王琦 謝淑翠 王至琪
關鍵詞: 超分辨率重建; 稀疏表示; [L1]范數優化; 字典學習; 粒子群優化算法; 特征提取算子
中圖分類號: TN911.73?34 ? ? ? ? ? ? ? ? ? ? ? 文獻標識碼: A ? ? ? ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)03?0045?04
Abstract: A single image super?resolution reconstruction method based on sparse representation of image blocks is proposed. The proposed reconstruction process provides a better sparse solution, and is used for [L1] norm optimization process. The efficient feature extraction operator is used in optimization process to ensure the accuracy of high?resolution image blocks. The particle swarm optimization (PSO) algorithm is used to select the best adaptive sparse regularization parameters, which makes the global reconstruction process robust. The dictionary?coupled training mode is used to learn the dictionaries. Various image quality evaluation criteria prove this method has better advantage than the existing super?resolution reconstruction methods.
Keywords: super resolution reconstruction; sparse representation; [L1] norm optimization; dictionary learning; PSO algorithm; feature extraction operator
超分辨率重建(SRR)的過程克服了低成本成像傳感器固有分辨率的問題,可以更好地利用低分辨率(LR)成像系統提供高分辨率(HR)解決方案。該技術的實現主要有兩類方法:基于重建的插值;基于學習的方法。重建主要是對多幀低分辨率圖像進行融合,但是低分辨率圖像較少的情況下重建效果不佳。近年來,基于學習的方法吸引了很多人的關注[1?4],它以待重建圖像為依據,用學習過程中獲得的知識對重建圖像中的信息進行補充,充分利用圖像的先驗知識恢復圖像,且克服了重建插值過程中提高重建倍數困難的局限[5?6]。
隨著壓縮感知和機器學習研究的深入,基于學習的超分辨率方法已取得了一系列成果。文獻[3]將壓縮感知理論與稀疏編碼相結合,提出基于稀疏表示的圖像超分辨率算法,它的主要工作集中在利用外部訓練圖像集學習得到一對LR/HR字典,求解出低分辨率圖像塊在LR字典中的稀疏系數,再利用稀疏系數與HR字典結合重建高分辨率圖像。但自適應能力差,重構的圖像偽影嚴重。本文采用粒子群優化算法優化自適應稀疏正則化參數。在凸優化過程中,還引入了有效的特征提取算子,以獲得更好的稀疏解,準確預測HR圖像。
當輸入低分辨率圖像塊時,首先計算在低分辨率字典下的稀疏表示系數[α],接著利用此稀疏系數[α]和高分辨率字典進行重建。高分辨率圖像塊[iH]由稀疏系數[α]進行稀疏表示,即:
從視覺感知來看,雙三次插值處理效果較差,因為這種插值技術缺乏高頻細節,因而產生過平滑的HR圖像,來自NE的結果產生更銳利的邊緣。而文獻[3]的重建方法是一種被廣泛使用的改造技術。但隨著放大倍數的增加,輸出質量下降。這是由于稀疏正則參數和一般匹配約束的固定選擇造成的。而本文提出的SRR方法具有較好的特征提取和最優懲罰參數,提高了解的稀疏性,同時減少了振鈴偽影的數量。
為了驗證算法的有效性,采用峰值信噪比(PSNR)[15]和結構相似性(SSIM)[16]作為評價指標,比較結果見表1。
從表1中可以看出,所提出方法的峰值信噪比更高,且結構相似度也高于對比方法。
本文提出一種基于稀疏表示的高效單幅圖像超分辨率重建的方法。結合字典訓練來學習低分辨率字典和高分辨率字典。在優化過程中,采用Gabor濾波器對不同頻率和方向的特征進行跟蹤。實驗結果表明,與傳統的超分辨率重建算法相比,該算法具有簡單實用的優點,且具有很好的準確性、魯棒性,能較好地保留圖像的更多細節信息,改善圖像信噪比,具有更好的視覺效果。
參考文獻
[1] TANG Y, YAN P, YUAN Y, et al. Single?image super?resolution via local learning [J]. International journal of machine learning cybernetics, 2011, 2(1): 15?23.
[2] HE C, LIU L, XU L, et al. Learning based compressed sen?sing for SAR image super?resolution [J]. IEEE journal of selec?ted topics in applied earth observations and remote sensing, 2012, 5(4): 1272?1281.
[3] YANG J, MEMBER S, WRIGHT J, et al. Image super?resolution via sparse representation [J]. IEEE transactions on image processing, 2010, 19(11): 2861?2873.
[4] PELEG T, MEMBER S, FELLOW M E. A statistical prediction model based on sparse representations for single image super?resolution [J]. IEEE transactions on image processing, 2014, 23(6): 2569?2582.
[5] WEI C P, CHAO Y W, YEH Y R, et al. Locality sensitive dictionary learning for sparse representation based classification [J]. Pattern recognition, 2013, 46(5): 1277?1287.
[6] YANG J, WANG Z, LIN Z, et al. Couple dictionary training for image super?resolution [J]. IEEE transactions on image processing, 2012, 21(8): 3467?3478.
[7] 首照宇,吳廣祥,陳利霞.基于字典學習和非局部相似的超分辨率重建[J].計算機應用,2014,34(11):3300?3303.
SHOU Zhaoyu, WU Guangxiang, CHEN Lixia. Super?resolution reconstruction based on dictionaries learning and non?local similarity [J]. Computer applications, 2014, 34(11): 3300?3303.
[8] DONOHO D L. For most large underdetermined systems of equations the minimal L1?norm near?solution approximates the sparsest near?solution [J]. Communication pure, 2006, 59(6): 907?934.
[9] FREEMAN W T, JONES T R, PASZTOR E C. Example?based super?resolution [J]. IEEE computer graphics and applications, 2002, 22(2): 56?65.
[10] ZHANG A, GUAN C, JIANG H, et al. An image super?resolution scheme based on compressive sensing with PCA sparse representation [C]// 2012 International Workshop on Digital Forensics and Watermarking. Berlin: Springer, 2012: 495?506.
[11] ROSLAN R, JAMIL N. Texture feature extraction using 2?D Gabor filters [C]// 2012 International Symposium on Computer Applications and Industrial Electronics. [S.l.]: Mendeley: 2012: 173?178.
[12] CAND?S E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted ?1 minimization [J]. Journal of Fourier analysis and applications, 2008, 14(5): 877?905.
[13] BAHY R M, SALAMA G I, MAHMOUD T A. A no?reference blur metric guided fusion technique for multi?focus images [C]// 2011 National Radio Science Conference. Cairo: IEEE, 2011: 1?9.
[14] CHANG H, YEUNG D, XIONG Y, et al. Super?resolution through neighbor embedding [C]// Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE, 2004: 275?282.
[15] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE transactions on image processing, 2004, 13(4): 600?612.
[16] ZHANG L, ZHANG L, MOU X, et al. Correspondence FSIM: a feature similarity index for image [J]. IEEE transactions on image processing, 2011, 20(8): 2378?2386.