(西南電力設計院有限公司,四川 成都 610021)
一般復合材料橫擔與塔身通常設計成自由轉動型或完全約束型。自由轉動型通過橫擔轉動釋放張力,經濟性較好,但其一旦受到不平衡張力就開始隨機轉動,增加了施工及運維難度。完全約束型剛度較好,但在導線發生縱向不平衡張力時(如事故斷線、不均勻覆冰等),由于不平衡張力無法釋放,導致橫擔及塔身受力較大,使復合材料及鋼材用量增加[1-4]。
下面通過對橫擔及塔身連接的優化,提出了可控轉動“V”串方案,即通過賦予橫擔轉動啟動閾值來控制橫擔的轉動。當張力差小于閾值時,橫擔不轉動;當張力差大于閾值時,啟動轉動:既可避免橫擔的隨機轉動,又可以有效降低桿塔荷載。可控轉動方案集中了完全約束型和自由轉動型的優點,為使該方案能夠簡便可行地在工程中實現,對其結構布置、工作原理、荷載取值進行了分析,提出了可供參考的設計方法。
自由轉動方案中橫擔采用平面結構,受壓支柱與塔身鉸接,當橫擔受到不平衡力(包括0°大風、不均勻冰、斷線)時開始轉動,當相鄰檔通過檔距變化達到張力平衡后,則橫擔停止轉動。自由轉動原理及支座如圖1所示。

圖1 自由轉動方案
采用自由轉動方案時,通過復合橫擔的轉動,可釋放縱向張力,降低復合材料及鋼材用量,因此能有效降低投資,但其在使用時仍存在以下弊端:
1)根據靈州—紹興±800 kV特高壓直流線路工程經驗,由于自由轉動橫擔無最小轉動閾值,一旦存在不平衡張力,橫擔即啟動轉動,由于這種轉動毫無規律,給運維帶來一定的困擾。
2)橫擔轉動后,依靠檔距變化來平衡張力。對于檔距減少的檔,弧垂將增加;檔距增大的檔,弧垂將減小。根據電氣計算結果,對于連續七檔模型,在各工況下由于檔距變化會造成弧垂增加約1.0~2.0 m,因此采用轉動橫擔時,對地距離應留有適當裕度。
3)采用復合橫擔架設導線時,需要設置臨時拉線,不然橫擔容易轉動,不易確定弧垂高度。臨時拉線需在塔身設置掛點,施工后必須及時拆除,臨時拉線的夾角也要精確計算,不然將影響橫擔受力或產生變形,在一定程度上增加了施工難度。
完全約束方案中由于不能通過懸垂串轉動和橫擔轉動來釋放縱向張力,橫擔要承受較大的縱向張力。而采用平面結構時受壓絕緣支柱同時受雙向壓彎作用,會導致選擇支柱截面變大,費用增加約120%,且加工困難。所以完全約束方案一般采用空間結構,如圖2所示。
該方案在新疆與西北主網聯網750 kV第二通道輸變電工程成功應用。以某750 kV線路工程三型直線塔為例,選材結果及與自由轉動方案造價對比見表1、表2[5-6]。

圖2 完全約束方案

表1 受壓絕緣支柱選材對比

表2 完全約束方案與自由轉動方案的經濟性對比
注:1)完全約束方案的張力均按照規范取值;
2)自由轉動方案已考慮橫擔轉動時弧垂降低的影響。
由表1可知,采用完全約束方案時,由于絕緣支柱水平放置,其內力在原有垂直荷載、風荷載的基礎上,需要疊加斷線張力,其內力遠大于自由轉動方案。
由表2可知,與自由轉動方案相比,完全約束方案的塔重增加約4%,受壓支柱重量是自由方案的2.4倍,綜合投資較自由轉動方案增加21%。
此外,由于絕緣子串長變短,相同排位情況下,由不均勻覆冰或斷線產生的不平衡張力較常規串長時要大。以檔距500 m、無高差、七檔連續耐張段為研究對象,分別計算不均勻覆冰下的不平衡張力。結果表明:不均勻覆冰時,最大不平衡張力為最大使用張力的17%,斷線張力為最大使用張力的50%,遠遠大于常規鋼制橫擔不均勻覆冰時不大于10%和斷線時不大于20%的要求。因此,考慮絕緣子串長因素后,完全約束方案投資還將大幅增加。
為避免較小不平衡張力帶來的無序轉動以及完全約束時選材過大、造價較高的弊端,可采用可控轉動方案,即給復合橫擔設定一定的轉動閾值,當縱向張力小于該值時,橫擔不轉動,靠自身傳遞張力;當縱向張力大于該值時,橫擔啟動轉動,直到兩側張力達到平衡。
《架空輸電線路桿塔結構設計技術規定》中第3.3.6條對轉動橫擔啟動值進行了要求:轉動橫擔或變形橫擔的啟動力,應滿足運行和施工的安全要求。一般110 kV線路采用標準值2~3 kN;220 kV線路采用標準值5~6 kN[5]。而對500 kV及以上交流輸電線路沒有規定,下面將重點探討可控轉動的實施方案及轉動閾值的取值問題。
方案布置及三維效果圖見圖3、圖4。上平面絕緣子采用“V”型布置,且每串絕緣子采用兩根以上的獨立復合絕緣子,并通過鉸點連接。“V”串夾角可根據需要修改,“V”串只承受拉力,一旦受壓即退出工作,并能通過鉸點使兩根獨立復合串彎折來實現橫擔轉動。下平面采用單肢受壓絕緣子串,可承受壓力,并通過與塔身鉸接來實現轉動。垂直荷載G、水平力H在“V”串平面內形成合力Tv,使上平面絕緣子串受拉。當不平衡力T與Tv的合力Tc的反向延伸線在”V”串夾角范圍內時,兩串同時受力;當延伸線在夾角范圍外時,一串受壓退出工作(圖3,AC線),另一串受拉(AB線),則與下平面受壓支柱一起開始繞OB軸轉動,此時受力同自由轉動方案。在某一工況下,垂直荷載和水平荷載的合力是一定的,隨著不平衡張力的增加,合力的方向在不斷調整,當合力的延長線與某一串重合時,則此串受拉,另一串受力為0,定義此時的不平衡張力為轉動閾值;當不平衡力繼續增大時,橫擔轉動,其平衡則由兩側檔距變化控制。

圖3 “V”串方案布置

圖4 “V”串三維效果

圖5 “V”串方案工作原理

圖6 “V”串方案工作原理三維圖

表3 V串夾角與轉動閾值關系
以某750 kV線路工程三型直線塔為例,求得在不同工況下,不同的V串夾角時的轉動閾值,并與最大使用張力進行比較,結果如表3所示。
由于90°大風及覆冰時無縱向張力,因此計算轉動閾值時不考慮該工況,僅計算有縱向張力的0°大風、不均勻覆冰以及斷線工況。由于上下導線高度差不多,因此,可近似認為0°大風時順線路方向風荷載相等,復合橫擔上平面與水平面的夾角均按25°計算。從計算結果來看,主要有以下結論:
1)隨著V串夾角的增大,轉動閾值增大;
2)為實現0°大風時橫擔不轉動,不均勻覆冰時盡量不轉動,斷線時可自由轉動,通過比較不同V串夾角的轉動閾值,可選取40°作為最優V串夾角。
可控轉動“V”串方案與自由轉動及完全約束方案相比,工程投資對比如表4所示。

表4 橫擔結構方案比較
從表4可知,采用完全約束方案雖然運行及施工操作簡單,但投資增幅較大,不推薦采用;采用可控轉動方案,既能控制大風時不轉動、不均勻覆冰時部分橫擔轉動,也能釋放斷線時的張力差,集中了自由轉動方案及完全約束方案的優點,而投資只在自由轉動方案的基礎上增加約0.3%,且施工操作簡便,可實施性強。因此,采用可控轉動V串方案是可行的。
采用可控轉動復合橫擔后,風荷載及垂直荷載計算與常規鋼結構橫擔一致,區別在于縱向張力。復合橫擔承受的最大縱向張力為轉動閾值對應的張力,不同的“V”串夾角對應的張力不同,不同工況下對應的張力也不同,可根據轉動閾值計算不同張力差下的塔重情況,以求得可控轉動方案對于不均勻覆冰時的適用情況。
計算的主要工況如下所示:
3)工況3:覆冰,縱向張力為0。
4)工況4:不均勻覆冰,縱向張力分別為最大使用張力的5%、10%、15%、20%。
5)工況5:斷線,橫擔轉動直至張力平衡,橫擔承受部分張力。
各橫擔在不均勻覆冰時的轉動閾值如表5所示。

表5 各橫擔不均勻覆冰時的轉動閾值
不同張力差下橫擔的受力情況如表6所示。不同張力下的塔重比較如表7所示。

表6 計算工況列表
注:不平衡張力為0時,代表橫擔已轉動。

表7 不同張力下的塔重比較
從表7可以看出,隨著不平衡張力增加,塔重在逐漸增大,但是變化幅度較小。因此,建議在設置轉動閾值時,應盡量增大V串夾角,使得轉動閾值增大,從而在不均勻覆冰工況下橫擔不轉動或較少轉動。但由于過大的V串夾角,將使得隔面支架伸長較多,一方面增加塔重,另一方面構造也較困難。因此,針對此三型直線塔,可取最大使用張力的10%作為最優轉動閾值,對應的V串夾角為40。
前面分析了傳統復合材料橫擔的優缺點,并提出了可控轉動方案,在投資金額基本相當的情況下,可有效克服傳統復合橫擔運維困難或造價高的問題。同時對可控轉動方案的布置及運行方式進行了研究,并提供了簡單可行的操作方法。通過對可控轉動方案荷載取值的研究,得出了轉動閾值的取值建議,為新型可控轉動復合橫擔的推廣提供了一定的理論依據。