李 軼,宮興隆,于嘉琪,郭敬陽,曲壯壯,張 鎮,易維明
·農業資源循環利用工程·
硼泥對豬糞厭氧發酵重金屬鉻及其光譜特性的影響
李 軼1,宮興隆1,于嘉琪1,郭敬陽1,曲壯壯1,張 鎮1,易維明2※
(1. 沈陽農業大學工程學院,沈陽 110866;2. 山東理工大學農業工程與食品科學學院,淄博 255049)
隨著含有重金屬添加劑飼料的使用,規模化養殖場畜禽糞便中重金屬含量增加。為減少重金屬的危害,該文以豬糞為發酵原料,重金屬Cr為研究對象,硼泥為鈍化劑,在接種物量為30%、TS為10%、溫度為35 ℃、pH值為7的條件下進行40 d厭氧發酵試驗。研究添加2.5%、5.0%、7.5% 3種比例的硼泥對豬糞厭氧發酵中重金屬Cr的形態變化、有效態鈍化效果及發酵前后沼渣光譜特征的影響,采用BCR連續提取法(European community bureau of reference sequential extraction)分析重金屬Cr的形態變化,采用傅里葉紅外光譜(Fourier transform infrared spectrometer, FTIR)對物料光譜特征的變化進行研究。結果表明:豬糞厭氧發酵過程中添加硼泥有利于重金屬Cr從有效態轉化為穩定態,當添加7.5%硼泥處理時有效態Cr轉化為穩定態Cr的效果較好;豬糞在厭氧發酵過程中添加硼泥能提高重金屬Cr的鈍化效果,且隨著硼泥添加量的增加,鈍化效果越好;通過顯著性分析,添加7.5%硼泥處理時鈍化效果較好,達到63.79%,顯著優于豬糞單獨發酵和添加2.5%與5.0%硼泥的處理(<0.05);FTIR顯示厭氧發酵后,沼渣中酰胺化合物、碳水化合物、蛋白質、脂肪族化合物等有機物分解減少,芳香族等腐殖質增加,且添加7.5%硼泥時有機物腐殖化程度最好。因此豬糞在厭氧發酵過程中添加適量硼泥,可以降低沼渣中重金屬Cr的生物有效性,促進有機物轉化為腐殖質,研究結果可為減少豬糞中重金屬的有效性和提高厭氧發酵質量提供參考。
糞;厭氧發酵;重金屬;硼泥;鈍化;光譜分析
隨著畜禽養殖業的迅猛發展[1],為提高飼料利用率、加快畜禽生長速度,重金屬元素Cr、Cd、Cu、Zn等被添加到飼料中,但畜禽對飼料中重金屬元素的利用率較低,大部分重金屬隨糞便排出,從而導致養殖場畜禽糞污中重金屬含量較高[2-4]。隨著這些含有重金屬元素的畜禽糞便施入土壤,將會造成土壤重金屬污染和農作物中毒,最終會通過食物鏈危及人體健康[5-7]。鉻(Cr)既是人體必需的元素,又是一種有毒的元素。Cr3+對人體的傷害較小,Cr6+毒性則很強,過量吸入鉻會引起呼吸道感染、支氣管癌、消化道癌、肺癌等疾病[8]。
厭氧發酵是政府大力倡導的處理規?;B殖場畜禽糞便的方式[9]。在畜禽糞便厭氧發酵過程中添加鈍化劑能在一定程度上減少重金屬的危害[10]。畜禽糞便堆肥處理過程重金屬鈍化研究的較多,如Chen等研究竹炭的添加對豬糞堆肥過程中重金屬的影響,發現豬糞與9%竹炭的共同堆肥可顯著降低Cu(35%)和Zn(39%)的流動性[11]。Wang等的研究也表明膨潤土和生物炭在豬糞堆肥過程中會降低Cu和Zn的生物有效態的含量占比[12]。另外,有研究指出,豬糞處理過程中重金屬鈍化與物料中有機物的降解和腐殖質的形成具有一定的相關性[13]。腐殖質是豬糞發酵過程中有機物腐殖化的產物,具有強吸附性和高穩定性[14]。其中包含大量的羧基、羰基等官能團與重金屬發生吸附絡合反應,有助于降低重金屬的生物有效性[15]。李軼等表明在豬糞厭氧發酵中添加海泡石促進了物料的腐殖化程度,提高了重金屬Cd的鈍化,且大部分的Cd存在于腐殖質中[16]。
近幾年現代光譜學技術得到了快速發展。元素分析、紅外/紫外/熒光光譜分析、核磁共振分析等技術常被用于分析畜禽糞便處理過程中物料有機質的結構變化特征。其中利用傅里葉紅外光譜法(FTIR)研究有機物結構變化具有測量所需樣品量小、靈敏度高、測量速度快等優點[17]。Vergnoux等研究表明FTIR可以反映出堆肥過程中多糖、脂肪等有機物的減少及芳香結構的增加,可為研究堆肥中有機成分的轉化提供有利證據[18]。李榮華等通過FTIR等分析方法研究豬糞堆肥樣品中的光譜特性,均指出在豬糞堆肥處理中添加鈍化劑可以促進有機物降解并提高堆肥的腐殖化程度[19-20]。但是關于添加鈍化劑在畜禽糞便厭氧處理對重金屬的影響報道較少,而且厭氧發酵前后有機物的結構變化對重金屬鈍化的影響研究也相對較少。因此,本試驗采用BCR連續提取法與FTIR技術相結合的方法,研究不同比例硼泥對豬糞厭氧發酵前后重金屬Cr的形態變化和物料光譜特性的影響,以期揭示重金屬鈍化與有機物腐殖化程度的關系,為豬糞厭氧發酵后沼渣的安全合理利用提供科學依據和技術支撐。
新鮮豬糞取自于遼寧省沈陽東陵郊區養豬場,接種物取自于沈陽東陵郊區正常運行的戶用沼氣池,豬糞和接種物取回后放置于實驗室馴化。硼泥,灰白色,粉末狀固體,具有較好的可塑性,pH值為9.5,主要化學組成為MgO、SiO2、Fe2O3、B2O3等[21]。表1為豬糞主要化學成分表。

表1 豬糞主要成分表
本試驗以新鮮豬糞為發酵原料,在溫度35 ℃,接種物量30%,TS為10%,pH值為7.0的條件下,進行周期為40 d的厭氧發酵試驗[22]。研究硼泥不同添加量對豬糞厭氧發酵前后重金屬形態分布特征以及沼渣光譜特征的影響。部分研究結果顯示[23-24],相比于其他濃度,添加量為2.5%以上的鈍化劑對重金屬鈍化效果普遍較好。Guo等指出隨著鈍化劑投加量的增大,重金屬的吸附率逐漸增大,并趨于穩定。但繼續加大投量,吸附率增加不明顯[25]。因此考慮到鈍化劑添加量對重金屬鈍化效果及經濟性,參照堆肥處理畜禽糞便效果較好的添加比例,硼泥添加量為干物質質量分數的2.5%、5%、7.5%。試驗設置4個處理組,每組處理重復3次,試驗結果取平均值。4個試驗處理為,T1:以新鮮豬糞為發酵原料,不添加鈍化劑(CK);T2:以新鮮豬糞為發酵原料,添加鈍化劑硼泥,添加比例為干物質量的2.5%;T3:以新鮮豬糞為發酵原料,添加5.0%硼泥;T4:以新鮮豬糞為發酵原料,添加7.5%硼泥。
采用自行設計的厭氧發酵裝置。由發酵瓶、集氣瓶和集水瓶3部分組成。發酵瓶和集氣瓶采用1L的廣口瓶,有效容積為0.7 L,集水瓶采用1 L的細口瓶。發酵瓶和集氣瓶的瓶口用橡膠塞塞緊,通過膠皮管連接,瓶口及膠皮管接頭處密封,保證良好的厭氧環境。將裝有發酵原料的發酵瓶放入溫度為35 ℃的恒溫水浴鍋中進行厭氧發酵。試驗裝置如圖 1所示。

1.恒溫水浴鍋 2.發酵瓶 3.集氣瓶 4.集水瓶 5.導氣管 6.三通管 7.止水夾 8.排水管
沼液采集:取上清液,離心處理后測得重金屬形態含量。沼渣的采取:經過濾取出沼渣,用去離子水洗滌2~3次,離心后的沉淀物在40 ℃條件下烘干,研磨并通過100目尼龍篩,將獲得的固體樣品用于測重金屬形態含量。豬糞中TS/VS采用質量法測量;總磷采用硫酸-硝酸消煮-釩鉬黃比色法;總鉀采用火焰光度計法;總氮采用凱氏定氮法;重金屬形態含量采用分級提取法和原子吸收分光光度計測定[26];物料光譜特性采用傅里葉紅外光譜法檢測。
不同形態重金屬的可移動性和生物可利用性不同,生物毒性也不同[27]。1987年歐共體標準司提出的用于評估和協調重金屬元素形態的BCR法,將重金屬形態按生物有效性的大小順序分為可交換態>可還原態>可氧化態>殘渣態[28]。在這些形態中,可交換態、可還原態進入環境后容易遷移轉化,比較容易被植物吸收利用,為生物有效態。因此這2種形態的百分量之和的大小可以直接影響重金屬的生物有效性;而可氧化態和殘渣態的百分含量之和大小可以用來判定重金屬元素的穩定性[29]。豬糞厭氧發酵前后各處理沼渣中重金屬Cr各形態變化及有效態變化如表2、圖2所示。

表2 豬糞添加硼泥厭氧發酵前后沼渣中重金屬Cr形態變化
注:T1為對照組,T2為豬糞+2.5%硼泥,T3為豬糞+5.0%硼泥,T4為豬糞+7.5%硼泥,下同。
Note: T1is control group, T2is manure+2.5% boron mud, T3is manure+5.0% boron mud, T4is manure+7.5% boron mud, same as below.

圖2 豬糞添加硼泥厭氧發酵前后沼渣中重金屬Cr有效態變化
如表2、圖2所示,豬糞單獨厭氧發酵(CK)前豬糞中重金屬Cr以殘渣態(67.03%)為主,有效態Cr的含量占比為25.06%。發酵結束后,可交換態、可氧化態Cr含量占比降低,可還原態、殘渣態含量占比增加。有效態重金屬Cr的含量占比為19.00%。厭氧發酵后重金屬Cr的有效態降低,穩定態Cr增加,表明厭氧發酵處理能有效減少豬糞中重金屬Cr的生物有效性和流動性。
由表2及圖2可知,厭氧發酵前豬糞中重金屬Cr均以殘渣態為主,豬糞經厭氧發酵,可交換態、可還原態、可氧化態Cr含量降低,殘渣態Cr增加。發酵結束后添加不同比例硼泥處理中重金屬Cr有效態含量占比均有所下降,下降幅度變化由大到小的順序為:豬糞+7.5%硼泥(14.98百分點)>豬糞+5.0%硼泥(13.40百分點)>豬糞+2.5%硼泥(11.33百分點)>CK(6.06百分點),即豬糞添加硼泥處理重金屬Cr有效態下降幅度均高于對照組,且隨著硼泥添加比例的增加,重金屬Cr有效態含量占比依次降低。說明豬糞厭氧發酵過程中添加硼泥有利于重金屬Cr從生物有效態轉化為穩定態。當硼泥添加量為7.5%時,重金屬Cr從有效態轉化為穩定態的效果相對較好,可達到14.98%。
有效態鈍化效果可以直觀的反映有效態重金屬的鈍化強弱。目前尚無標準的重金屬鈍化效果檢測方法,現普遍采用的方法是通過計算發酵前后有效態含量占比進而得到鈍化效果[30]。具體的計算公式為:有效態的鈍化效果=(發酵前有效態含量占比-發酵后有效態含量占比)/發酵前有效態含量占比×100%。圖3是豬糞厭氧發酵各處理重金屬Cr有效態鈍化效果。

圖3 各處理組沼渣中重金屬Cr有效態鈍化效果
如圖3所示,豬糞添加硼泥厭氧發酵結束后重金屬Cr有效態鈍化效果由高到低依次為:豬糞+7.5%硼泥(63.79%)>豬糞+5.0%硼泥(55.38%)>豬糞+2.5%硼泥(44.32%)>CK(24.17%)。通過對重金屬Cr的有效態鈍化效果進行方差分析表明,添加硼泥對豬糞厭氧發酵過程中重金屬Cr的有效態鈍化效果有顯著影響(<0.05),說明在添加硼泥有利于重金屬Cr有效態的鈍化。通過LSD多重比較分析結果表明,豬糞添加7.5%硼泥處理對重金屬Cr有效態鈍化效果顯著高于對照組和添加2.5%與5.0%硼泥處理(<0.05),添加5.0%硼泥處理的鈍化效果顯著高于對照組和添加2.5%硼泥的處理(<0.05)。從上述試驗結果及顯著性分析結果可以得出:豬糞厭氧發酵添加硼泥可顯著提高重金屬Cr的鈍化效果,且硼泥添加比例越大,鈍化效果越高。豬糞添加7.5%硼泥處理對重金屬Cr有效態的鈍化效果相對較好,可達到63.79%。
厭氧發酵前后沼渣的紅外光譜的變化情況如圖4所示,FTIR特征吸收帶歸屬見表3。根據相關報告,3 408~3 450 cm-1波段表示羥基伸縮振動;2 850~2 922 cm-1波段代表甲基(-CH3)和亞甲基(-CH2)的不對稱和對稱拉伸;1 600~1 653 cm-1的吸收帶可能是由于苯環、烯烴上的-C=C-或羧酸、酰胺上的-C=O-的拉伸振動造成的;1 400~1 430 cm-1的條帶對應于羧酸、木質素的-OH、-CH2的彎曲振動、-COO-的對稱振動;1 105~1 160 cm-1處的條帶對應于多糖類C-O-C、C-O的伸縮振動[31-33]。

圖4 豬糞添加硼泥厭氧發酵前后紅外光譜圖

表3 FTIR特征吸收帶歸屬
由圖4可知,豬糞厭氧發酵前后各處理物料具有較為相似的光譜特征,僅在相對強度上存在一些差異。這可能是因為雖然硼泥的添加量不同,但其主要發酵原料仍是豬糞,這一結果與李榮華的研究結果一致[34]。其中,強度變化較為明顯的幾處具有代表性的峰值分別是3 408~3 450、2 850~2 922和1 600~1 653 cm-1。
結合圖4及表3可知,在3 408~3 450 cm-1,即碳水化合物、酰胺化合物、蛋白質的-OH伸縮振動峰處,厭氧發酵后各處理在該處吸收峰的相對強度均有所降低。這表明豬糞中的碳水化合物、蛋白質和酰胺化合物逐漸分解,導致羥基基團不斷減少,物料的內部環境發生了變化。厭氧發酵后各處理在該處吸收峰的強度降幅從大到小依次為7.5%硼泥、5.0%硼泥、2.5%硼泥、CK。表明添加硼泥厭氧發酵會降低物料中蛋白質、糖類等有機物的含量。
在2 850~2 922 cm-1,即脂肪族化合物和碳水化合物亞甲基中C-H伸縮振動峰處相對強度也有所降低。表明物料中碳水化合物和脂肪族化合物等有機物在微生物的作用下發生礦化、揮發或代謝等,導致其含量減小。這一特征與厭氧發酵過程中將復雜有機物水解產生小分子物質的過程一致。其中,添加硼泥處理在該處吸收峰的強度均低于豬糞單獨發酵處理,說明硼泥可以促進物料中脂肪族化合物和碳水化合物的分解。
在1 600~1 653 cm-1處,即羧酸類的C=O伸縮、-COO-伸縮以及芳香族和烯烴的C=C伸縮、N-H伸縮振動峰,厭氧發酵后各處理組在該處吸收峰的相對強度均有所提高。這表明厭氧發酵過程中隨著纖維素、木質素等有機物料的降解,木質素殘體與其他分解生成的有機中間產物聚合生成腐殖質,導致芳香環類、烯烴類等腐殖質含量相對增加。與對照組相比,添加不同比例硼泥處理在1 600~1 653 cm-1處吸收峰強度均有所增加。綜上,豬糞發酵過程中添加硼泥可以促進大分子有機物的分解和腐殖質的生成。其中添加7.5%硼泥處理物料中有機物腐殖化程度最好。
另外,在1 647 cm-1(芳香族碳)處的特征峰強度與3 435 cm-1(碳水化合物碳),2 974 cm-1(脂肪族碳),1 406 cm-1(羧酸碳)和1 112 cm-1(多糖碳)的比值可以表示物料中有機物的結構變化,評價豬糞厭氧發酵有機物腐殖化的程度[35]。比值越高表明有機物中碳水化合物、脂肪族化合物、多糖類物質含量減少,芳香族碳含量增加,物料中有機物腐殖化程度越高。厭氧發酵前后各處理的特征參數如表4所示,其中a是芳香族碳/碳水化合物碳,b是芳香族碳/脂肪族碳,c表示芳香族碳/羧酸碳,d代表芳香族碳/多糖碳。
由表4可知,厭氧發酵前物料中a值為0.592,豬糞單獨發酵組中a值為0.622,添加硼泥處理組中a值為0.625~0.637,表明豬糞厭氧發酵過程中添加硼泥有利于碳水化合物向芳香族化合物的轉化;發酵前物料中b值為0.819,豬糞單獨發酵處理中b值為1.115,與對照組相比,添加不同比例硼泥處理中的b值均增加,表明添加硼泥促進豬糞中脂肪族化合物轉化為芳香族化合物;豬糞厭氧發酵前物料中c值為1.067,發酵后各處理組中c值從大到小依次為7.5%硼泥、5.0%硼泥、2.5%硼泥、對照組;發酵前物料中d值為0.941,豬糞單獨發酵處理中d值為1.380,隨著硼泥添加比例的提高,d值依次為1.054、0.962、1.380。說明豬糞厭氧發酵過程中羧酸鹽、多糖等有機物質減少,芳香族化合物含量增加。綜上所述,以上特征參數表明,豬糞厭氧發酵后物料中脂肪族化合物、碳水化合物等有機物減少,芳香環類物質相對增加,有機物腐殖化程度有所提高。而添加硼泥處理可以促進有機物的腐殖化程度,且以添加7.5%硼泥為最佳。

表4 各處理的特征參數比值
試驗結果表明,豬糞厭氧發酵過程中添加硼泥處理促使重金屬Cr有效態含量顯著下降,重金屬Cr鈍化效果明顯提高。通過分析上述試驗結果,可從以下方面加以理解:1)硼泥的堿性較強(pH值大于10),添加硼泥會導致物料中的pH值顯著上升,可以促進重金屬形成氫氧化物沉淀[36]。2)硼泥中的無機礦物也是促進豬糞中重金屬Cr有效態降低的重要因素。硼泥的主要化學組成是MgO、CaO、B2O3、Al2O3等[37]。MgO為堿性氧化物,與水結合可緩慢形成MgOH,可以有效沉淀和吸附重金屬Cr。而CaO和Al2O3雖然在硼泥中含量較低,但對重金屬也具有良好的沉淀和吸附作用。
本試驗使用傅里葉紅外光譜法(FTIR),通過特定波段吸收峰位置來確定厭氧發酵前后物料中官能團變化信息,反映發酵過程中有機物和腐殖質的變化情況[38-39]。研究結果表明,硼泥添加量越大,厭氧發酵后沼渣中有機物腐殖化程度越高,重金屬Cr的鈍化效果越好。這可能是因為硼泥是一種多孔的結構,添加硼泥提高了物料的孔隙率,為微生物分解碳水化合物、脂肪族、多糖等有機物提供更適宜的環境和更多的附著位點,促進了豬糞中有機物的分解,增加腐殖質濃度,有利于腐殖質吸附固定更多的重金屬Cr,降低重金屬Cr的生物有效性,提高了重金屬的鈍化效果。就本試驗而言,添加7.5%硼泥處理物料中有機物腐殖化程度最高,重金屬Cr鈍化效果最好。
硼泥是提取硼砂等硼產品后排放的固體廢渣。大量的硼泥堆置,不但占用大量土地,而且對土壤、水體及大氣環境產生嚴重危害。由于硼泥不含重金屬和其它有毒有害物質,而且具有較高陽離子交換容量,較大的比表面積和多孔性質,已被廣泛用于處理重金屬污染等方面[40-41]。從硼泥的來源考慮,每生產1 t硼砂就需排出約4~5 t的硼泥[42]。隨著硼砂產量的逐年增加,硼泥的產量也隨之增加,不僅使硼泥價格遠小于其他鈍化材料,也為硼泥的利用提供了原料保證。因此,在豬糞發酵過程中添加硼泥促進腐殖質形成來吸附固定重金屬Cr,對重金屬Cr進行鈍化,降低重金屬Cr的生物有效性是切實可行的。
1)豬糞厭氧發酵過程中添加硼泥有利于有效態Cr轉化為穩定態Cr;硼泥添加量增加,有效態Cr含量占重金屬Cr總含量的比例越低。
2)豬糞厭氧發酵過程中添加硼泥有利于提高重金屬Cr的鈍化效果,添加7.5%硼泥處理時鈍化效果較好,達到63.79%;通過顯著性分析,豬糞添加硼泥處理對重金屬Cr鈍化效果差異顯著(0.05);豬糞添加7.5%硼泥處理時鈍化效果優于其他處理組,且差異顯著(<0.05)。因此豬糞厭氧發酵過程中添加硼泥可降低重金屬的污染風險。
3)傅里葉紅外光譜顯示,豬糞厭氧發酵后各處理沼渣中有機物分解減少,腐殖質含量增多。在硼泥添加量為7.5%時,有機物的腐殖化程度較好。
[1] 牛姣艷. 畜禽養殖場環境污染與控制[J]. 養殖與飼料,2019(1):121-123. Niu Jiaoyan. Environmental pollution and control of livestock and poultry farms[J]. Culture and Feed, 2019(1): 121-123. (in Chinese with English abstract)
[2] Wang T, Xue Y J, Zhou M, et al. Comparative study on the mobility and speciation of heavymetals in ashes from co-combustion of sewage sludge/dredged sludge and rice husk[J]. Chemosphere, 2017, 169: 162-170.
[3] Untea A, Criste R, Panaite T, et al. Effect of the dietary oregano () on Cu and Zn balance in weaned piglets[J]. Trace Elem. Med. Biol, 2011, 25: 35-40.
[4] 溫沁雪,曹永森,陳志強. 豬糞堆肥過程中金霉素去除及重金屬形態變化[J]. 環境科學,2017,38(10):4405-4411. Wen Qinxue, Cao Yongsen, Chen Zhiqiang. Removal of chlortetracycline and changes in heavy metal form during composting of pig manure[J]. Environmental Science, 2017, 38(10): 4405-4411. (in Chinese with English abstract)
[5] 王湧,曹冬梅,孫安權. 畜禽糞便中重金屬污染現狀及控制[J]. 豬業科學,2016,33(5):48-49. Wang Yong, Cao Dongmei, Sun Anquan. Status and control of heavy metal pollution in livestock manure[J]. Pig Industry Science, 2016, 33(5): 48-49. (in Chinese with English abstract)
[6] 趙睿,吳智書,羅陽,等. 豬糞與農田土壤中重金屬累積污染的相關分析[J]. 土壤,2017,49(4):753-759. Zhao Rui, Wu Zhishu, Luo Yang, et al. Correlation analysis of cumulative pollution of heavy metal in pig manure and farmland soil[J]. Soil, 2017, 49(4): 753-759. (in Chinese with English abstract)
[7] 張樹清,張夫道,劉秀梅,等. 高溫堆肥對畜禽糞中抗生素降解和重金屬鈍化的作用[J]. 中國農業科學,2006,39(2):337-343. Zhang Shuqing, Zhang Fudao, Liu Xiumei, et al. Effects of high temperature composting on antibiotic degradation and heavy metal passivation in livestock manure[J]. Scientia Agricultura Sinica, 2006, 39(2): 337-343. (in Chinese with English abstract)
[8] 行文珍. 重金屬鉛、鉻對泥鰍的組織學損傷與遺傳毒性效應[D]. 延邊:延邊大學,2016. Xing Wenzhen. Histological Damage and Genotoxic Effects of Heavy Metal Lead and Chromium on Loach[D]. Yanbian: Yanbian University, 2016. (in Chinese with English abstract)
[9] 國家發展和改革委員會. 國家發展改革委、農業部關于印發《全國農村沼氣發展“十三五”規劃》的通知[Z]. 2017-01-25.
[10] 張輝,陳梅,馬群,等. 鈍化劑對豬糞厭氧發酵產氣特性及重金屬含量的影響[J]. 中國沼氣,2017,35(2):36-40. Zhang Hui, Chen Mei, Ma Qun, et al. Effects of adding passivator on pig manure biogas production and the heavy metal content[J]. China Biogas, 2017, 35(2): 36-40. (in Chinese with English abstract)
[11] Chen Y X, Huang X D, Han Z Y, et al. Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting[J]. Chemosphere, 2010, 78: 1177-1181.
[12] Wang Q, Li R, Cai H, et al. Improving pig manure composting efficiency employing Ca-bentonite[J]. Ecol. Eng. 2016, 87: 157-161.
[13] Liu Y, Ma L, Li Y, et al. Evolution of heavy metal speciation during the aerobic composting process of sewage sludge[J]. Chemosphere, 2007, 67(5): 1025-1032.
[14] 卜貴軍,于靜,邸慧慧,等. 雞糞堆肥有機物演化對重金屬生物有效性影響研究[J]. 環境科學,2014,35(11):4352-4358. Bu Guijun, Yu Jing, Di Huihui, et al. Influence of organic matter evolution during composting on the bioavailability of heavy metals[J]. Environmental Science, 2014, 35(11): 4352-4358. (in Chinese with English abstract)
[15] 熊雄,李艷霞,韓杰,等. 堆肥腐殖質的形成和變化及其對重金屬有效性的影響[J]. 農業環境科學學報,2008,27(6):2137-2142. Xiong Xiong, Li Yanxia, Han Jie, et al. Formation and change of compost humus and its effect on the availability of heavy metals[J]. Journal of Agro- Environment Science, 2008, 27(6): 2137-2142. (in Chinese with English abstract)
[16] 李軼,曲壯壯,鞏俊璐,等. 海泡石對豬糞秸稈厭氧發酵產物中Cd的鈍化效果研究[J]. 農業工程學報,2018,34(增刊):1-6. Li Yi, Qu Zhuangzhuang, Gong Junlu, et al. Passivation effect of Cd by sepiolite in anaerobic fermentation products with pig manure and straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp): 1-6. (in Chinese with English abstract)
[17] 孫向平,李國學,肖愛平,等. 添加不同比例玉米秸稈對豬糞高溫堆肥過程中胡敏酸的結構組成及紅外光譜特性影響分析[J]. 光譜學與光譜分析,2014,34(9):2413-2418. Sun Xiangping, Li Guoxue, Xiao Aiping, et al. Analysison impact of composting with different proportions of corn stalks and pig manure on humic acid fractions and IR spectral feature[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2413-2418. (in Chinese with English abstract)
[18] Vergnoux A, Guiliano M, Le Dreau, et al. Monitoring of the evolution of an industrial compost and prediction of some compost properties by NIR spectroscopy[J]. Science of the Total Environment, 2009, 407(7): 2390-2403.
[19] 李榮華,張廣杰,王權,等. 添加礦物質對豬糞好氧堆肥中有機物降解的影響[J]. 農業機械學報,2014,45(6):190-198. Li Ronghua, Zhang Guangjie, Wang Quan, et al. Effect of minerals on the degradation of organic matter in pig manure aerobic compost[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 190-198. (in Chinese with English abstract)
[20] Zhang J, Lü F, Shao L, et al. The use of biochar -amended composting to improve the humification and degradation of sewage sludge[J]. Bioresource Technology, 2014, 168: 252-258.
[21] 楊梅,陳啟凡,吳曉杰. 鹽酸法浸取硼泥制備精制氯化鎂的研究[J]. 沈陽師范大學學報:自然科學版,2016,34(2):144-147. Yang Mei, Chen Qifan, Wu Xiaojie. Study on preparation of refined magnesium chloride by leaching boron mud by hydrochloric acid method[J]. Journal of Shenyang Normal University (Natural Science Edition), 2016, 34(2): 144-147. (in Chinese with English abstract)
[22] 李軼,曲壯壯,劉艷杰,等. 鈍化劑對豬糞厭氧發酵沼渣中As的鈍化效果及工藝優化[J]. 農業工程學報,2018,34(12):245-250. Li Yi, Qu Zhuangzhuang, Liu Yanjie, et al. Passivating effect of passivating agent on heavy metal as in biogas residues from anaerobic fermentation of pig manures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 245-250. (in Chinese with English abstract)
[23] 何增明,劉強,謝桂先,等. 好氧高溫豬糞堆肥中重金屬砷、銅、鋅的形態變化及鈍化劑的影響[J]. 應用生態學報,2010,21(10):2659-2665. He Zengming, Liu Qiang, Xie Guixian, et al. Changes of heavy metals form during aerobic high temperature composting of pig manure and effects of passivators[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2659-2665. (in Chinese with English abstract)
[24] 呂兌安. 豬糞堆肥過程中重金屬形態變化特征及鈍化技術研究[D]. 長春:中國科學院東北地理與農業生態研究所,2014. Lü Duian. Study on Morphological Changes and Passivation Techniques of Heavy Metals During Composting of Pig Manure[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2014. (in Chinese with English abstract)
[25] Guo Z, Li Y, Zhang S, et al. Enhanced sorption of radiocobalt from water by Bi(III) modified montmo-rillonite: A novel adsorbent[J]. Journal of Hazardous Materials, 2011, 192(1): 168-175.
[26] Wang Chao, Hu Xin, Chen Maolin, et al. Total concentrations and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industria wastewater treatment plants[J]. Journal of Hazardous Materials, 2005, 119(1/2/3): 245-249.
[27] 孫剛忠,王榮,曹霞,等. 抗鉛、鎘菌株對土壤鉛、鎘生物有效性的影響[J]. 環境科學與管理,2011(11):103-107. Sun Gangzhong, Wang Rong, Cao Xia, et al. Effects of lead and cadmium-resistant strains on bioavailability of lead and cadmium in soil[J]. Environmental Science and Management, 2011(11): 103-107. (in Chinese with English abstract)
[28] Singh J, Kalamdhad A S. Reduction of bioavailability and leachability of heavy metals during vermicom-posting of water hyacinth. Environ. Sci[J]. Pollut Res, 2013(20): 8974-8985.
[29] 周東興,李晶,寧玉翠,等. 蚯蚓堆制豬糞過程中Cu、Zn形態變化與關鍵酶活性間關系的研究[J]. 農業環境科學學報,2019,38(6):1349-1356. Zhou Dongxing, Li Jing, Ning Yucui, et al. Relationship between Cu and Zn speciations and key enzyme activity in process of vermicomposting pig manure[J]. Journal of Agro-Environment Science, 2019, 38(6): 1349-1356. (in Chinese with English abstract)
[30] 張榮春. 一種有機堆肥的重金屬鈍化效果的檢測方法:109856229 [P].2019-06-07.
[31] Khawas P, Deka S C. Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment[J]. Carbohydrate Polymers, 2016, 137: 608-616.
[32] Li P, Cai D, Luo Z, et al. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production[J]. Bioresour Technol, 2016, 206(19): 86-92.
[33] Ma L, Cui Y, Cai R, et al. Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob[J]. Bioresource Technology, 2015, 180: 1-6.
[34] 李榮華. 添加重金屬鈍化劑對豬糞好氧堆肥的影響研究[D].楊凌:西北農林科技大學,2013. Li Ronghua. Effect of Adding Heavy Metal Passivation Agent on Aerobic Composting of Pig Manure[D]. Yangling: Northwest A&F University, 2013. (in Chinese with English abstract)
[35] 任秀娜,王權,趙軍超,等. 添加鈣基膨潤土對豬糞堆肥中水溶性有機物光譜特征的影響[J]. 光譜學與光譜分析,2018,38(6):1856-1862. Ren Xiuna, Wang Quan, Zhao Junchao, et al. Effects of calcium-based bentonite on spectral characteristics of water-soluble organic compounds in pig manure composting[J]. Spectroscopy and Spectral Analysis, 2018, 38(6): 1856-1862. (in Chinese with English abstract)
[36] 葉賽克. Cd污染農田土壤鈍化劑的篩選及修復效果研究[D]. 揚州:揚州大學,2017. Ye Saike. Study on Screening and Remediation Effect of Cd Contaminated Farmland Soil Passivation Agent[D]. Yangzhou: Yangzhou University, 2017. (in Chinese with English abstract)
[37] 李曉冰,尹微,江志陽,等. 硼泥生物有機-無機生態肥肥效試驗總結[J]. 化肥工業,2014,41(5):72-76. Li Xiaobing, Yin Wei, Jiang Zhiyang, et al. Summary of fertilization experiments for bio-organic-inorganic ecological fertilizers[J]. Chemical Fertilizer Industry, 2014, 41(5): 72-76. (in Chinese with English abstract)
[38] 張輝. 秸稈對豬糞厭氧發酵重金屬鈍化的影響研究[D]. 沈陽:沈陽農業大學,2018. Zhang Hui. Effect of Straw on Heavy Metal Passivation of Anaerobic Fermentation of Pig Manure[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese with English abstract)
[39] Zhu W, Yao W, Shen X, et al. Heavy metal and δ13C value variations and characterization of dissolved organic matter(DOM) during vermicomposting of pig manure amended with 13C-labeled rice straw[J]. Environmental Science and Pollution Research, 2018.
[40] 李冉,孟海波,趙立欣,等. 微生物和生物炭聯用對豬糞堆肥后重金屬Pb和Cd的鈍化效果[J]. 農業工程學報,2018,34(23):164-169. Li Wei, Meng Haibo, Zhao Lixin, et al. Passivation effect of microbial and biochar combined with heavy metals Pb and Cd after composting pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 164-169. (in Chinese with English abstract)
[41] 李慧,孫青,吳翠平,等. 用硼泥制備多孔二氧化硅及其性能表征[J]. 硅酸鹽通報,2014,33(8):2124-2127. Li Hui, Sun Qing, Wu Cuiping, et al. Preparation of porous silica from boron mud and characterization of its properties[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(8): 2124-2127. (in Chinese with English abstract)
[42] 呂品,劉景澤,于淑偉. 硼泥的綜合利用[J]. 遼寧化工,2004(6):342-344. Lü Pin, Liu Jingze, Yu Shuwei. Comprehensive utilization of boron mud[J]. Liaoning Chemical Industry, 2004(6): 342-344. (in Chinese with English abstract)
Effects of boron mud on anaerobic fermentation of heavy metal chromium and its spectral characteristics in pig manure
Li Yi1, Gong Xinglong1, Yu Jiaqi1, Guo Jingyang1, Qu Zhuangzhuang1, Zhang Zhen1,Yi Weiming2※
(1.,,110866,; 2.,,255049,)
In recent years, with the development of Chinese animal husbandry, some heavy metals have been added to animal feed to speed up the growth of livestock and poultry and prevent diseases. But most heavy metals can not be absorbed and digested, resulting in increasingly serious pollution problems of heavy metals in livestock and poultry manure, which seriously affects the resource utilization of livestock and poultry manure. Anaerobic fermentation is an effective approach to deal with manure pollution. In this paper, using pig manure as the processing object, the heavy metals Cr as the research object, by adding different amounts of boron mud (boron content is 2.5%, 5%, 7.5% of dry matter content) The anaerobic fermentation period is 60 days, fermentation temperature is of 35℃, inoculum quantity is of 30% fermentation raw material, total solid is of 10% and pH value is of 7. The speciation analysis of heavy metal Cr are analyzed by BCR sequential extraction and the spectral characteristics of biogas residue before and after anaerobic fermentation are studied by Fourier transform infrared spectroscopy (FTIR), effects of different amount of boron on morphological changes, effective passivation effect and spectral characteristics before and after anaerobic fermentation residue. The aim of this study is to provide a scientific basis for the treatment of heavy metals in livestock and poultry manure. Through the above experimental research, the following main conclusions are drawn: 1) After the end of anaerobic fermentation, the effective content of heavy metal Cr in each treatment decreased. The effective state of heavy metal Cr decreased by 6.06 percentage points in pig manure alone, and the effective content of heavy metal Cr in pig manure added boron decreased by 11.33 percentage points, 13.40 percentage points and 14.98 percentage points, respectively. It is indicated that the anaerobic fermentation of pig manure and boron is beneficial to convert the heavy metal Cr from the effective state to the stable state. With the increase of the added amount of boron, the proportion of the effective Cr content to the total content of heavy metals is lower. The proportion of heavy metal Cr in the treatment of pig manure added with 7.5% boron is relatively large. 2) The passivation effect of the effective form of heavy metal Cr in pig manure alone was 24.17%, and the effective passivation effect of heavy metal Cr in pig manure was 44.32%, 55.38% and 63.79%, respectively. It is indicated that the anaerobic fermentation of pig manure added boron is beneficial to improve the passivation effect of heavy metal Cr. With the increase of boron addition, the passivation effect of heavy metal Cr is better. The significant analysis showed that the anaerobic fermentation of pig manure added boron had significant difference in the passivation of heavy metal Cr (<0.05). The passivation effect of pig manure added with 7.5% boron was better than other treatment groups, and the difference was significant (<0.05). 3) Fourier infrared spectroscopy showed that the materials of each treatment group had similar spectral characteristics before and after anaerobic fermentation. After anaerobic fermentation, the relative intensity of the absorption peaks of the biogas residue of each treatment group decreased at 3 408-3 450 and 2 850-2 922 cm-1, indicating that the organic matter such as amide compound, carbohydrate, protein, and aliphatic compound in the biogas residue were decomposed and reduced. The absorption peak intensity increased, indicating that the olefins, aromatic compounds and other substances in the biogas residue increased. The addition of boron during the anaerobic fermentation of pig manure is beneficial to the reduction of organic matter content, the increase of humus content, and the humification degree of organic matter is better when the amount of boron sludge is 7.5%. Adding an appropriate amount of heavy metal passivating agent to the anaerobic fermentation of pig manure can reduce the effectiveness of heavy metals in the biogas residue and the risk of heavy metal pollution.
manures; anaerobic fermentation; heavy metal; boron; passivation; spectra
李 軼,宮興隆,于嘉琪,郭敬陽,曲壯壯,張 鎮,易維明. 硼泥對豬糞厭氧發酵重金屬鉻及其光譜特性的影響[J]. 農業工程學報,2019,35(24):255-261. doi:10.11975/j.issn.1002-6819.2019.24.030 http://www.tcsae.org
Li Yi, Gong Xinglong, Yu Jiaqi, Guo Jingyang, Qu Zhuangzhuang, Zhang Zhen,Yi Weiming. Effects of boron mud on anaerobic fermentation of heavy metal chromium and its spectral characteristics in pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 255-261. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.030 http://www.tcsae.org
10.11975/j.issn.1002-6819.2019.24.030
X713
A
1002-6819(2019)-24-0255-07
2019-07-14
2019-10-31
遼寧省自然基金面上項目(20170540813);沈陽市科技局課題(18-013-0-86)
李 軼,副教授,博士,主要從事新能源及農業生物環境工程技術研究。Email:yilisyau2000@163.com
易維明,教授,博士,主要從事生物新材料與新能源技術研究。Email:yiweiming@sdut.edu.cn
中國農業工程學會會員:易維明(E041200041S)