王國芳,張吳平,畢如田,張 茜,任 健,喬 磊,申若禹,王佩浩
縣域尺度農田深層土壤有機質的估算及空間變異特征
王國芳1,張吳平2※,畢如田1,張茜1,任健1,喬磊1,申若禹1,王佩浩1
(1. 山西農業大學資源環境學院,太谷 030801;2. 山西農業大學軟件學院,太谷 030801)
縣域是實施農業綠色發展的基本單元,農田土壤中不僅耕層的有機質含量會對土壤肥力產生影響,深層有機質的作用也不可忽略,精確估算基于縣域尺度農田深層有機質含量具有重要意義。該研究選定位于山西省運城市的永濟市農田為研究區,采用多點混合取樣法,獲取了8個樣地剖面的18層數據,共144個混合土樣的有機質含量數據,建立了表層(0~20 cm)有機質含量估算深層有機質含量的模型,并進行深層有機質含量的估算。基于半變異函數、空間自相關理論分析了0~30、>30~60、>60~90、>90~120、>120~150和>150~180 cm土層有機質含量的空間相關性和聚集特征,并進行了相關性檢驗,采用克里格插值方法對研究區農田各土層的有機質含量進行了預測。結果表明:1)土壤有機質含量隨深度的增加呈負指數遞減(2=0.80,<0.01),各土層的有機質含量變異系數介于35.89%~47.84%之間,處于中等變異程度。2)通過建立的估算模型可以通過表層有機質含量估算出任意深度的有機質含量,且擬合精度2達到了0.90(<0.01)。3)指數模型是反映該區域有機質含量空間結構特征的最佳模型(2>0.80,RSS<0.001),各土層的有機質含量均表現出了中等程度結構性特征,和空間正相關性特征(Moran’s=0.26,<0.01),并存在顯著的空間聚集特征和異常值現象。4)克里格插值可以較好地進行研究區各層有機質含量的預測,預測精度較高,穩定性較好,為縣域尺度深層有機質的估算,調整農藝措施、提高土壤肥力、達到土壤減肥增效、綠色增產增效提供依據。
土壤;有機質;反演;縣域尺度;農田;空間變異;克里格插值
土壤有機質作為土壤的重要組成部分在改善土壤結構、增強土壤肥力、增產增效、促進農業可持續發展等方面都具有非常重要的意義[1-3]。一般農田耕層中有機質含量較少,耕層以下更少,但它的作用卻很大,對于提高作物養分水分的吸收利用效率、促進植物對營養元素的吸收,刺激根系的生長等有著重要的作用[4-6]。為此,分析土壤耕層和深層有機質含量的空間分布規律對于探討農業耕作措施、實現“減肥減施、增產增效”及指導土壤管理具有重要意義。
目前,對于土壤表層有機質含量的估算方法已臻成熟,包括借助地統計理論等數學模型的地表實測方法[7-9];包括借助遙感技術的直接估算法[10-11]、間接測定法[12-14]、高光譜測定法[15-17]等大面積快速獲取的遙感方法,但目前遙感反演土壤有機質以表層效果較好[18-19],深層的快速大面積估算較困難。已有研究表明,土壤深層有機質含量與表層有機質含量呈極顯著相關關系[20-22],為此,可以通過表層的有機質含量估算深層有機質含量,已有的研究主要通過經驗法和線性回歸法進行估算[23-24],本研究將通過研究農田實測數據的深層有機質含量與表層有機質含量的關系,建立表層有機質含量估算任意深度有機質含量的模型,從而定量分析不同土層土壤有機碳的空間特征。
已有研究表明,借助地統計模型的半變異函數參數變程、塊基比可以定量反映有機質含量的空間變異性特征和結構性特征[25-27];借助空間自相關分析方法的全局莫蘭指數和局部莫蘭指數可以反映采樣點的空間自相關程度和空間聚集程度[28-30];借助克里格插值可以獲取整個研究區的有機質含量[31-34]。在實施農業綠色發展的空間尺度中由于縣域具有規模適中、邊界清晰、易操作、可評估復制,且具有示范效應等的特點,為此以縣域作為基本單元。以往研究多基于縣域尺度進行土壤表層有機質的空間尺度效應及空間變異特征分析[35-37],基于縣域尺度下的農田土壤不同土層的有機質含量空間變異特征和聚集特征有待研究。
為此,本研究選取了地形復雜的山西省運城市永濟市的農田為研究區域,通過分析0~180 cm剖面中每10 cm為一層,共18層的土壤有機質含量值關系特征,建立了表層(0~20 cm)有機質含量估算任意深度有機質含量的估算模型,利用建立的估算模型,對分布在研究區的3 519個表層(0~20 cm)有機質含量樣點數據進行0~30、0~60、0~90、0~120、0~150、0~180 cm深度的有機質含量估算,從而得到0~30、>30~60、>60~90、>90~120、>120~150和>150~180 cm共6層的有機質含量數據,通過半變異函數分析各土層的有機質含量空間變異特征,通過全局莫蘭指數和局部莫蘭指數分析各土層有機質含量的空間自相關性特征和聚集特征,并進行相關性檢驗,最后通過克里格插值獲取研究區農田的各土層有機質含量,為研究區深層土壤有機質含量的估算及農田土壤肥力評價和優化農業實踐措施提供依據。
研究區永濟市位于華北、西北、中原三大地域連接處的山西省西南端,隸屬于山西省運城市,東鄰山西省運城市,南依中條山,西臨黃河,北接山西省臨猗縣,地理坐標為110°15′00″~110°45′33″E、34°44′50″~35°04′50″N(圖1)。

圖1 研究區位置和采樣點分布圖
研究區屬溫帶大陸性氣候,年平均氣溫14.10 ℃,常年平均降水量530 mm。研究區地處山、塬、河的交匯處,地形南高北低,東西狹長,北部為平川,南部為中條山,海拔為334~1 993.9 m,差異較大。土地利用以旱地為主;土壤類型以褐土為主;土壤類型主要包括褐土、棕壤土、潮土、鹽土、石質土(圖2)。

圖2 土壤類型圖
Fig.2 Soil category
試驗地點設在永濟市的農田內,在10月份農作物收割之后,小麥種植之前,根據土壤類型確定了8個樣地,每個樣地3個垂直剖面,每個垂直剖面進行分層取樣(10 cm為1層),每層隨機取3個樣,同層進行土樣混合,形成混合樣,取到180 cm深度共18層,混合樣共計144個。每層土樣采用重鉻酸鉀容量法測定有機質的含量。這些數據用來進行表層反演深層有機質含量的模型建立。
研究區農田的表層(0~20 cm)土壤有機質含量數據采用永濟市耕地質量評價的研究成果,共3 519個采樣點(圖1)。基于山西省土類土壤系統獲取了研究區土壤類型(圖2),開展縣域尺度下的深層土壤有機質含量估算及空間變異特征分析。
2.2.1 深層有機質估算模型及驗證
本研究根據表層有機質含量與深層有機質含量的關系,提出了通過表層有機質含量估算深層有機質含量模型。

式中為0~cm的土壤有機質含量,%;0為土壤表層0~0cm的土壤有機質含量,%;為土壤深度,cm;、、、為常數。本研究0取20 cm。采用非線性回歸方法確定、、、常數的值,采用相對誤差進行模型的驗證,相對誤差越小越好。
2.2.2 半變異函數
半變異函數是研究土壤屬性在空間分布中的結構性、隨機性、相關性和依賴性等的主要工具之一[38]。半變異函數通過公式(2)進行估算。

式中(x)和(x+)分別是土壤有機質含量在空間位置x和x+處的觀測值;()是分隔距離為時的樣本點對數。
本研究采用半變異函數模型的指數模型[39],其計算方法為公式(3)。

塊基比(0/(0+1))用來表示由隨機部分引起的空間異質性在系統總變異中所占的比例,塊基比比值越小,空間相關性越強;塊基比小于25%具有空間強相關性、介于25%~75%之間具有中等程度空間相關性、大于75%具有空間弱相關性[40]。
2.2.3 空間自相關分析
通過全局莫蘭指數(Global Moran’s)(公式(4))[41],分析研究區有機質含量空間自相關分布特征。


通過95%為置信區間的檢驗(公式(5))對研究區有機質含量的空間自相關性分布特征進行顯著性檢驗。

式中Z為統計量得分;為全局莫蘭指數;為有機質采樣點個數;[]為莫蘭指數的期望值;[]為莫蘭指數的方差;|Z|>2.58(<0.01)為非常顯著相關,|Z|≥1.96(<0.05)為顯著相關,|Z|<1.96(>0.05)為不顯著相關。
以局部莫蘭指數(Local Moran's)在更細粒度范圍下對研究區的有機質含量進行聚類和異常值的分析,并在0.05顯著性水平下進行顯著性檢驗,具體局部莫蘭指數相關理論見參考文獻[43]。
2.2.4 基于克里格的空間預測與精度評價
本研究將研究區的3 519個有機質采樣點數據通過ArcGIS10.0地統計分析模塊的Subset Features子要素集模塊按80%為訓練樣點,20%為驗證樣點,將樣點數據分為兩部分。基于訓練樣點數據,采用GS+軟件求得最佳的半變異函數模型參數,并基于ArcGIS10.0克里格插值模塊生成各土層有機質含量,并對預測結果采用均方根誤差(root mean square error,RMSE)檢驗空間預測值的穩定性,值越小越穩定;采用平均絕對誤差(mean absolute error,MAE)檢驗模型的精度,值越小精度越高;采用標準化均方根誤差(root mean square standardized error,RMSSE)檢驗模型的擬合精度,值越接近于1,擬合精度越好。各指標的計算方法參考相關參考文獻[44]。
根據實測結果,繪制了土壤有機質含量在垂直剖面上的分布特征(圖3),并基于SPSS軟件,獲取不同土層的有機質含量統計特征值,并采用單樣本-法進行正態分布檢驗(表1)。土壤有機質含量隨深度的增加呈減少趨勢(圖3、表1)并呈負指數遞減變化(2=0.80,<0.01)(圖3),且0~60 cm范圍內土壤有機質含量的下降速率要大于>60~180 cm有機質含量下降速率。
由表1可知,0~30、>30~60、>60~90、>90~120、>120~150、>150~180 cm各層土壤有機質的質量分數分別為1.54%±0.68%、0.79%±0.30%、0.61%±0.22%、0.51%±0.23%、0.50%±0.24%、0.45%±0.21%,各層土壤有機質含量均值隨著深度的增加而減少。各層土壤有機質含量變異系數存在一定的差異,介于35.89%~47.84%之間,平均為43.16%,處于中等變異程度[44],且深層有機質含量的變異程度要高于表層。正態分布檢驗結果表明,各土層有機質含量數據均符合正態分布(>0.05),不同土層有機質含量的數據具有一定可比性。

圖3 土壤有機質含量隨土壤深度的變化圖

表1 不同土層土壤有機質含量基本統計參數
采用公式(1)進行表層有機質含量估算深層有機質含量模型的擬合,擬合得到參數、、、的值分別為0.0421、-0.2869、0.7001、-0.005,從而可以求得任意深度的、值(2=0.90,<0.01)。基于該模型,計算得到剖面數據各層的預測值,通過計算相對誤差,得到誤差小于16%的占到49.6%,介于16%~40%的占到44.1%,表明該模型能夠較好的用來估算深層有機質含量。
基于GS+地統計學軟件,分別計算土壤6個不同土層有機質含量的半變異函數及其相關參數,根據擬合決定系數(2)最大與殘差和(RSS)最小進行最佳模型的選擇。結果表明,各土層的最優模型均為指數模型(2>0.80,RSS<0.001),具體模型參數見表2。
從表2可以看到,各土層的變程大小基本一致,平均為11 240 m,可以看出研究區的農田土壤有機質含量空間自相關范圍較大,說明研究區各層有機質含量分布變化性較小。從塊金值0和塊基比(0/(0+1))分析,可以看出,研究區各土層的塊基比介于61.54%~72.45%之間,為中等程度空間相關性,表現為隨機因素對有機質含量空間結構變異貢獻較大。

表2 不同土層有機質含量指數函數模型參數特征
基于OpenGeoDa軟件和ArcGIS10.0對研究區各土層分別計算有機質含量的全局莫蘭指數(Moran’s),通過全局莫蘭指數進一步分析研究區各層有機質含量的空間自相關性,結果表明各層的全局莫蘭指數具有相似性,各層全局莫蘭指數Moran’s均值為0.26,表明該研究區的有機質含量的空間分布呈正相關特征,得分均值為59.21,大于正態分布99%置信區間雙側檢驗閾值2.58,且空間自相關性通過了0.01 顯著性檢驗,表明研究區農田的有機質含量在空間分布上存在聚集現象。
以0~30 cm土層為例,通過分析間隔距離與全局莫蘭指數的關系(圖4),可以看出,Moran’s隨著間隔距離的增大,出現先減小后增加的趨勢,且由正值變為負值,這表明研究區農田的有機質含量在一定間隔距離范圍內在空間上出現空間正相關性,但隨著間隔距離的增加空間正相關性逐漸消失,直到Moran’s=0表現出有機質含量空間分布呈現隨機性,隨著間隔距離的繼續增加,莫蘭指數出現負值,表明研究區農田有機質含量在空間上出現高值與低值相鄰的現象,當Moran’s等于0時對應的間隔距離為研究區的空間相關距,為此,本研究區的空間相關距為10 900 m,與通過半變異函數計算的變程為11 110 m有差異,與計算算法各異有關。

圖4 土壤有機質含量莫蘭指數圖(0~30 cm)
為了能夠在更細粒度范圍下對有機質含量的空間相關性進行探索,計算了各土層有機質含量的局部莫蘭指數,從而分析有機質含量的空間聚集和異常特征。各土層的局部莫蘭指數特征基本一致,本文以0~30 cm土層有機質含量的空間聚集特征為例,如圖5所示。
從圖5可以看出,各土層均出現了有機質含量的高值聚類(High-High)、低值聚類(Low-Low)、低值被高值包圍(Low-High)和高值被低值包圍(High-Low)的現象。對于高值和低值聚類的樣點有機質含量空間差異程度較小,存在較強的空間正相關;在高值被低值包圍或低值被高值包圍的樣點有機質含量空間差異性較大,存在較強的空間負相關,異質性突出,這與圖4的結果是一致的。

圖5 土壤有機質含量空間聚類和異常值分析(0~30 cm)
進一步對各土層樣點有機質含量的空間自相關性在95%置信水平下進行顯著性檢驗,各層有機質含量的顯著性水平基本類似,且分布特征基本一致。本文給出0~30 cm土層樣點有機質含量顯著性檢驗的空間分布特征和各土層的顯著性樣點數范圍,如圖6所示。

注:圖例括號中的數字為各土層顯著性樣點數量范圍。
檢驗結果表明,不顯著的樣點個數介于1 170~2 087之間,平均為1 375,占到總樣點個數的39.08%;達到95%置信水平但沒有達到99%置信水平的樣點個數介于480~608,平均為557,占到總樣點個數的15.83%;達到99%置信水平但沒有達到999%置信水平的樣點個數介于894~1 764,平均為1 587,占到總樣點個數的45.09%;達到999%顯著性水平的樣點個數為0。
從圖6可以看出,不顯著的區域主要分布在研究區的西中部和東北部,顯著性檢驗0.01<≤0.05的區域主要零星分布在北部,占的比例較小,顯著性檢驗0.001<≤0.01的區域主要集中在西南部、東南部、北部大部分區域。
通過局部莫蘭指數進一步分析了有機質含量各層空間聚類的空間分布特征,并在95%置信水平下進行檢驗。各土層的空間聚集特征基本一致。本文給出0~30 cm土層有機質含量的空間聚集分布特征和各土層的聚集特征樣點數范圍,如圖7所示。

注:圖例括號中的數字為各土層的聚集特征樣點數量范圍。
從圖7可以看出,對于不顯著表現出聚類特征的樣點數介于1 170~2 087之間,平均為1 375,占到總樣點個數的39.08%;對于顯著表現出High-High特征的樣點個數介于614~1 026之間,平均為850,占到總樣點個數的24.15%;對于顯著表現出Low-Low特征的樣點個數介于339~1 004之間,平均為736,占到總樣點個數的20.91%;對于顯著表現出Low-High特征的樣點個數介于174~292之間,平均為252,占到總樣點個數的7.16%;對于顯著表現出High-Low特征的樣點個數介于272~334之間,平均為306,占到總樣點個數的8.70%;結果表明,研究區農田土壤有機質含量呈現出空間聚類現象。
基于上述指數模型,采用克里格插值方法對研究區內農田土壤有機質含量進行空間預測,根據自然斷點法將有機質含量分為4個等級,根據插值結果可以看到各土層的有機質含量空間分布特征相似,本文以0~30 cm為例,農田有機質含量空間分布特征如圖8所示。從圖8可以看到,克里格插值的結果與空間聚類分析的結果保持一致。研究區農田各土層土壤有機質含量在東西方向沒有表現出明顯的趨勢,而在南北方向表現出明顯的北低南高趨勢。

圖8 土壤有機質含量空間預測分布圖(0~30 cm)
通過對克里格插值的各層有機質含量的分析(表3),可以看到0~30、>30~60、>60~90 cm、>90~120、>120~150、>150~180 cm各層土壤有機質的質量分數分別為1.30%、0.77%、0.61%、0.50%、0.49%、0.43%,且各層土壤有機質含量隨著深度的增加呈減少趨勢(2=0.93,<0.05),這與實測剖面的分析結果一致。
對各層土壤有機質含量預測結果通過均方根誤差(RMSE)、平均絕對誤差(MAE)和標準化均方根誤差(RMSSE)進行精度分析(表3)。

表3 不同土層克里格插值預測有機質含量精度分析
從表3可以看出,從預測結果的穩定性角度分析,0~30、>30~60、>60~90、>90~120、>120~150、>150~180 cm的均方根誤差分別為0.182、0.077、0.027、0.006、0.003、0.007,表明該模型對有機質含量的預測穩定性較高,隨著土層深度的增加,預測穩定性增加;從模型的精度角度分析,與穩定性結果吻合,各土層的平均絕對誤差為0.025,隨著土層深度的增加平均絕對誤差逐漸減小;從模型的擬合程度角度分析,各土層的標準化均方根誤差均達到了0.84以上,表明該模型的擬合程度較好。
研究結果表明研究區土壤有機質含量隨著土壤深度的增加,呈減少趨勢,且深層變異程度要大于表層,這與張娜等[24]的研究結果一致。主要原因在于農作物產生的大量枯落物的分解、還田秸稈的分解,主要集中在0~30 cm土層的作物根系分泌物以及蝸牛、蚯蚓等動物的活動等都為0~30 cm土層提供了豐富的有機質。而隨著深度的增加,土壤緊實度增加,作物根系分布較少,受外界環境的影響逐漸減少,故有機質含量減少。
本研究在表層有機質含量估算深層有機質含量的模型建立時,僅僅考慮了表層是(0~20 cm)的情況,今后會考慮不同深度表層數據對模型精度的影響。由于實測數據數量較少,加之有機質含量的空間變異性強,為此加大實測數據量和對模型精度的驗證有待提高。通過GS+空間變異理論進行半變異函數分析時得到的半變異函數模型擬合程度最高,殘差和最小的是指數模型,這與鄭然等[45]的研究結果是一致的。通過半變異函數和全局莫蘭指數分析,研究區不同土層的有機質含量表現出中等程度的空間正相關性,且隨著深度的增加隨機性因素占的比例逐漸增大,這與程先富等[46]、張娜等[47]的研究結果一致,通過局部莫蘭指數分析,不同土層均表現出空間聚集現象,這與劉麗[48]的研究結果一致。
研究區不同土層的有機質含量呈破碎斑塊狀分布格局,整體來看,土壤有機質含量主要表現為由北向南逐漸增大的趨勢、顯著低值聚類區域主要分布于張營鎮的大部分區域、開張鎮的西部、卿頭鎮的北部和東南部及韓陽鎮的西南部,主要的土地利用類型為旱地;顯著高值聚類區域主要分布于永濟市城西、蒲州鎮大部分區域、虞鄉鎮南部區域,主要的土地利用類型為水澆地;不顯著出現聚類特征主要分布在永濟市城東、城北以及開張鎮的大部分區域,主要受人類活動的影響。
已有研究表明,有機質含量受氣候、地形、土壤類型、土壤水分、植被類型、人類活動等因素的影響[49-50]。在該研究區內由于氣溫和降水量的差異不是很明顯,為此氣候因素對有機質含量的空間分布影響較小;研究區內的地形明顯表現為北低南高,北部為平川,海拔在350 m左右,由于地勢較低,部分地區為鹽堿下濕地,該部分區域的有機質含量較低;研究區的耕地類型主要為旱地、水澆地和河灘地3類,水澆地和旱地的有機質含量高于河灘地的有機質含量;研究區農田土壤類型主要有褐土性土、石灰性褐土、典型褐土、潮褐土、潮土、鹽土,其中褐土性土和潮土分布的區域有機質含量較高,而在石灰性褐土和典型褐土區域有機質含量相對較低,研究區農田有機質含量受土壤類型的影響,人類活動包括耕作措施也會對有機質含量的分布造成影響,有待進一步定量的分析其影響因素。
本研究在分析空間變異特征時沒有從各向異性的角度深入分析,且本研究是基于縣域尺度進行,相關研究表明[51-52],區域尺度和采樣點數目及密度都會對空間變異結果有所影響,今后在縣域范圍內考慮不同的鄉鎮或村尺度,以及采樣點的數量、各向異性等方面綜合考慮來更進一步分析研究區的有機質含量空間結構特征。
根據農業土壤養分分級標準[53-54]對有機質含量(%)的劃分:有機質質量分數>4%為極高,3%<有機質質量分數≤4%為很高,2%<有機質質量分數≤3%為高,1%<有機質質量分數≤2%為中,0.6%<有機質質量分數≤1%為低,有機質質量分數≤0.6%為很低。耕層(0~30 cm)的有機質含量為中等級別,>30~60、>60~90 cm的有機質含量為低等級別,>90~120、>120~150、>150~180 cm深度的有機質為很低級別。可以看到研究區的有機質含量不高,土壤肥力中等,這與陳陽等[55]的研究結果一致。
本研究基于縣域尺度分析了農田深層有機質含量與表層有機質含量的關系及有機質含量的空間變異特征,得出以下結論:
1)縣域尺度土壤有機質含量隨著土層深度的增加而呈負指數減少趨勢(2=0.80,<0.01),研究區內各土層的有機質含量處于中等變異程度,且隨著土層深度的增加變異程度呈增加趨勢。通過負指數模型可以有效地估算出深層有機質含量。
2)結合變異函數、空間自相關方法可以揭示各層土壤有機質含量的空間變異性和空間相關性特征。各土層的有機質含量的塊基比介于61.54%~72.45%之間,呈現出中等程度的空間正相關性,空間相關距為10 900 m,且研究區各土層存在39.08%的樣點沒有表現出空間聚集特征(>0.05),60.92%的樣點表現出顯著的空間聚集特征(≤0.05)。
3)采用克里格插值預測研究區各土層的有機質含量精度高,穩定性好,擬合效果較好,可以為縣域尺度深層有機質的估算,實現土壤減肥增效、綠色增產增效提供依據。
[1]Johan Six, Keith Paustian. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool[J]. Soil Biology and Biochemistry, 2014, 68(1): A4-A9.
[2]趙業婷,常慶瑞,李志鵬,等. 1983-2009年西安市郊區耕地土壤有機質空間特征與變化[J]. 農業工程學報,2013,29(2):132-140. Zhao Yeting, Chang Qingrui, Li Zhipeng, et al. Spatial characteristics and changes of soil organic matter for cultivated land in suburban area of Xi’an from 1983 to 2009[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 132-140. (in Chinese with English abstract)
[3]劉文杰,蘇永中,楊榮,等. 黑河中游臨澤綠洲農田土壤有機質時空變化特征[J]. 干旱區地理,2010,33(2):170-176. Liu Wenjie, Su Yongzhong, Yang Rong, et al. Characteristics of spatio-temporal changes of soil organic matter in typical oasis croplands of Linze County at middle reaches of Heihe River[J]. Arid Land Geography, 2010, 33(2): 170-176. (in Chinese with English abstract)
[4]譚岑,竇森,靳亞雙,等. 秸稈深還對黑土耕層根區養分空間分布的影響[J]. 吉林農業大學學報,2018,40(5):75-81. Tan Cen, Dou Sen, Jin Yashuang, et al. Effects of corn stover deep incorporation on spatial distribution of nutrients in root zone of black soil[J]. Journal of Jilin Agricultural University, 2018, 40(5): 75-81. (in Chinese with English abstract)
[5]楊景成,韓興國,黃建輝,等. 土壤有機質對農田管理措施的動態響應[J]. 生態學報,2003,23(4):787-796. Yang Jingcheng, Han Xingguo, Huang Jianhui, et al. The dynamics of soil organic matter in cropland responding to agricultural practices[J]. Acta Ecologica sinica, 2003, 23(4): 787-796. (in Chinese with English abstract)
[6]江葉楓,孫凱,郭熙,等. 南方紅壤區不同侵蝕程度下土壤有機質空間變異的影響因素研究[J]. 自然資源學報,2018,33(1):149-160. Jiang Yefeng, Sun Kai, Guo Xi, et al. Spatial variability of organic matter and its influencing factors in red soil with different erosion degrees in South China[J]. Journal of Natural Resources, 2018, 33(1): 149-160. (in Chinese with English abstract)
[7]張法升,劉作新,張穎,等. 農田土壤有機質空間變異的尺度效應[J]. 中國科學院研究生院學報,2009,26(3):350-356. Zhang Fasheng, Liu Zuoxin, Zhang Ying, et al. Scaling effect on spatial variability of soil organic matter in crop land[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(3): 350-356. (in Chinese with English abstract)
[8]楊之江,陳效民,景峰,等. 基于GIS和地統計學的稻田土壤養分與重金屬空間變異[J]. 應用生態學報,2018,29(6):172-180. Yang Zhijiang, Chen Xiaomin, Jing Feng, et al. Spatial variability of nutrients and heavy metals in paddy field soils based on GIS and Geostatistics[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 172-180. (in Chinese with English abstract)
[9]趙明松,張甘霖,吳運金,等. 江蘇省土壤有機質含量時空變異特征及驅動力研究[J]. 土壤學報,2014,51(3):448-458. Zhao Mingsong, Zhang Ganlin, Wu Yunjin, et al. Temporal and spatial variability of soil organic matter and its driving force in Jiangsu Province, China[J]. Acta Pedologica Sinica, 2014, 51(3): 448-458. (in Chinese with English abstract)
[10]王瓊,陳兵,王方永,等. 基于HJ衛星的棉田土壤有機質空間分布格局反演[J]. 農業工程學報,2016,32(1):174-180. Wang Qiong, Chen Bing, Wang Fangyong, et al. Inversion for spatial distribution pattern of soil organic matter based on HJ image in oasis cotton field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 174-180. (in Chinese with English abstract)
[11]夏楠,塔西甫拉提·特依拜,丁建麗,等. 基于多光譜數據的荒漠礦區土壤有機質估算模型[J]. 農業工程學報,2016,32(6):263-267. Xia Nan, Tashpolat·Tiyip, Ding Jianli, et al. Estimation model of soil organic matter in desert mining area based on multispectral image data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 263-267. (in Chinese with English abstract)
[12]張新樂,竇欣,謝雅慧,等. 引入時相信息的耕地土壤有機質遙感反演模型[J]. 農業工程學報,2018,34(4):143-150. Zhang Xinle, Dou Xin, Xie Yahui, et al. Remote sensing inversion model of soil organic matter in farmland by introducing temporal information[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 143-150. (in Chinese with English abstract)
[13]Levine E R, Ranson K J, Smith J A, et al. Forest ecosystem dynamics: Linking forest succession, soil process and radiation models[J]. Ecological Modelling, 1993, 65(3/4): 199-219.
[14]劉煥軍,潘越,竇欣,等.黑土區田塊尺度土壤有機質含量遙感反演模型[J].農業工程學報,2018,34(1):127-133 Liu Huanjun, Pan Yue, Dou Xin, et al. Soil organic matter content inversion model with remote sensing image in field scale of blacksoil area[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34 (1): 127-133.(in Chinese with English abstract)
[15]Morellos A, Pantazi X E, Moshou D, et al. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy[J]. Biosystems Engineering, 2016, 152(9): 104-116.
[16]馬玥,姜琦剛,孟治國,等. 基于RF—GABPSO混合選擇算法的黑土有機質含量估測研究[J]. 光譜學與光譜分析,2018,38(1):181-187. Ma Yue, Jiang Qigang, Meng Zhiguo, et al. Black soil organic matter content estimation using hybrid selection method based on RF and GABPSO[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 181-187. (in Chinese with English abstract)
[17]徐夕博,呂建樹,吳泉源,等. 基于PCA-MLR和PCA-BPN的萊州灣南岸濱海平原土壤有機質高光譜預測研究[J]. 光譜學與光譜分析,2018,38(8):238-244. Xu Xibo, Lü Jianshu, Wu Quanyuan, et al. Prediction of soil organic matter based PCA-MLR and PCA-BPN algorithm using field VNIR Spectroscopy in coastal soils of southern Laizhou Bay[J]. Spectroscopy and Spectral Analysis, 2018, 38(8): 238-244. (in Chinese with English abstract)
[18]王海峰,張智韜,Karnieli A,等. 基于灰度關聯-嶺回歸的荒漠土壤有機質含量高光譜估算[J]. 農業工程學報,2018,341(14):132-139. Wang Haifeng, Zhang Zhitao, Karnieli A, et al. Hyperspectral estimation of desert soil organic matter content based on gray correlation-ridge regression model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 341(14): 132-139. (in Chinese with English abstract)
[19]劉煥軍,潘越,竇欣,等. 黑土區田塊尺度土壤有機質含量遙感反演模型[J]. 農業工程學報,2018,34(1):127-133. Liu Huanjun, Pan yue, Dou Xin, et al. Soil organic matter content inversion model with remote sensing image in field scale of blacksoil area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 127-133. (in Chinese with English abstract)
[20]周倩倩,丁建麗,唐夢迎,等. 干旱區典型綠洲土壤有機質的反演及影響因素研究[J]. 土壤學報,2018,55(2):313-324. Zhou Qianqian, Ding Jianli, Tang Mengying, et al. Inversion of soil organic matter content in oasis typical of arid area and its influencing factors[J]. Acta Pedologica Sinica, 2018, 55(2): 313-324. (in Chinese with English abstract)
[21]景莎,田靜,M Luke McCormack,等. 長白山原始闊葉紅松林土壤有機質組分小尺度空間異質性[J]. 生態學報,2016,36(20):6445-6456. Jing Sha, Tian Jing, M Luke McCormack, et al. Small-scale spatial heterogeneity of soil organic matter fractions within an original broad-leaved Korean pine forest in Changbai Mountain, China[J]. Acta Ecologica Sinica, 2016, 36(20): 6445-6456. (in Chinese with English abstract)
[22]高洋,王根緒,高永恒. 長江源區高寒草地土壤有機質和氮磷含量的分布特征[J]. 草業科學,2015,32(10):1548-1554. Gao Yang, Wang Genxu, Gao Yongheng. Distribution characteristics of soil organic matter and nitrogen, phosphor content in alpine grass land ecosystem in upper Yangtze River[J]. Pratacultural Science, 2015, 32(10): 1548-1554. (in Chinese with English abstract)
[23]劉繼龍,馬孝義,付強,等. 不同土層土壤特性空間變異性關系的聯合多重分形研究[J]. 農業機械學報,2012,43(5):37-42. Liu Jilong, Ma Xiaoyi, Fu Qiang, et al. Joint multifractal of relationship between spatial variability of soil properties in different soil layers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(5): 37-42. (in Chinese with English abstract)
[24]張娜,張紅玲,屈忠義,等. 內蒙古河套灌區不同土層有機質空間變異的分形[J]. 干旱地區農業研究,2017,35(5):157-163. Zhang Na, Zhang Hongling, Qu Zhongyi, et al. Fractal study on organic matter spatial heterogeneity of different soil layers in Inner Mongolia Hetao Irrigation District[J]. Agricultural Research In The Arid Areas, 2017, 35(5): 157-163. (in Chinese with English abstract)
[25]白建軍,白江濤,王磊. 2000-2010年陜北地區植被NDVI時空變化及其與區域氣候的關系[J]. 地理科學,2014,34(7):882-888. Bai Jianjun, Bai Jiangtao, Wang Lei. Spatio-temporal change of vegetation NDVI and its relations with regional climate in northern Shanxi Province in 2000-2010[J]. Scientia Geographica Sinica, 2014, 34(7): 882-888. (in Chinese with English abstract)
[26]張川,張偉,陳洪松,等. 喀斯特典型坡地旱季表層土壤水分時空變異性[J]. 生態學報,2015,35(19):6326-6334. Zhang Chuan, Zhang Wei, Chen Hongsong, et al. Temporal and spatial variation in surface soil moisture content of karst slopes in the dry season[J]. Acta Ecologica Sinica, 2015, 35(19): 6326-6334. (in Chinese with English abstract)
[27]付同剛,陳洪松,張偉,等. 喀斯特小流域土壤含水率空間異質性及其影響因素[J]. 農業工程學報,2014,30(14):124-131. Fu Tonggang, Chen Hongsong, Zhang Wei, et al. Vegetation coverage and its correlation with topographic factors in upstream watershed of Minjiang River[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 124-131. (in Chinese with English abstract)
[28]蘇松錦,劉金福,馬瑞豐,等. 戴云山黃山松幼苗更新與土壤有機碳空間異質性的關系[J]. 應用與環境生物學報,2014,20(6):986-991. Su Songjin, Liu Jinfu, Ma Ruifeng, et al. Relationship between the spatial heterogeneity of soil organic carbon and Pinusregeneration seedlings[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(6): 986-991. (in Chinese with English abstract)
[29]張晗,趙曉敏,歐陽真程,等. 多尺度下的南方山地丘陵區耕地質量空間自相關分析:以江西省黎川縣為例[J]. 中國生態農業學報,2018,26(2):263-273. Zhang Han, Zhao Xiaomin, Ouyang Chenzhen, et al. Multi-scale spatial autocorrelation analysis of cultivated land quality in China's southern hillside areas: A case study of Lichuan County, Jiangxi Province[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 263-273. (in Chinese with English abstract)
[30]季斌,周濤發,袁峰,等. 地球化學的空間自相關異常信息提取方法[J]. 測繪科學,2017,42(8):24-27. Ji Bin, Zhou Taofa, Yuan Feng, et al. A method for identifying geochemical anomalies based on spatial autocorrelation[J]. Science of Surveying and Mapping, 2017, 42(8): 24-27. (in Chinese with English abstract)
[31]張春梅,張小林,徐海英,等. 基于空間自相關的區域經濟極化結構演化研究:以江蘇省為例[J]. 地理科學,2018,38(4):557-563. Zhang Chunmei, Zhang Xiaolin, Xu Haiying, et al. Evolution of regional reconomic polarization structure based on spatial autocorrelation: A case study of Jiangsu Province[J]. Scientia Geographica Sinica, 2018, 38(4): 557-563. (in Chinese with English abstract)
[32]趙彥鋒,李豪杰,陳杰,等. 基于土壤變異解釋力的幾種土壤制圖方法的對比研究:以南陽市1m土體土壤有機碳密度制圖為例[J]. 土壤學報,2018,55(1):43-53. Zhao Yanfeng, Li Haojie, Chen Jie, et al. Comparison between soil mapping approaches based on their ability explaining soil variability: A case of mapping soil organic Carbon density of soil(0-1 m)in Nanyang district[J]. Acta Pedologica Sinica, 2018, 55(1): 43-53. (in Chinese with English abstract)
[33]Wu Z H, Liu Y F, Chen Y Y, et al. Spatial interpolation model of soil organic carbon density considering land-use and spatial heterogeneity[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 238-246.
[34]龍軍,張黎明,周碧青,等. 復雜地貌類型區耕地土壤有機質空間插值方法研究[J]. 土壤學報,2014,51(6):1270-1281. Long Jun, Zhang Liming, Zhou Biqing, et al. Spatial interpolation of soil organic matter in farmlands in areas complex in landform[J]. Acta Pedologica Sinica, 2014, 51(6): 1270-1281. (in Chinese with English abstract)
[35]張世文,黃元仿,苑小勇,等. 縣域尺度表層土壤質地空間變異與因素分析[J]. 中國農業科學,2011,44(6):1154-1164. Zhang Shiwen, Huang Yuanfang, Yuan Xiaoyong, et al. The spatial variability and factor analyses of top soil texture on a county scale[J]. Scientia Agricultura Sinica, 2011, 44(6): 1154-1164. (in Chinese with English abstract)
[36]趙越,羅志軍,廖牧鑫,等. 泰和縣耕地土壤養分空間分布及影響因素[J]. 水土保持學報,2018,32(5):299-306. Zhao Yue, Luo Zhijun, Liao Muxin, et al. Study on the spatial distribution of soil nutrients and its influencing factors in the cultivated land of Taihe County[J]. Journal of Soil and Water Conservation, 2018, 232(5): 299-306. (in Chinese with English abstract)
[37]于雷,魏東,王惠霞,等. 江漢平原縣域尺度土壤有機質空間變異特征與合理采樣數研究[J]. 自然資源學報,2016,31(5):855-863. Yu Lei, Wei Dong, Wang Huixia, et al. Spatial variability of soil organic matter and appropriate number of samples on county scale in Jianghan Plain[J]. Journal of Natural Resources, 2016, 31(5): 855-863. (in Chinese with English abstract)
[38]于洋,衛偉,陳利頂,等. 黃土高原年均降水量空間插值及其方法比較[J]. 應用生態學報,2015,26(4):999-1006. Yu Yang, Wei Wei, Chen Liding, et al. Comparison on the methods for spatial interpolation of the annual average precipitation in the Loess Plateau regions[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 999-1006. (in Chinese with English abstract)
[39]李金浩,王愛慧. 基于西南地區臺站降雨資料空間插值方法的比較[J]. 氣候與環境研究,2019,24(1):50-60. Li Jinjie, Wang Aihui. Comparison of spatial interpolation methods based on monthly precipitation observation data of station in Southwest China[J]. Climatic and Environmental Research, 2019, 24(1): 50-60. (in Chinese with English abstract)
[40]蔣勇軍,袁道先,謝世友,等. 典型巖溶流域土壤有機質空間變異:以云南小江流域為例[J]. 生態學報,2007,27(5):233-234. Jiang Yongjun, Yuan Daoxian, Xie Shiyou, et al. Spatial variability of soil organic matter content in a typical karst watershed: Case study of Xiaojiang watershed, Yunnan Province[J]. Acta Ecologica sinica, 2007, 27(5): 233-234. (in Chinese with English abstract)
[41]賀冉冉,朱蘭保,周開勝. 基于時間序列模型殘差的中國東部地區空氣質量指數(AQI)空間自相關特征分析[J]. 環境科學學報,2017,37(7):2459-2467. He Ranran, Zhu Lanbao, Zhou Kaisheng. Spatial autocorrelation analysis of air quality index (AQI) in eastern China based on residuals of time series models[J]. Acta Scientiae Circumstantiae, 2017, 37(7): 2459-2467. (in Chinese with English abstract)
[42]張金茜,鞏杰,馬學成,等. 基于GeoDA的甘肅白龍江流域景觀破碎化空間關聯性[J]. 生態學雜志,2018,37(5):1476-1483. Zhang Jinxi, Gong Jie, Ma Xuecheng, et al. GeoDA-based spatial correlation analysis of landscape fragmentation in Bailongjiang Watershed of Gansu[J]. Chinese Journal of Ecology, 2018, 37(5): 1476-1483. (in Chinese with English abstract)
[43]楊永俠,王旭,孟丹,等. 基于空間自相關的耕地等別指數檢驗方法研究[J]. 農業機械學報,2016,47(5):328-335. Yang Yongxia, Wang Xu, Meng Dan, et al. Test method of cultivated land grading index based on spatial autocorrelation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 328-335. (in Chinese with English abstract)
[44]胡克林,李保國,呂貽忠,等. 非平穩型區域土壤汞含量的各種估值方法比較[J]. 環境科學,2004,25(3):132-137. Hu Kelin, Li Baoguo, Lv Yizhong, et al. Comparison of various spatial interpolation methods for non-stationary regional soil mercury content[J]. Environmental Science, 2004, 25(3): 132-137. (in Chinese with English abstract)
[45]鄭然,鄭寶林. 冀北栗鈣土區耕層土壤有機質和全氮的空間變異特征[J]. 干旱區資源與環境,2018,32(5):123-129. Zhen Ran, Zheng Baolin. Spatial variability of soil organic matter and total nitrogen in chestnut soil region of northern Hebei[J]. Journal of Arid Land Resources and Environment, 2018, 32(5): 123-129. (in Chinese with English abstract)
[46]程先富,史學正,于東升,等. 江西省興國縣土壤全氮和有機質的空間變異及其分布格局[J]. 應用與環境生物學報,2004,10(1):64-67. Cheng Xianfu, Shi Xuezheng, Yu Dongsheng, et al. Spatial variance and distribution of total nitrogen and organic matter of soil in Xingguo County of JiangXi, China[J]. Chinese Journal of Applied Environmental Biology, 2004, 10(1): 64-67. (in Chinese with English abstract)
[47]張娜,張棟良,屈忠義,等. 不同土層土壤粒徑及有機質含量空間變異的相關性研究[J]. 節水灌溉,2016(12):1-7. Zhang Na, Zhang Dongliang, Qu Zhongyi, et al. Correlation of spatial variability of soil partical size and organic matter at different soil layers[J]. Water Saving Irrigation, 2016(12): 1-7. (in Chinese with English abstract)
[48]劉麗. 黑龍江省黑土有機碳的研究[D]. 哈爾濱:東北農業大學,2010. Liu Li. Study on Soil Organic Carbon of Black Soil of Heilongjiang Province[D]. Haerbin: Northeast Agricultural University, 2010. (in Chinese with English abstract)
[49]李小涵,郝明德,王朝輝,等. 農田土壤有機碳的影響因素及其研究[J]. 干旱地區農業研究,2008,26(3):176-181. Li Xiaohan, Hao Mingde, Wang Zhaohui, et al. Factors affecting soil organic carbon in cropland and their regulation[J]. Agricultural Research in the Arid Areas, 2008, 26(3): 176-181. (in Chinese with English abstract)
[50]馬渝欣,李徐生,李德成,等. 安徽省皖南山區農田土壤表層有機碳空間變異及其影響因素:以宣州區為例[J]. 土壤通報,2014,45(6):1424-1429. Ma Yuxin, Li Xusheng, Li Decheng, et al. Spatial variation and influencing factors of SOC contents of surface soils in the Southern Mountains of Anhui: A case study with Xuanzhou district[J]. Chinese Journal of Soil Science, 2014, 45(6): 1424-1429. (in Chinese with English abstract)
[51]張世文,葛暢,陳曉輝,等. 區域土壤有機碳空間分布特征與尺度效應[J]. 農業工程學報,2018,34(2):159-168. Zhang Shiwen, Ge Chang, Chen Xiaohui, et al. Spatial distribution characteristics and scale effects of regional soil organic carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 159-168. (in Chinese with English abstract)
[52]程道全,巫振富,劉曉冰,等. 樣點密度對土壤有機質空間預測結果的影響:以河南封丘縣土壤為例[J]. 土壤通報,2013,44(4):844-850. Chen Daoquan, Wu Zhenfu, Liu Xiaobing, et al. Influences of sample density on spatial prediction of soil organic matter content: A case study from Fengqiu county, Henan Province[J]. Chinese Journal of Soil Science, 2013, 44(4): 844-850. (in Chinese with English abstract)
[53]范文杰. 冀東平原地區土壤肥力及其分異特性研究:以河北省吳橋縣為例[D]. 北京:北京林業大學,2014. Fan Wenjie. A Study on Soil Fertility and Its Spatial Variation Distribution in Eastern Hebei Plain: Taking Wuqiao County of Hebei Province as a Case[D]. Beijing: Beijing Forestry University, 2014. (in Chinese with English abstract)
[54]孫建波. 山東省高密市農田土壤養分時空變異規律及可持續利用對策研究[D]. 泰安:山東農業大學,2009. Sun Jianbo. Spatial and Temporal Changes of Soil Nutrient and Sustainable Utilization Evaluation in Gaomi County of Shandong Province[D]. Taian: Shandong Agricultural University, 2009. (in Chinese with English abstract)
[55]陳陽,褚清河,董聯春,等. 山西永濟耕地土壤類型與土壤養分監測[J]. 山西農業大學學報,1993,13(2):158-162. Chen Yang, Chu Qinghe, Dong Lianchun, et al. Soil type and soil nutrient monitoring in cultivated land of Yongji, Shanxi[J]. Journal of Shanxi Agricultural University, 1993, 13(2): 158-162. (in Chinese with English abstract)
Estimation and spatial variability of organic matter in deep soil of farmland at county scale
Wang Guofang1, Zhang Wuping2※, Bi Rutian1, Zhang Qian1, Ren Jian1, Qiao Lei1, Shen Ruoyu1, Wang Peihao1
(1.,,030801,; 2.,,030801,)
The county area is the basic unit for implementing green development of agriculture. In the farmland soil, not only the organic matter of the plough layer will affect the soil fertility, but also the role of deep organic matter can be neglected. Therefore, it is of great significance to accurately estimate the deep organic matter content of the farmland based on the county scale. This study selected the farmland in Yongji City, Yuncheng City, Shanxi Province as the research area. According to the soil types, 8 plots were determined, 3 vertical sections for each plot, and each vertical section was sampled by layer (10 cm for 1 layer). Three samples were randomly selected from each layer, and soil samples were mixed in the same layer. A mixed sample was formed, and a total of 18 layers of 180 cm depth were obtained, and a total of 144 samples were mixed. The organic matter content of each layer of soil was determined by the potassium dichromate volumetric method. A model for estimating the content of deep organic matter in the surface layer (0-20 cm) was established. Based on variogram and spatial autocorrelation, a total of 6 soil organic matters were analyzed from 0 to 30 cm, 30 to 60 cm, 60 to 90 cm, 90 to 120 cm, 120 to 150 cm and 150 to 180 cm. The spatial variability and clustering characteristics were tested and the correlation test was carried out. The Kriging interpolation method was used to predict the organic matter content of the farmland in the study area. The results showed that: 1) The content of soil organic matter decreased with the increase of depth and decreased with negative index (2=0.80,<0.01), and the rate of decline of soil organic matter content in the range of 0-60 cm was greater than that of 60-180 cm. The organic matter content data of each soil layer accorded with the normal distribution (>0.05), which was moderately mutated. The degree of variation of organic matter in each layer was different, ranging from 35.89% to 47.84 %. 2) The organic matter content at any depth could be estimated by the surface organic matter content, and the fitting accuracy2=0.90 (<0.01) , the error was less than 16%, accounting for 49.6%, and between 16% and 40%, accounting for 44.1%. 3) The index model was the best model to reflect the spatial structure of organic matter in this region (2>0.80, RSS<0.001). The sill (0/(0+1)) of each soil layer in the study area was between 61.54% and 72.45%, which was moderately spatially correlated. The random factor contributed a lot to the spatial structure variation of organic matter content. 4) The global Moran index of Moran'swas 0.26, and the spatial distribution of organic matter content was positively correlated, and passed the 0.01 significance test. The organic matter content of farmland in the study area had high value clustering (High-High), low-valued aggregate (Low-Low), high value surrounded by low-valued (High-Low), and low-value surrounded by low-valued (Low-High). In space, it was characterized by low concentration of organic matter in the north and high concentration in the south. 5) Kriging interpolation could better predict the organic matter content of each layer in the study area, with high prediction accuracy and good stability. The prediction results showed that the organic matter content of the farmland layer (0-30 cm) in the study area was medium; and the organic matter contents of 30-60 and 60-90 cm were lower; the organic matters at a depth of 90-120, 120-150, 150 to 180 cm were very low. It could be seen that the organic matter content of the study area was not high and the soil fertility was moderate. It was an estimation of deep organic matter at the county scale, adjusting agronomic measures, improving soil fertility, and achieving soil weight loss and efficiency. The study provides a basis for green production and efficiency.
soils; organic matter; inversion; county scale; farmland; spatial variability; Kriging interpolation
王國芳,張吳平,畢如田,張茜,任健,喬磊,申若禹,王佩浩. 縣域尺度農田深層土壤有機質的估算及空間變異特征[J]. 農業工程學報,2019,35(22):122-131. doi:10.11975/j.issn.1002-6819.2019.22.014 http://www.tcsae.org
Wang Guofang, Zhang Wuping, Bi Rutian, Zhang Qian, Ren Jian, Qiao Lei, Shen Ruoyu, Wang Peihao. Estimation and spatial variability of organic matter in deep soil of farmland at county scale[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 122-131. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.22.014 http://www.tcsae.org
2019-04-22
2019-10-18
山西省重點研發計劃項目(201703D211002-2-1)
王國芳,講師,主要從事植物-土壤信息技術與3S技術研究。Email:guofang19800104@126.com
張吳平,博士,教授,主要從事植物-土壤系統模擬研究和資源環境信息技術研究方向。Email:zwping@126.com
10.11975/j.issn.1002-6819.2019.22.014
S153.6
A
1002-6819(2019)-22-0122-10