999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

楔形減阻旋耕刀設計與試驗

2019-05-24 07:39:18郝建軍于海杰趙建國李建昌馬志凱蔡金金
農業工程學報 2019年8期

郝建軍,于海杰,趙建國,李建昌,馬志凱,蔡金金

?

楔形減阻旋耕刀設計與試驗

郝建軍,于海杰,趙建國,李建昌,馬志凱,蔡金金

(河北農業大學機電工程學院,保定 071001)

為解決旋耕整地作業阻力大、能耗高等問題,該文基于旋耕刀理論受力模型設計了一種楔形減阻旋耕刀。采用Inventor和HyperMesh軟件分別創建國標旋耕刀及楔形減阻旋耕刀的三維模型和切削土壤模型,分析了楔形減阻旋耕刀的應力強度,對比了國標旋耕刀與楔形減阻旋耕刀的切削阻力。通過田間試驗對比了國標旋耕刀與楔形減阻旋耕刀的扭矩、功耗與碎土率。結果表明:楔形減阻旋耕刀所受最大應力為29.49 MPa,遠小于材料的屈服強度430 MPa,在保證刀身強度的前提下,與國標旋耕刀相比,楔形減阻旋耕刀質量減輕8.3%;平均切削阻力較國標旋耕刀下降10.65%。在相同工況條件下,楔形減阻旋耕刀的平均扭矩為648.916 N·m,較國標旋耕刀下降11.35%;楔形減阻旋耕刀的平均功耗為67.3 kW,較國標旋耕刀下降9.29%,碎土率提高4%,耐磨性能與國標旋耕刀持平,能夠達到在降低作業功耗的同時,提高耕作質量并保證刀具使用壽命。

農業機械;土壤;模型;楔形減阻旋耕刀;田間試驗

0 引 言

旋耕可一次完成耕地、碎土、整地等作業,達到犁耙幾次耕地的效果,且旋耕后的地表平整、松軟,一次性使土壤達到待播狀態,是目前平原地區采用的主要耕作方式[1-3]。旋耕阻力及能源消耗主要來源于旋耕刀[4]。為減小旋耕阻力,生產中通常采用理論減阻、振動減阻和仿生減阻等方法。理論減阻主要是通過改變旋耕刀的工作參數、折彎角和刃口角等結構,來降低切削阻力[5-7],如陳雪等采用ADAMS軟件對旋耕刀工作參數進行了優化,極大地降低了旋耕刀阻力[8]。蓋超等采用COSMOSwork軟件分析了不同旋耕刀折彎角的切削功耗,結果表明折彎角在125°~130°時功耗最小[9]。康松林等采用LS-DYNA軟件分析了雙面刃口與單面刃口對切削阻力的影響,結果表明雙面刃口阻力小于單面刃口阻力[10];振動減阻通過凸輪機構的擺動使旋耕刀在切削土壤的同時,通過振動使土壤疏松,從而達到降低耕作阻力的目的[11-13]。如蔣建東等在旋耕刀軸部位加裝凸輪機構,利用刀具振動來降低切削阻力,結果表明合適的震動頻率及幅值能夠實現土壤耕作減阻[14];仿生減阻主要是參考蚯蚓、鼴鼠等動物表皮、爪趾等特點,對旋耕刀的材料和結構進行優化設計,從而達到減少耕作阻力的目的[15-17]。如郭俊等根據鼴鼠指爪結構優化旋耕刀,結果表明在秸稈覆蓋50%以上時,優化的旋耕刀耕作阻力低于國標旋耕刀[18]。上述減阻技術雖在一定程度上都能降低旋耕耕作阻力,但振動減阻需要加裝相應裝置,在增加了制造成本的同時也增加了機具故障率;仿生減阻多為被動模仿生物的生物學特性,結構復雜,不易加 工[19-21]。而理論減阻通過優化改進刀具自身結構參數實現減阻,不增加機械結構且易成型加工。為此,本文針對典型的IT245型國標旋耕刀旋耕阻力大的不足,設計一種楔形減阻旋耕刀,旨在通過改變旋耕刀表面形狀結構以降低切削阻力。

1 旋耕刀結構與受力分析

1.1 國標旋耕刀結構、工作過程及受力分析

根據其彎轉向不同,旋耕刀可分為左旋刀與右旋刀2類。典型的IT245型右旋國標旋耕刀結構及其參數如圖1。旋耕作業時,旋耕刀側切刃與正切刃先后切入土壤,通過對土壤進行周期性擠壓、切削、破碎、拋甩,完成旋耕作業[22-23]。

如圖2,以國標旋耕刀切削部任一截面為研究對象,進行受力分析。假設旋耕為純切削(主要以刃口貫入與切開阻力為主,以Kostritsyn建立的切削計算模型,未考慮土壤粘附力,只考慮了土壤變形破壞后對刀具所起反力的作用平衡)[24],土壤為均質土壤[25],并認為不發生其他形式的土壤破壞[26],刀具勻速切入土壤。當考慮摩擦時,依據文獻[10],土壤相對旋耕刀的滑動摩擦系數為0.2,土壤與刃口發生滑動摩擦,產生摩擦角,且相當于把刃口角增加,如圖2c所示,刀刃面上修正后的正壓力1為:

式中1為修正后刃面上的正壓力,N;為修正前刃面上正壓力,N;為土壤和滑切刃之間的動摩擦角,(°)。

1. 刀柄 2. 刀頭 3. 主切削刃 4. 副切削刃 5. 國標旋耕刀(右旋)6. 土壤 7. 刀座 8.刀軸

1. Blade handle 2. Blade head 3. Main cutting edge 4.Auxiliary cutting edge 5. National standard rotary blade (right-rotary) 6. Soil 7. Blade holder 8. Blade shaft

注:刀柄寬=30 mm;刀軸孔直徑=13 mm;刀軸孔邊距=15 mm;旋轉半徑=245 mm;切削刃寬度=12 mm;切削刃厚度=4 mm;正切面高度=50 mm;耕作寬幅=50 mm;折彎角=120°;折彎半徑=30 mm;為旋耕刀旋轉速度,r·min–1;為拖拉機前進速度,km·h–1。為坐標原點。

Note: Blade handle width=30 mm; Rotary blade hole diameter=13 mm; Rotary blade hole space=15 mm; Radius of gyration=245 mm; Cutting edge width=12 mm; Cutting edge thickness=4 mm; Blade height=50 mm; Tillage width=50 mm; Bending angle=120°; Bend radius=30 mm;is rotation speed of rotary blade, r·min–1;is tractor forward speed, km·h–1.is origin of coordinates.

圖1 右旋國標旋耕刀結構參數與工作示意圖

Fig.1 Structural parameters and working sketch of right-handed national standard rotary blade

依上所述,對國標旋耕刀進行受力分析。圖2為國標旋耕刀切削部任一截面受力分析圖。設沿軸向右、軸向上為正方向,旋耕刀沿、方向的受力如下:

式中為力的個數;X為國標旋耕刀切削部截面投影在方向的第個力,N;Y為國標旋耕刀切削部截面投影在方向的第個力,N。

注:x為橫坐標,y為縱坐標,T1為刃面剪力(即摩擦力),N;N2為刀身正面的正壓力,N;T2為刀身正面的剪力,N;N3為刀身背面的正壓力,N;T3為刀身背面的剪力,N;F貫為旋耕刀切入土壤的貫入阻力,N;F阻為旋耕刀切入土壤所受到的阻力和(即切削阻力),N;j為動摩擦角,(°)。N、N1為修正前后刃面正壓力,N

需要說明的是,刃面剪力1在方向上的投影未作用在國標旋耕刀上,所以公式(3)未對其進行考慮,當考慮摩擦力時,1、2、3均為土壤相對于旋耕刀表面的滑動摩擦力,其滑動摩擦力公式為:

式中T為刀面及刃面上的第個剪力,N;為滑動摩擦系數;tan;N為刀面及刃面上的第個正壓力,N。將式(4)代入式(3),求得3為:

將式(5)代入式(2),求得阻為:

由公式(6)可知,切削阻力阻與刀面及刃面上的正壓力N、滑動摩擦因數和刃口角有關,N值越大切削阻力越大,表明土壤越不易切削;在其他條件不變的情況下,滑動摩擦因數越大,切削阻力越大。旋耕刀刃口角過小時,土壤與滑切刃之間摩擦劇烈,土壤與刃口面直接摩擦,使得刃口面發生變形失效,如果刃口角度過大,旋耕刀的切削阻力也會隨之增加[27]。研究表明,在進行土壤切削時,旋耕刀最小阻力刃口角在20°~45°之間[28],為便于沖壓加工,國標旋耕刀對刃口進行45°倒角形成刃口角[29]。

1.2 楔形減阻旋耕刀設計及受力分析

1.2.1 楔形減阻旋耕刀設計

由上文可知,旋耕刀的切削阻力主要與刀面及刃面上的正壓力、滑動摩擦因數和刃口角有關,由于滑動摩擦因數固定(滑動摩擦因數與接觸材料和相對運動速度有關,耕作同一地塊時,土壤參數基本一致,刀具相對運動速度一定),楔形減阻旋耕刀設計主要通過增大刃面寬度及減小刃口角來降低切削阻力。楔形減阻旋耕刀依據楔子原理將國標旋耕刀刀身變成一個較鋒利的刃口,即楔形刃口,如圖3所示。

1. 國標旋耕刀切削部截面 2. 優化部分 3. 楔形減阻旋耕刀切削部截面

1. Cross section of cutting part of national standardrotary blade 2. Optimized part 3. Cross section of cutting part of wedge drag reduction rotary blade

注:為國標旋耕刀刃面寬度,mm;為楔形減阻旋耕刀刃面寬度,mm;為國標旋耕刀刃口角,(°);為楔形減阻旋耕刀刃口角,(°)。

Note:is edge width of rotary blade, mm;is edge width of wedge drag reduction rotary blade, mm;is edge angle of rotary blade, (°);¢is edge angle of wedge drag reduction rotary blade, (°).

圖3 楔形減阻旋耕刀設計原理

Fig.3 Design principle of wedge drag reduction rotary blade

如圖3所示,1為國標旋耕刀切削部截面,去除優化部分2,得到楔形減阻旋耕刀的切削部截面3。楔形減阻旋耕刀的刃面寬度大于國標旋耕刀的刃面寬度,刃口角小于國標旋耕刀的刃口角,刀柄寬度、刀孔直徑、刀孔距、旋轉半徑、刃口厚度、正切面寬度、耕作寬幅、折彎角均與國標旋耕刀相同。

如圖4所示,為楔形減阻旋耕刀(以右旋為例)結構參數示意圖。

耕作深度是評價旋耕質量的指標之一,旋耕刀的旋轉半徑及彎折角影響耕作深度。楔形減阻旋耕刀與國標旋耕刀的旋轉半徑與彎折角相同,因此,評價耕作質量時耕作深度不予考慮。楔形減阻旋耕刀刃口角變小,與國標旋耕刀相比更容易切入并切碎土壤,因此,本文僅以碎土率評價耕作質量。

注:刃面寬度l'=31~50.09 mm。

1.2.2 楔形減阻旋耕刀受力分析

為明確楔形減阻旋耕刀是否滿足減阻要求,對楔形減阻旋耕刀進行受力分析,圖5所示為楔形減阻旋耕刀切削部任一截面的受力情況。

注:o為坐標原點;x為橫坐標;y為縱坐標;N1¢為修正后刀刃面上的正壓力,N;T1¢為刃面剪力(即摩擦力),N;N3¢為刀身背面的正壓力,N;T3'為刀身背面的剪力,N;F阻¢為楔形減阻旋耕刀切入土壤所受到的阻力和(即切削阻力),N。

與1.2.1節國標旋耕刀給定情況相同,其沿、方向的受力為:

將式(4)代入式(8),求得3¢為:

再將式(9)代入式(7),求得阻¢為:

由圖2d、圖5可知,旋耕刀刃口厚度不發生變化,即貫大小相同,比較阻與阻¢,由式(4)可知,當動摩擦因數一定時,TN正相關,由《機械土壤動力學》可知,當刀具單位載荷一定(即刀具均勻受力)時,其所受正壓力與承載面積成正比。楔形減阻旋耕刀刀身表面所受壓力小于國標旋耕刀,即阻¢<阻,因此楔形減阻旋耕刀能夠達到降低切削阻力的目的,且更易于切削土壤。

2 旋耕刀切削運動仿真

采用HyperMesh軟件分別對國標旋耕刀與楔形減阻旋耕刀的切削土壤過程進行仿真,分析其切削過程、應力大小及切削阻力,以驗證楔形減阻旋耕刀設計的合理性。

2.1 有限元模型建立

2.1.1 刀具有限元模型

在Inventor軟件中按照GB/T5669—2008《旋耕機械刀與刀座》中旋耕刀幾何參數進行三維實體建模,同時對楔形減阻旋耕刀建模,如圖6所示,利用HyperMesh(能夠測量刀具質量,楔形減阻旋耕刀質量減輕50 g,較國標旋耕刀下降8.3%)完成刀具有限元模型的網格劃分,采用5 mm網格對2種旋耕刀進行劃分,國標旋耕刀的網格數量為931個,楔形減阻旋耕刀的網格數量為670個,參照LS-DYNA-971用戶手冊,刀具單元定義為剛性材料MATL20,2種刀具模型材料均為65 Mn,密度為7.8×10-6kg/mm3,彈性模量為2.1×108kPa,泊松比為0.3。

a. 國標旋耕刀a. National standard rotary bladeb. 楔形減阻旋耕刀b. Wedge drag reduction rotary blade

2.1.2 土壤-刀具模型

由于HyperMesh軟件中沒有自帶土壤模型,在仿真過程中先選擇HyperMesh自帶的材料模型MATL1,然后根據關鍵字手冊把土壤模型改為MAT193(MAT_drucke_ prager)塑性土壤模型,并結合華北地區土壤特性[30]輸入材料參數。土壤模型的主要參數取值如表2所示(依據后文田間試驗土壤實際狀況,秸稈均已粉碎還田,仿真試驗未考慮秸稈狀況)。

表2 土壤參數

圖7所示為土壤-旋耕刀初始模型,土壤模型尺寸為520 mm×200 mm×240 mm,為了縮短計算時間,采用分割法劃分網格,將土壤網格劃分為切削部分(尺寸為4 mm)和未切削部分(尺寸為8 mm)。

2.2 邊界條件

對刀具與土壤進行相應的條件約束,第一步是對土壤模型的四周與底面進行全約束,保證在旋耕刀切削土壤過程中土壤能夠保持恒定不動。第二步定義旋耕刀運動,使旋耕刀能夠圍繞旋轉中心做旋轉運動且有向前行進的速度。第三步對旋耕刀與土壤接觸添加定義,選用面面接觸AUTOMATIC_SUFACE_TO_SUFACE中的Eroding侵蝕接觸,這種定義能夠真實反映旋耕刀與土壤進行接觸情況,設定滑動摩擦因數為0.2。

2.3 刀具切削過程及應力分析

刀具切削土壤時,隨著載荷的增大,土壤先發生彈性變形,然后發生塑性變形,隨后進入屈服狀態并出現硬化現象。隨著刀具的切入,應力繼續增大,土壤發生失效,進而破裂[31]。

圖8為國標旋耕刀在LS-DYNA中模擬仿真切削土壤過程。切削參數依據《GB/T 5668-2008 旋耕機》[32]選取:旋耕刀轉速300 r/min(5 r/s),前進速度4.10 km/h(1.1 m/s),耕深150 mm。

由圖8可知,0s時,旋耕刀與土壤進行接觸;400s時,旋耕刀先沿側切刃由近及遠切入土壤,土壤受到剪切力的作用,開始發生變形;750~3 000s時,正切刃切入土壤,在旋耕刀的剪切與擠壓共同作用下,土壤沿著旋耕刀正面發生破壞變形。

由圖9a可知,國標旋耕刀工作時所受的最大應力為35.68 MPa,其遠小于刀具材料的屈服強度430 MPa,驗證了國標旋耕刀設計合理性;由圖9b可知,楔形減阻旋耕刀工作時所受最大應力(29.49 MPa)小于國標旋耕刀最大應力(35.68 MPa),滿足強度設計要求。另外,在滿足強度設計的要求下,與國標旋耕刀相比,楔形減阻旋耕刀質量較小。

圖8 旋耕刀切削土壤過程

圖9 2種旋耕刀應力圖

2.4 切削阻力分析

依照上文,已對2種旋耕刀的材料參數進行定義與邊界約束,其工作參數為前進速度1.1 m/s,旋轉速度5 r/s,耕作深度150 mm,定義旋耕刀為正旋,以切削阻力為指標,在HyperMesh軟件中對2種旋耕刀的切削阻力進行分析,導出K文件,將K文件導入LS-DYNA中進行計算,對比2種旋耕刀切削阻力。

圖10為國標旋耕刀與楔形減阻旋耕刀切削阻力仿真結果對比。由圖10可知,旋耕刀由0s開始,切削阻力先上升,達到最大切削阻力之后再下降,直至旋耕刀切出土壤。模擬仿真的切削阻力趨勢與參考文獻[10,33]相似,證明了其研究可行性。國內學者葛云[34]、陳雪等[8]對國標旋耕刀切削阻力做了研究,得出國標旋耕刀的最大切削阻力大概為450~500 N,本文中,國標旋耕刀最大切削阻力為530 N,平均切削阻力為375.5 N,楔形減阻旋耕刀最大切削阻力為510 N,平均切削阻力為335.5 N,楔形減阻旋耕刀平均切削阻力比國標旋耕刀平均切削阻力降低了10.65%。

圖10 旋耕刀切削阻力仿真結果對比

3 田間試驗

為了進一步驗證楔形減阻旋耕刀的減阻降耗效果與耕作質量,與國標旋耕刀進行了田間對比試驗,以旋轉扭矩[35]、功率消耗及碎土率為指標,評價楔形減阻旋耕刀的減阻降耗效果與耕作質量。

3.1 試驗方法

3.1.1 設備安裝及扭矩傳感器標定

如圖11所示,將試驗旋耕刀安裝在旋耕機刀軸上,扭矩傳感器在拖拉機后輸出軸上與旋耕機相連。扭矩-轉速-功率顯示儀與扭矩傳感器相連,并連接至電腦,將扭矩、功率信號通過數據線傳遞給電腦,用M400數據分析軟件進行實時記錄。

1. 拖拉機2. 扭矩-轉速-功率顯示儀3. 電腦4. 扭矩傳感器5. 旋耕機6. 旋耕刀7. 輸出軸

扭矩傳感器標定結果如圖12所示。根據標定結果,靜止時,扭矩傳感器的頻率在10 000~10 040 Hz之間波動,扭矩傳感器存在的誤差為0.4%(即靜止時,傳感器頻率波動值與初始頻率的比值),誤差在可接受范圍之內,滿足試驗要求。

圖12 扭矩傳感器標定結果

3.1.2 試驗設置

試驗于2018年9月26號在河北省定州市內化村進行。

試驗地為壤土,地勢平坦,雖有部分秸稈,但均已粉碎還田,對土壤旋耕功耗不造成影響,0~150 mm土層內平均硬度為6.5 kg/cm2,平均含水率為15%。

將楔形減阻旋耕刀和國標旋耕刀分2次各自安裝在河北雙天機械制造有限公司生產的1GKN- 220A1旋耕機上,依次進行田間試驗。

選取地勢平坦的100 m×30 m地塊,去除地頭地尾各10 m,在中間80 m的旋耕機穩定運行段進行5次重復試驗,測試旋轉扭矩和功率消耗,取平均值。依據上文作業參數為:拖拉機前進速度取4.10 km/h,后輸出轉速540 r/min,刀輥轉速為300 r/min,耕作深度為150 mm。試驗裝備及實物圖如圖13所示。

3.2 試驗結果與分析

每次試驗取穩定段測試數據,每次記錄50 s數據,2種旋耕刀的扭矩和功耗測試結果如圖14所示,質地復雜,旋耕扭矩波動比較大,2種旋耕刀扭矩趨勢大致相似,符合試驗要求。

由圖14a可知,國標旋耕刀的平均扭矩值為732.038 N×m,楔形減阻旋耕刀的平均扭矩值為648.916 N×m,楔形減阻旋耕刀較國標旋耕刀平均扭矩下降11.35%。由前文可知,拖拉機后輸出轉速固定,結合扭矩計算公式[35],扭矩值能夠對功耗進行表達且與功耗呈正線性相關,楔形減阻旋耕刀在作業過程中平均扭矩優于國標旋耕刀,進一步驗證了楔形減阻旋耕刀節能降耗的可行性。

由圖14b可知,楔形減阻旋耕刀功耗整體優于國標旋耕刀,國標旋耕刀平均功耗為74.2 kW,楔形減阻旋耕刀平均功耗為67.3 kW,楔形減阻旋耕刀較國標旋耕刀平均功耗降低了9.29%。

切削阻力與旋轉扭矩都能夠表示旋耕功耗,由仿真試驗與田間試驗可知,楔形減阻旋耕刀的切削阻力與旋轉扭矩(均與功耗呈正線性相關)均較國標旋耕刀有所下降,功耗的下降雖然存在一定誤差,但都在可接受范圍之內。

圖13 試驗裝備及實物圖

如圖15所示,對試驗土壤采樣并計算碎土率以評價旋耕刀耕作質量。在已旋耕的500 mm×500 mm耕層進行土壤采樣5次,分別測試采樣土壤質量總及土壤中直徑大于40 mm的土塊質量>40 mm,根據公式(13)計算碎土率R

計算結果表明,國標旋耕刀與楔形減阻旋耕刀的平均碎土率分別為75%和79%。楔形減阻旋耕刀碎土率較國標旋耕刀提高了4%,耕作質量優于國標旋耕刀。

2018年9月30日,在河北保定龐口試驗田對國標旋耕刀與楔形減阻旋耕刀的耐用性進行了田間對比試驗。試驗結果表明:經過連續不間斷33 hm2耕作后,楔形減阻旋耕刀未發生崩刃和斷裂現象,且其磨損程度與國標旋耕刀相當:國標旋耕刀的平均磨損量為98.5 g,楔形減阻旋耕刀的平均磨損量為97.3 g,磨損量相差1.3%。按規定旋耕刀磨損量超過100 g即無法繼續使用。上述結果表明,在保證與國標旋耕刀耐用性基本持平的情況下,楔形減阻旋耕刀能提高耕作質量,降低作業功耗。

圖14 2種旋耕刀的扭矩和功耗測試結果

圖15 碎土率測算

4 結 論

1)基于楔子理論與刀具受力模型設計一種楔形減阻旋耕刀,分析國標旋耕刀與楔形減阻旋耕刀受力,可知切削阻力主要與動摩擦因數、刃口角與刃口角表面正壓力相關;且國標旋耕刀切削阻力大于楔形減阻旋耕刀。

2)以旋耕刀與楔形減阻旋耕刀為研究對象,運用Inventor軟件建立刀具三維模型,基于HyperMesh-LS- DYNA軟件對刀具進行了切削過程及切削阻力分析。結果表明:模擬動態仿真能夠客觀的反映旋耕刀切削土壤過程;國標旋耕刀最大應力為35.68 MPa,楔形減阻旋耕刀的最大應力為29.49 MPa,其應力遠遠小于刀具材料的屈服強度430 MPa,在質量減輕8.3%的情況下,保證了刀身強度。國標旋耕刀的最大切削阻力為530 N,楔形減阻旋耕刀最大切削阻力為510 N,楔形減阻旋耕刀平均切削阻力比國標旋耕刀平均切削阻力低10.65%,驗證了楔形減阻旋耕刀設計可行性。

3)田間試驗結果表明:在標準工況條件下,楔形減阻旋耕刀的平均扭矩較國標旋耕刀下降11.35%,平均功耗較國標旋耕刀下降9.29%,平均碎土率較國標刀提高4%,楔形減阻旋耕刀與國標旋耕刀磨損量相差1.3%,耐用性基本保持一致。進一步驗證了楔形減阻旋耕刀設計的合理性。

[1] 車剛,張偉,萬霖,等. 基于滅茬圓盤驅動旋耕刀多功能耕整機設計與試驗[J]. 農業工程學報,2012,28(20): 34-40. Che Gang, Zhang Wei, Wan Lin, et al. Design and experiment of multifunctional tillage machine with driven bent blade by stubble ploughing disk[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(20): 34-40. (in Chinese with English abstract)

[2] Temesgen M, Hoogmoed W B, Rockstrom J, et al. Conservation tillage implements and systems for smallholder farms insemi-arid Ethiopia[J]. Soil and Tillage Research, 2009, 104(1): 185-191.

[3] 熊平原,楊洲,孫志全,等. 基于離散元法的旋耕刀三向工作阻力仿真分析與試驗[J]. 農業工程學報,2018,34(18):113-121. Xiong Pingyuan, Yang Zhou, Sun Zhiquan, et al. Simulation analysis and experiment for three-axis working resistances of rotary blade based on discrete element method[J]. Transactions of tne Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 113-121. (in Chinese with English abstract)

[4] 方會敏,姬長英,張慶怡,等. 基于離散元法的旋耕刀受力分析[J]. 農業工程學報,2016,32(21):54-59. Fang Huimin, Ji Changying, Zhang Qingyi, et al. Force analysis of rotary blade based on distinct element method[J]. Transactions of tne Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 54-59. (in Chinese with English abstract)

[5] 張居敏,周勇,夏俊芳,等. 旋耕埋草機螺旋橫刀的數學建模與參數分析[J]. 農業工程學報,2013,29(1):18-25. Zhang Jumin, Zhou Yong, Xia Junfang, et al. Mathematical modeling and analysis of helical blade for stul rotary tiller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 18-25. (in Chinese with English abstract)

[6] 賈洪雷,汲文峰,韓偉峰,等. 旋耕-碎茬通用刀片結構參數優化試驗[J]. 農業機械學報,2009,40(7):45-50. Jia Honglei, Ji Wenfeng, Han Weifeng, et al. Optimization experiment of structure parameters rototilling and stubble breaking universal blade[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(7): 45-50. (in Chinese with English abstract)

[7] 湯楚宙,謝方平,向衛兵,等. 自推進耕耘機械研究現狀與分析[J]. 農業機械學報,2001,32(5):112-114. Tang Chuzhou, Xie Fangping, Xiang Weibing, et al. Current situation of study on self-propelled cultivation machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(5): 112-114. (in Chinese with English abstract)

[8] 陳雪,張周,黃化剛,等. 基于ADAMS旋耕刀工作參數優化及ANSYS仿真分析[J]. 現代農業科技,2018(2):167-170. Chen Xue, Zhang Zhou, Huang Huagang, et al. Optimization of rotary blade working parameters based on ADAMS and ANSYS simulation analysis[J]. Modern Agricultural Sciences and Technology, 2018(2): 167-170. (in Chinese with English abstract)

[9] 蓋超,董玉平. 基于COSMOS的還田機械旋耕刀彎折角優化[J]. 農機化研究,2011,33(3):30-33. Gai Chao, Dong Yuping. Optimization of bending angle of rotary machine rotary tilling blade based on COSMOS[J]. Journl of Agricultural Mechanization Research, 2011, 33(3): 30-33. (in Chinese with English abstract)

[10] 康松林. 微耕機刀具的有限元分析及優化[D]. 重慶:重慶理工大學,2015. Kang Songlin. Finite Element Analysis and Optimization of the Tool of Rotary Tillers[D]. Chongqing: Chongqing University of Technology, 2015. (in Chinese with English abstract)

[11] Butson M J, Mac I D. Vibratory cutting soil tank studies of draught and power requirements[J]. Journal of Terramechanics, 2004, 40 (1): 186-190.

[12] 殷涌光,程悅蓀,李俊明. 振動式二維切削土壤減小阻力機理[J]. 農業機械學報,1992,23(2):11-16. Yin Yongguang, Cheng Yuesun, Li Junming. The reasons of resistance reduction for vibaatory cutting soil in two directions[J]. Transactions of the Chinese Society for Agricultural Machinery, 1992, 23(2): 11-16. (in Chinese with English abstract)

[13] 高潔,趙穎娣,Willem Hoogmoed,等. 基于ALE有限元仿真的土壤切削振動減阻[J]. 農業工程學報,2012,28(增刊1):33-38. Gao Jie, Zhao Yingdi, Willem Hoogmoed, et al. Numerical simulation on resistance reduction of soil vibratory tillage using ALE equation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.1): 33-38. (in Chinese with English abstract)

[14] 蔣建東,高潔,趙穎娣,等. 土壤旋切振動減阻的有限元分析[J]. 農業機械學報,2012,43(1):58-62. Jiang Jiandong, Gao Jie, Zhao Yingdi, et al. Finite element simulation and analysis on soil rotary tillage with external vibration excitation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 58-62. (in Chinese with English abstract)

[15] 陳秉聰,任露泉,李安琪,等. 蚯蚓體表液收取方法的初步研究[J]. 農業工程學報,1990,6(2):7-12. Chen Bingcong, Ren Lunquan, Li Anqi, et al. Initial study on the method of collecting the body surface fluid of erathworms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1990, 6(2): 7-12. (in Chinese with English abstract)

[16] 李曉鵬. 馬鈴薯耦合仿生挖掘及其減阻研究[D]. 成都:西華大學,2018. Li Xiaopeng. Research on Potato Coupled-Bionic Digging and its Drag Reduction[D]. Chengdu:Xihua University. 2018. (in Chinese with English abstract)

[17] 汲文峰,賈洪雷,佟金. 旋耕-碎茬仿生刀片田間作業性能的試驗研究[J]. 農業工程學報,2012,28(12):24-30. Ji Wenfeng, Jia Honglei, Tong Jin. Experiment on working performance of bionic blade for soil-rototilling and stubble-breaking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 24-30. (in Chinese with English abstract)

[18] 郭俊,張慶怡,Muhammad Sohail Memon,等. 仿鼴鼠足趾排列的旋耕-秸稈粉碎鋸齒刀片設計與試驗[J]. 農業工程學報,2017,33(6):43-50. Guo Jun, Zhang Qingyi, Muhammad Sohail Memon, et al. Design and experiment of bionic mole’s toe arrangement serrated blade for soil-rototilling and straw-shattering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 43-50. (in Chinese with English abstract)

[19] 薛維良. 仿生減阻雙圓盤開溝器設計與研究[D]. 長春:吉林大學,2017. Xue Weiliang. Design and Research on Bionic Double Disc Opner with Drag Reducing[D]. Changchun: Jilin University, 2017. (in Chinese with English abstract)

[20] 楊曉東,任露泉. 形體減阻類型、減阻機理與仿生[J]. 農業機械學報,2003,18(1):130-133. Yang Xiaodong, Ren Luquan. Typers and mechanisms of shape drag reduction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2003,18(1): 130-133. (in Chinese with English abstract)

[21] 張清珠. 仿生幾何結構表面土壤鎮壓輥[D]. 長春:吉林大學,2014.Zhang Qingzhu. Soil Press Roller with Bionically Geometrically Structured Surfaces[D]. Changchun: Jilin University, 2014. (in Chinese with English abstract)

[22] 丁為民,徐志剛,汪小函. 斜置旋耕刀滑切角及其方程[J]. 農業工程學報,2002,18(3):49-53. Ding Weimin, Xu Zhigang, Wang Xiaohan. Grass sliding cutting angles and their equations of oblique rotary blades[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(3): 49-53. (in Chinese with English abstract)

[23] 劉永清,桑正中. 潛土逆轉旋耕刀數學模型及參數優化[J]. 農業工程學報,2000,16(4):88-91. Liu Yongqing, Sang Zhengzhong. Mathematical model of submerged reverse-rotary tiller and parameters optimization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(4): 88-91. (in Chinese with English abstract)

[24] 曾德超. 機械土壤動力學[M]. 北京:北京科學技術出版社. 1995.

[25] 趙家豐,汪偉,孫中興,等. 均質土壤承壓下陷模型改進及驗證[J]. 農業工程學報,2016,32(21):60-66. Zhao Jiafeng, Wang Wei, Sun Zhongxing, et al. Improvement and verification of pressure-sinkage model in homogeneous soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 60-66. (in Chinese with English abstract)

[26] 熊平原,楊洲,孫志全,等. 旋耕刀三向工作阻力試驗及作業參數優化[J]. 農業工程學報,2017,33(19):51-58. Xiong Pingyuan, Yang Zhou, Sun Zhiquan, et al. Experiment on three-axis working resistances of rotary blade and working parameters optimization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 51-58. (in Chinese with English abstract)

[27] Gill , Vanden Berg. Soil dynamics in tillage and traction[J]. Journal of Terramechanics, 1968, 5(4): 65-66.

[28] 鄭侃,何進,李洪文,等. 基于離散元深松土壤模型的折線破土刃深松鏟研究[J]. 農業機械學報,2016,47(9):62-72. Zheng Kan, He Jin, Li Hongwen, et al. Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 62-72. (in Chinese with English abstract)

[29] 朱留憲. 基于SPH算法的微耕機旋耕刀有限元仿真與優化[D]. 重慶:西南大學,2012. Zhu Liuxian. Finite Elements Simulation and Optimization of Rotary Blade of Mini-Tiller Based on SPH Algrithm[D]. Chongqing: Southwest University, 2012. (in Chinese with English abstract)

[30] 盧彩云,何進,李洪文,等. 基于SPH算法的平面刀土壤切削過程模擬[J]. 農業機械學報,2014,45(8):134-139. Lu Caiyun, He Jin, Li Hongwen, et al. Simulation of soil cutting process by plane blade based on SPH method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 134-139. (in Chinese with English abstract)

[31] 顧耀權,賈洪雷,郭慧,等. 滑刀式開溝器設計與試驗[J]. 農業機械學報,2013,44(2):38-42. Gu Yaoquan, Jia Honglei, Guo Hui, et al. Design and experiment of sliding knife furrow openner[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 38-42. (in Chinese with English abstract)

[32] 中國機械工業聯合會. 旋耕機:GB/T 5668-2008 [S]. 北京:中國標準出版社. 2009.

[33] 劉謙文,楊有剛. 基于ANSYS/LS-DYNA的旋耕刀強度和功耗研究[J]. 中國農機化學報,2017,38(6):16-19. Liu Qianwen, Yang Yougang. Research on strength and power consumption of rotary blade based on ANSYS/LS- DYNA[J]. Journal of Chinese Agricultural Mechanization , 2017, 38(6): 16-19. (in Chinese with English abstract)

[34] 葛云,吳雪飛,王磊,等. 基于ANSYS微型旋耕機旋耕彎刀的應力仿真[J]. 石河子大學學報:自然科學版,2007,25(5):627-629. Ge Yun, Wu Xuefei, Wang Lei, et al. The strss simulation for the rotary blade of self propelled rotary cultivator based on ANSYS[J]. Journal of Shihezi University: Natural Science, 2007, 25(5): 627-629. (in Chinese with English abstract)

[35] 方會敏. 基于離散元法的秸稈—土壤—旋耕刀相互作用機理研究[D]. 南京:南京農業大學,2016. Fang Huimin. Research on the Straw-Soil-Rotary Blade Interaction Using Discrete Element[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese with English abstract)

Design and test of wedge drag reduction rotary blade

Hao Jianjun, Yu Haijie, Zhao Jianguo, Li Jianchang, Ma Zhikai, Cai Jinjin

(071001)

In order to solve the problems of high resistance and high power consumption of rotary tillage and land preparation, the rotary blade is studied based on theoretical analysis, simulation and field experimentin this paper. First, a wedge drag reduction rotary blade is designed based on the theoretical force model of cutting tools in mechanical soil dynamics. Second , the three-dimensional model of the national rotary blade and the wedge drag reduction rotary blade is established by using the Inventor software and the simulation experiment is carried on. The cutting soil model of 2 kinds of rotary blades is established by using HyperMesh software, and the material parameters, boundary constraints and working parameters are defined. On this basis, the soil cutting process, stress and cutting resistance are analyzed. It is proved that the wedge drag reduction rotary blade design is reasonable. In order to verify whether the wedge drag reduction rotary blade meets the strength requirement, the stress of the rotary blades is analyzed, and the cutting resistance of the national rotary blade and the wedge drag reduction rotary blade are compared. Third, field comparative experiments are carried out on national rotary blade and wedge drag reducing rotating blade with the evaluation indexes of torque, power consumption and soil breakage. The results show that the cutting resistance of the wedge drag reduction rotary blade is smaller than that of the national rotary blade; the maximum stress of the national rotary blade is 35.68 MPa and the maximum stress of the wedge drag reduction rotary blade is 29.49 MPa, which is less than that of the national rotary blade and far less than the yield strength of the material 430 MPa. On the premise of ensuring the strength of the blade body, the weight of the wedge drag reduction rotary blade is reduced by about 50 g, which is about 8.3% lower than that of the national rotary blade. The maximum cutting resistance of the national rotary blade is 530 N, the average cutting resistance is 375.5 N, and the maximum cutting resistance of the wedge drag reduction rotary blade is 510 N, the average cutting resistance is 335.5 N, the average cutting resistance of the wedge drag reduction rotary blade is 10.65% lower than that of the national rotary blade, which proves the feasibility of the wedge drag reduction rotary blade designed; The average torque of the wedge drag reduction rotary blade is 11.35% lower than that of the national rotary blade. In the working process of rotary blades, the average power consumption of the national rotary blade is 74.2 kW, the average power consumption of the wedge drag reduction rotary blade is 67.3 kW, and the average power consumption of the wedge drag reduction rotary blade is 9.29% lower than that of the national rotary blade. The average breaking rate of soil of the national rotary blade is 75%, and the average breaking rate of wedge drag reduction rotary blade is 79%, which is 4% higher than that of the national rotary blade; After continuous 33 hm2tillage, rotary blades did not break, and the average wear of the national rotary blade is 98.5 g, the average wear of the wedge shaped drag reduction rotary blade is 97.3 g, the wear difference is 1.3%, and the wear degree is the same. The wedge drag reduction rotary blade can effectively solve the problems of high resistance and high power consumption of rotary blade, which is helpful to accelerate the development of arable land machinery, improve the mechanization level of cultivated land, and reduce the production cost of crops.

agricultural machinery; soil; models; wedge drag reduction rotary blade; field experiment

2019-01-09

2019-03-20

國家重點研發計劃(2017YFD0300907)

郝建軍,博士,教授,博士生導師,從事農機裝備設計與制造。Email:hjjpaper@163.com

10.11975/j.issn.1002-6819.2019.08.007

S222.12+9

A

1002-6819(2019)-08-0055-10

郝建軍,于海杰,趙建國,李建昌,馬志凱,蔡金金.楔形減阻旋耕刀設計與試驗[J]. 農業工程學報,2019,35(8):55-64. doi:10.11975/j.issn.1002-6819.2019.08.007 http://www.tcsae.org

Hao Jianjun, Yu Haijie, Zhao Jianguo, Li Jianchang, Ma Zhikai, Cai Jinjin. Design and test of wedge drag reduction rotary blade[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 55-64. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.007 http://www.tcsae.org

主站蜘蛛池模板: 欧美精品黑人粗大| 波多野结衣无码AV在线| 亚洲国产午夜精华无码福利| 麻豆国产原创视频在线播放| 日韩国产精品无码一区二区三区| 91色在线观看| AV不卡无码免费一区二区三区| 91亚洲视频下载| 51国产偷自视频区视频手机观看| 亚洲 日韩 激情 无码 中出| 小蝌蚪亚洲精品国产| 波多野结衣无码中文字幕在线观看一区二区 | 日韩A∨精品日韩精品无码| 尤物视频一区| 日韩福利视频导航| 色丁丁毛片在线观看| 精品国产免费观看一区| 亚洲一级色| 午夜在线不卡| 国产精品网址在线观看你懂的| 国产精品99久久久久久董美香| 国产精品尤物在线| 九九这里只有精品视频| 欧美人与牲动交a欧美精品| 亚洲专区一区二区在线观看| 国产精品99r8在线观看| 日韩a在线观看免费观看| 无码免费试看| 9啪在线视频| 在线a网站| 国产91特黄特色A级毛片| 理论片一区| 国产日韩精品一区在线不卡| 伊人久久久大香线蕉综合直播| 欧美亚洲中文精品三区| 亚洲中字无码AV电影在线观看| 性色一区| 国产1区2区在线观看| 99激情网| 为你提供最新久久精品久久综合| 91成人免费观看| 欧美性猛交一区二区三区| 国产精品免费p区| 国产又黄又硬又粗| 国产福利小视频高清在线观看| 青青青草国产| 亚洲天堂视频网| a毛片基地免费大全| 极品国产在线| 亚洲中文字幕久久精品无码一区| 国产精品一区二区在线播放| 免费 国产 无码久久久| 亚洲中文字幕久久无码精品A| 国产欧美日韩资源在线观看| 黄色一级视频欧美| 精品91视频| 国产尹人香蕉综合在线电影| 91麻豆国产精品91久久久| 国产视频a| 尤物成AV人片在线观看| 女人18毛片一级毛片在线| 欧美激情视频一区| 青青草91视频| 亚洲一区免费看| 激情国产精品一区| 国产在线观看高清不卡| 一本大道香蕉久中文在线播放| 九九精品在线观看| 色窝窝免费一区二区三区| 91免费国产高清观看| 欧美有码在线观看| 四虎影视库国产精品一区| 欧日韩在线不卡视频| 亚洲大学生视频在线播放 | 亚洲一区二区在线无码| 亚洲区第一页| 九色国产在线| 三上悠亚在线精品二区| 欧美在线综合视频| 99视频在线看| 在线无码av一区二区三区| 国产欧美日韩精品综合在线|