanxi University of Science, 2019, 37(3):176-184.

[16] WANG Jun, TIAN Lixin, XU Junxiang, et al. Erratum to: Existence and concentration of positive solutions for semilinear Schrodinger-Poisson systems in R3[J]. Calculus of Variations and Partial Differential Equations, 2013, 48(1/2):275-276.

[17] LI Yuhua, LI Fuyi, SHI Junping. Existence and multiplicity of positive solutions to Schrodinger-Poisson type systems with critical nonlocal term [J]. Calculus of Variations & Partial Differential Equations, 2017,56(5):134-151.

[18] WANG Zhengping, ZHOU Huansong. Sign-changing solutions for the nonlinear Schrodinger-Poisson system in R3[J]. Calculus of Variations & Partial Differential Equations, 2015, 52:927-943.

[19] LIU Hongliang, LIU Zhisu, XIAO Qizhen. Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity[J]. Applied Mathematics Letters, 2017,79:176-181.

[20] WILLEM M. Minimax theorems[J]. Progress in Nonlinear Differential Equations & Their Applications, 1996, 50(1):139-141.

猜你喜歡
利用方法
利用min{a,b}的積分表示解決一類絕對值不等式
中等數學(2022年2期)2022-06-05 07:10:50
利用倒推破難點
利用一半進行移多補少
學習方法
利用數的分解來思考
Roommate is necessary when far away from home
利用
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
主站蜘蛛池模板: 欧美精品黑人粗大| a网站在线观看| 激情国产精品一区| 找国产毛片看| 国产在线观看一区精品| 国产福利免费视频| 亚洲毛片在线看| 最近最新中文字幕免费的一页| 久久精品亚洲热综合一区二区| 国模在线视频一区二区三区| 久久99国产精品成人欧美| 天天色综合4| 久久久久久久97| 91精品专区国产盗摄| 国产剧情伊人| 国产在线视频导航| 国产精品久久久久久久久| 亚洲欧美综合另类图片小说区| 亚洲午夜国产片在线观看| 久草中文网| 岛国精品一区免费视频在线观看| 香蕉网久久| 欧美成人在线免费| 在线日韩一区二区| 欧美激情视频一区| 99久久精品免费看国产电影| 亚洲精品视频免费| 亚洲系列中文字幕一区二区| 九色视频在线免费观看| 国产99视频在线| 一级香蕉视频在线观看| 乱人伦中文视频在线观看免费| 精品视频一区在线观看| 波多野结衣二区| 国产亚洲精品精品精品| 91娇喘视频| 亚洲国产日韩视频观看| 欧美一区精品| 久久99国产精品成人欧美| WWW丫丫国产成人精品| 人妻丝袜无码视频| 国产欧美日韩精品综合在线| 中日韩欧亚无码视频| 福利视频99| 色综合久久久久8天国| 欧美日韩在线成人| 国产精品免费p区| lhav亚洲精品| 国产在线97| 国产色网站| 九九久久99精品| 欧美色视频在线| 亚洲综合经典在线一区二区| 精品国产免费人成在线观看| 成人福利在线视频| 免费人成又黄又爽的视频网站| 韩国福利一区| 国产亚洲精品97AA片在线播放| 成人无码区免费视频网站蜜臀| 99热这里只有精品免费| 日韩精品专区免费无码aⅴ| 一区二区在线视频免费观看| 欧美激情视频一区| 午夜一区二区三区| 99re热精品视频国产免费| 精品在线免费播放| 成人国产小视频| 精品夜恋影院亚洲欧洲| 国产女人在线| 91在线视频福利| 91精品人妻互换| 亚洲成人在线免费| 国产精品久久久久久久久久98| 日本亚洲欧美在线| 男女性色大片免费网站| 亚洲精品自拍区在线观看| 伊人蕉久影院| 亚洲毛片在线看| 国产喷水视频| 夜精品a一区二区三区| 欧美激情网址| 精品日韩亚洲欧美高清a|