李漢超,魏菁,郭鵬,孫麗麗,崔平,汪愛英
?
退火時間對Ni催化非晶碳轉變石墨烯的影響
李漢超1a,1b,1c,2,魏菁1a,1b,1c,3,郭鵬1a,1b,1c,孫麗麗1a,1b,1c,崔平1a,1b,1c,2,汪愛英1a,1b,1c,3
(1.中國科學院 a.海洋新材料與應用技術重點實驗室 b.浙江省海洋材料與防護技術重點實驗室 c.寧波材料技術與工程研究所,浙江 寧波 315201;2.上海科技大學 物質科學與技術學院, 上海 201210;3.中國科學院大學 材料與光電研究中心,北京 100049)
研究不同退火時間對Ni催化非晶碳轉化生成石墨烯的影響。采用磁過濾電弧沉積技術,在SiO2/Si基片上制備非晶碳薄膜,之后利用磁控濺射技術,在非晶碳薄膜上鍍上一層金屬Ni。再將樣品放置在管式爐中進行真空退火熱處理。通過X射線光電子能譜(XPS)表征非晶碳的化學價態(tài),利用掃描電子顯微鏡(SEM)觀察退火前后樣品的表面形貌變化,利用拉曼光譜(Raman spectra)對生成的石墨烯進行質量表征,采用透射電子顯微鏡(TEM)對微觀石墨烯結構進行表征。700~800 ℃范圍內,合理延長退火時間至60 min,可以提高生成的石墨烯質量,使得D/G值分別從0.63、0.61降至0.53、0.46。TEM顯示,700 ℃退火60 min時,得到的石墨烯約為32層。900 ℃時,在1~10 min短時間內退火,即可得到高質量石墨烯。退火時間顯著影響非晶碳轉化生成的石墨烯。900 ℃時,短時間退火可以生成高質量石墨烯,而在700~800 ℃時,則需要延長退火時間才可得到高質量石墨烯。退火時間并不能無限延長,否則會導致生成的石墨烯結構被破壞。
非晶碳;石墨烯;相轉變;Ni催化;退火時間;固體碳源
自2004年以來,石墨烯由于其優(yōu)異的力學性能、電學性能、熱學性能等性質[1-4]引起了學術界的廣泛關注。迄今,石墨烯的制備方法已有多種,包括機械剝離法[5]、碳化硅外延生長法[6-7]、化學氧化還原法[8-9]和化學氣相沉積法[10-11]。其中,機械剝離法可以應用于石墨烯的特性研究,然而無法進行石墨烯的大規(guī)模工業(yè)化生產;碳化硅外延生長法可以制備高質量石墨烯,但是成本高昂;化學氧化還原法可以大批量制備石墨烯,但制備的石墨烯會帶有少量官能團;化學氣相沉積法是目前制備石墨烯最為常見的方法,但是由于使用的是氣體碳源,不易控制。有學者采用聚甲基丙烯酸甲酯(PMMA)等固體碳源[12-14]制備石墨烯。
其中,非晶碳作為一種可以大規(guī)模生產的固體碳源,與石墨烯互為同素異形體,利用非晶碳制備石墨烯是一種新穎的方法。近些年來,已有學者發(fā)現(xiàn)石墨烯與非晶碳之間存在晶態(tài)與非晶態(tài)的轉化關系[15-16],并開展了通過石墨烯制備非晶碳以及通過非晶碳制備石墨烯的研究工作[17-20]。其中,借助金屬催化作用,采用退火方法,使非晶碳轉化生成石墨烯的研究取得了一定的進展[21-22]。同時,研究表明,在退火溫度為500、600 ℃時,非晶碳可轉變?yōu)槭@得的石墨烯質量不佳。另外,作為關鍵的工藝參數(shù),退火時間對于石墨烯質量(層數(shù)、缺陷)的影響規(guī)律尚不明確。因此,開展較高溫度下不同退火時間對非晶碳轉化生成石墨烯的研究,有利于闡明退火時間的作用,優(yōu)化相關工藝,獲得高質量石墨烯。
文中利用過濾陰極電弧沉積(filtrated cathodic vacuum arc deposition)和磁控濺射(magnetron sputtering)技術制備了Ni/a-C/SiO2樣品,對樣品進行了700~900 ℃下不同時間的退火熱處理。利用Raman光譜、TEM、SEM等測試方法,對不同退火時間下非晶碳膜轉化為石墨烯的結果進行了分析。
實驗采用常用的厚為300 nm的SiO2層Si氧化片(SiO2/Si)作為基片。鍍膜前,將基片放置在酒精中超聲處理10 min,并將其放置于空氣中干燥。將處理后的基片放入真空室,關閉腔室。待腔體真空度達到2.667×10-3Pa以下,利用輝光刻蝕清洗基片30 min,以除去表面的吸附物質。隨后開啟磁過濾陰極電弧沉積40 nm厚的非晶碳(碳靶功率為1.5 kW),輔助氣體為Ar(氣體流量為1.5 mL/min)。然后再利用磁控濺射技術,在非晶碳上沉積一層100 nm厚的金屬Ni膜(Ni靶功率為80 W,Ar氣體流量為40 mL/min)。之后將樣品取出,放入真空退火爐(OTF- 1200X),待爐內真空達到1.0×10-2Pa以下,進行退火熱處理。退火溫度分別為700、800、900 ℃,每個溫度下分別處理樣品10、30、60 min。為了深入探究退火時間對Ni催化非晶碳轉變?yōu)槭┑挠绊懀?00 ℃時進一步延長退火時間至2、4、6 h,900 ℃時還進行了短時間(1、5 min)的退火熱處理。
1)采用XPS(Axis Ultra DLD)表征非晶碳的化學價狀態(tài),AlKα作為X射線源,光子能量為1486.7 eV,腔體壓強保持在6.6×10-7Pa。測試前,利用Ar離子對樣品進行表面刻蝕,條件為2 kV、5 min。以C1s峰284.5 eV為標準,使用CASA軟件對譜圖進行校準和分峰。
2)采用SEM(Hitachi S4800)表征樣品的表面形貌變化,測試電壓為8 kV,電流為7 μA。
3)采用Raman(Renishaw inVia Reflex)光譜來表征退火前后樣品中的原子鍵結構變化,以及生成的石墨烯質量,激光功率為6 mW,發(fā)射光譜波長為532 nm。
4)采用TEM(Teinai F20)表征樣品的微觀形貌,測試電壓為200 kV。
沉積態(tài)非晶碳的XPS C 1s精細譜圖如圖1所示。對其進行擬合分峰,結果表明,非晶碳的C 1s可分為三個峰,分別是284.5 eV的C—C sp2峰、285.2 eV的C—C sp3峰、287.3 eV的C—O/C==O峰。其中O元素的存在可能是樣品暴露于空氣中,材料表面吸附水以及氧氣所致。經過擬合之后,結果顯示,非晶碳中sp3的質量分數(shù)約為50.7%。

圖1 非晶碳膜的XPS譜圖
由于Raman光譜可以測量材料中分子的振動和轉動能級,因此成為一種簡便的表征非晶碳的方法。圖2中的Raman光譜在1500 cm-1附近顯示出一個不對稱的寬峰,為明顯的非晶碳膜特征。利用雙高斯函數(shù)對該峰進行擬合,進而得到位于1580 cm-1附近的G峰以及位于1360 cm-1附近的D峰[23]。此外,由于薄膜厚度為40 nm,較薄,非晶碳膜自身具備一定 的透光性[24],因而在1000 cm-1附近還出現(xiàn)了Si的基底峰。

圖2 非晶碳膜的Raman譜圖
為了確定退火時間對生成石墨烯的質量的影響,將樣品分別在700、800、900 ℃下進行不同時間的退火熱處理。樣品在三種溫度下經過不同退火時間后的Raman譜圖如圖3所示,可以看出,樣品退火后的Raman圖中不僅存在明顯的D峰(對應于石墨烯結構中的缺陷)和G峰(對應于sp2雜化石墨相),還出現(xiàn)了2D峰,這表明了石墨烯的生成[25]。隨著溫度的升高,D峰和G峰的半峰寬變窄,2D峰的強度增強,表明生成的石墨烯質量有所提高。為了進一步精確分析生成石墨烯的質量,對于不同退火時間下樣品D峰與G峰的強度比值D/G,以及G峰與2D峰的比值G/2D進行了對比分析。其中,D/G代表石墨烯中的缺陷多少,D/G越小,缺陷越少[26];而G/2D代表著石墨烯的層數(shù),G/2D越小,層數(shù)越少。
樣品在700、800、900 ℃退火10、30、60 min的D/G以及G/2D變化結果如圖4所示。由圖4a可知,700 ℃時,退火時間從10 min延長至60 min,D/G從0.63降至0.53;800 ℃時,退火時間從10 min延長至60 min,D/G從0.62降至0.47。表明在700~ 800 ℃延長退火時間,有助于減少石墨烯的缺陷,提高石墨烯的質量。而在900 ℃下,D/G在退火10 min時為0.4,退火30 min時增大至0.53,而退火60 min時降低為0.49。說明此溫度下,短時間(10 min)退火即可得到高質量的石墨烯,而延長退火時間,會使得石墨烯中缺陷的數(shù)量變化不可控。此外,經相同退火時間,900 ℃時的D/G比700 ℃時更小,表明在900 ℃下得到的石墨烯缺陷更少,質量更好。圖4b中,在700 ℃時,隨退火時間從10 min延長至60 min,G/2D由4.8降低至3.6;在800 ℃時,隨著退火時間的延長,G/2D也呈現(xiàn)降低趨勢;當退火溫度增大到900 ℃時,隨著退火時間的延長,G/2D與D/G同樣呈現(xiàn)先升高后降低的趨勢。其原因可能是較高退火溫度時,延長退火時間會出現(xiàn)金屬(Ni)團聚,從而導致石墨烯的層數(shù)變化呈現(xiàn)無規(guī)律性。Miyoshi等人[27]研究了Ni催化非晶碳轉化石墨烯的質量,發(fā)現(xiàn)Ni厚度為10 nm時,800、900、1000 ℃下,得到的石墨烯的D/G分別約為1.0、1.3、1.35,G/2D分別約為2.3、2.8、2.3。D/G和G/2D的變化趨勢說明,在900 ℃及以上時,石墨烯中的缺陷數(shù)量無法精確調控,層數(shù)變化也呈現(xiàn)無規(guī)律性。這可能是因為金屬Ni在高溫下更容易團聚。與文獻報道相比,實驗中得到的石墨烯的D/G值更小,石墨烯的質量更好。
為進一步評價生成石墨烯的質量,圖5分別給出了樣品在700 ℃退火60 min和在900 ℃退火30、60 min的TEM圖。由圖5a可知,經700 ℃退火得到的石墨烯厚度為10 nm左右,大約32層,但然而整體排列并不規(guī)整,質量較差。原因可能是退火溫度較低,Ni催化活性不夠。圖5b、c為樣品在900 ℃退火60 min和30 min的TEM圖,石墨烯排列規(guī)整,缺陷少。原因可能是在900 ℃高溫處理下,Ni的催化性能增強。樣品經過900 ℃、30 min退火熱處理后得到層數(shù)約為29層的石墨烯。
在高溫(900 ℃)時,Ni的催化活性增強,因而進行短時間退火,有可能得到高質量的石墨烯。因此,在900 ℃分別對樣品進行了1、5 min的退火熱處理。900 ℃退火1、5 min的Raman譜圖如圖6所示。退火1、5 min的D/G分別為0.39和0.36,均小于900 ℃退火10、60 min時的D/G。表明退火1、5 min得到的石墨烯比退火10、60 min質量更佳。因此在900 ℃下,進行短時間(1~10 min)退火即可得到高質量石墨烯。

圖4 Ni/a-C/SiO2在不同溫度下退火不同時間的Raman強度比值

圖5 Ni/a-C/SiO2樣品在700 ℃退火60 min和在900 ℃退火30、60 min的TEM圖

圖6 Ni/a-C/SiO2在900 ℃退火1、5 min的Raman譜圖
由Raman譜圖和TEM結果可知,在700、800、900 ℃退火得到的石墨烯質量有所差異。因此,對樣品在700~900 ℃進行10、30、60 min退火后的表面形貌進行了研究。沉積態(tài)樣品的表面形貌如圖7所示,可以看出,樣品表面均勻平整,Ni膜完整地覆蓋了a-C。
樣品在700、800、900 ℃進行10、30 、60 min退火后的表面形貌如圖8所示。在700 ℃退火10 min時,樣品表面有白色球狀物和黑色點狀物質生成;隨著退火時間延長至30 min,黑色物質明顯增多;當退火時間延長至60 min時,黑色物質進一步增多。結合Raman譜圖和TEM的結果可知,黑色物質為非晶碳擴散至表面形成的石墨烯。與700 ℃退火10 min的結果相比,樣品在800 ℃退火10 min后生成的石墨烯更多,這表明800 ℃下Ni的催化能力增強,更多的非晶碳被催化,形成石墨烯。相比于700、800 ℃下的結果,樣品在900 ℃退火10 min后生成的石墨烯進一步增多。隨著退火時間的延長,石墨烯呈現(xiàn)先減少再增多的趨勢,這可能是因為在900 ℃時,退火時間的延長導致Ni的團聚發(fā)生,因此對生成的石墨烯造成影響。因此,在700、800 ℃延長退火時間至60 min,以及在900 ℃,進行短時間(1~10 min)的熱處理,更有利于得到高質量的石墨烯。圖8i中,紅色和黑色箭頭分別指代Ni和石墨烯。

圖7 Ni/a-C/SiO2樣品的表面形貌

圖8 Ni/a-C/SiO2樣品不同退火溫度不同退火時間下的表面形貌
為了進一步確定退火時間對生成石墨烯質量的影響,對樣品進行了700 ℃下2、4、6 h的退火熱處理,退火后的Raman譜圖如圖9所示。相比700 ℃退火60 min的結果,退火2 h后的D/G增大為0.78,而4 h時D/G增大至1.14。代表石墨烯結構中缺陷增加,表明60 min之后,繼續(xù)延長退火時間,并不利于石墨烯的生成。此外,2D特征峰強度的減弱也表明石墨烯結構逐漸被破壞。當退火時間延長至6 h時,并未發(fā)現(xiàn)石墨烯的2D特征峰。可能由于700 ℃時退火時間過度延長,導致金屬Ni進行團聚熟化,催化能力逐漸減弱,進而破壞了石墨烯結構。這表明700 ℃下,過度地延長退火時間(>60 min),不利于石墨烯的生成與質量提高。Zheng等人[28]對退火時間的影響也進行了研究,結果表明:退火時間在60 min以內時,石墨烯的形成與退火時間的長短并無明顯關系;當退火時間長于60 min且短于5 h時,延長退火時間會導致石墨烯的面積大大減小;當退火時間長于5 h時,Raman光譜已經無法探測到石墨烯的信號。這與本實驗結果相一致,即過度延長退火時間,并不利于石墨烯的生成。

圖9 Ni/a-C/SiO2樣品在700 ℃退火熱處理 2、4、6 h后的Raman譜圖
1)采用磁過濾電弧沉積復合磁控濺射技術,設計制備了三明治結構的Ni/a-C/SiO2薄膜體系,其中a-C中,sp3碳的質量分數(shù)為50.7%。對該薄膜進行真空退火,能夠使Ni催化非晶碳轉化為石墨烯。
2)在700~800 ℃時,延長退火時間與升高退火溫度均可提高石墨烯質量。其中,在700 ℃下,退火時間為60 min時,可以得到約為32層的石墨烯。
3)在900 ℃時,樣品經歷短時間(1~10 min)退火就能夠生成高質量石墨烯。過度延長退火時間(>60 min)會導致石墨烯質量下降。
[1] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
[2] MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical review letters, 2008, 100(1): 016602.
[3] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single layer graphene[J]. Nano letters, 2008, 8(3): 902-907.
[4] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308-1308.
[5] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[6] EMTSEV K V, BOSTWICK A, HORN K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nature materials, 2009, 8(3): 203-207.
[7] WARNER J H, SCHAFFEL F, RUMMELI M, et al. Graphene: Fundamentals and emergent applications[M]. Boston: Newnes, 2012: 204-213.
[8] PARK S, RUOFF R S. Chemical methods for the production of graphene[J]. Nature nanotechnology, 2009, 4(4): 217-224.
[9] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565.
[10] LI X, CAI W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314.
[11] KANG J, SHIN D, BAE S, et al. Graphene transfer: Key for applications[J]. Nanoscale, 2012, 4(18): 5527-5537.
[12] SUN Z, YAN Z, YAO J, et al. Growth of graphene from solid carbon sources[J]. Nature, 2010, 468(7323): 549-552.
[13] YAN Z, PENG Z, SUN Z, et al. Growth of bilayer graphene on insulating substrates[J]. ACS nano, 2011, 5(10): 8187-8192.
[14] PENG Z, YAN Z, SUN Z, et al. Direct growth of bilayer graphene on SiO2substrates by carbon diffusion through nickel[J]. ACS nano, 2011, 5(10): 8241-8247.
[15] LIANG Z, XU Z, YAN T, et al. Atomistic simulation and the mechanism of graphene amorphization under electron irradiation[J]. Nanoscale, 2014, 6(4): 2082-2086
[16] BARREIRO A, B?RRNERT F, AVDOSHENKO S M, et al. Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing[J]. Scientific reports, 2013, 3: 1115.
[17] B?RRNERT F, AVDOSHENKO S M, BACHMATIUK A, et al. Amorphous carbon under 80 kV electron irradiation: A means to make or break graphene[J]. Advanced materials, 2012, 24(41): 5630-5635.
[18] NGUYEN B S, LIN J F, PERNG D C. Non-vacuum growth of graphene films using solid carbon source[J]. Applied physics letters, 2015, 106(22): 221604.
[19] RODRI?GUEZ-MANZO J A, PHAM-HUU C, BANHART F. Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon[J]. ACS nano, 2011, 5(2): 1529-1534.
[20] KOTAKOSKI J, KRASHENINNIKOV A V, KAISER U, et al. From point defects in graphene to two-dimensional amorphous carbon[J]. Physical review letters, 2011, 106(10): 105505.
[21] 劉盼盼, 李漢超, 楊林, 等. 退火溫度對金屬催化四面體非晶碳轉變?yōu)槭┻^程的影響[J]. 材料研究學報, 2018, 32(5): 341-347. LIU Pan-pan, LI Han-chao, YANG Lin, et al. Influence of annealing temperature on the metal-catalyzed crystalli-zation of tetrahedral amorphous carbon to graphene[J]. Chi-nese journal of materials research, 2018, 32(5): 341- 347.
[22] 李漢超, 劉盼盼, 孫麗麗, 等. 金屬催化非晶碳轉化制備石墨烯方法的研究進展[J]. 無機材料學報, 2018, 33(6): 587-595. LI Han-chao, LIU Pan-pan, SUN Li-li, et al. Recent development of the transformation from amorphous carbon to graphene method via metal catalyst[J]. Journal of inorganic materials, 2018, 33(6): 587-595.
[23] 薛群基, 王立平. 類金剛石碳基薄膜材料[M]. 北京: 科學出版社, 2012: 17-20. XUE Qun-Ji, WANG Li-Ping. Diamond-like carbon- based film material[M]. Beijing: The Science Press, 2012: 17-20.
[24] LIN Zeng, WANG Feng, GAO Ding, et al. Frictional and optical properties of diamond-like-carbon coatings on polycarbonate[J]. Plasma science and technology, 2013, 15(7): 690-695.
[25] YU X, ZHANG Z, LIU F, et al. Synthesis of transfer-free graphene on cemented carbide surface[J]. Scientific reports, 2018, 8(1): 4759.
[26] LEE J H, SONG Y S, LIM E. Transformation of amorphous to crystallized carbon[J]. Applied physics letters, 2017, 110(14): 143104.
[27] MIYOSHI M, MIZUNO M, BANNO K, et al. Study on transfer-free graphene synthesis process utilizing sponta-neous agglomeration of catalytic Ni and Co metals[J]. Materials research express, 2015, 2(1): 015602.
[28] ZHENG M, TAKEI K, HSIA B, et al. Metal-catalyzed crystallization of amorphous carbon to graphene[J]. Applied physics letters, 2010, 96(6): 110-113.
Effects of Annealing Duration on Transformation from Amorphous Carbon to Graphene via Nickel Catalyst
1a,1b,1c,2,1a,1b,1c,3,1a,1b,1c,1a,1b,1c,1a,1b,1c,2,1a,1b,1c,3
(1.a.Key Laboratory of Marine Materials and Related Technologies, b.Zhejiang Key Laboratory of Marine Materials and Protective Technologies, c.Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 2.School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China; 3.Center of Materials Science and Optoelectronics Technology, University of Chinese Academy of Sciences, Beijing 100049, China)
This work aims to investigate effects of annealing duration on transformation from amorphous carbon to graphene via nickel catalyst. The magnetic filtered arc deposition technology was used to prepare amorphous carbon (a-C) film on the SiO2/Si substrate. Then, a layer of nickel was deposited on the amorphous carbon film by magnetron sputtering. Then the sample was put in a pipe furnace for vacuum thermal annealing processing. The chemical valence state of a-C was characterized by X-ray photoelectron spectroscopy. The structure and surface morphology change before and after annealing were investigated with a SEM and the quality of the graphene generated was characterized with Raman spectroscopy. The micro structure of the graphene was characterized with a TEM. The annealing duration greatly affected the graphene generated for transformation of a-C. At 900 ℃, high-quality graphene was obtained in a short time of annealing. Similar high-quality graphene was obtained at 700 ℃ and 800 ℃ after the annealing duration was extended. However, the annealing duration cannot be extended infinitely; otherwise the structure of the graphene might be damaged. Proper extension of annealing duration to 60 min at 700 ℃ to 800 ℃ can improve the quality of the graphene generated and reduceD/Gfrom 0.63 to 0.53. TEM shows that 32 layers of graphene can be obtained by annealing at 700 ℃ for 60 min. Graphene of high quality can be obtained by short time (1 min-10 min) of annealing at 900 ℃.
amorphous carbon (a-C); graphene; phase transformation; nickel catalyst; annealing duration; solid carbon source
2018-11-30;
2019-05-22
LI Han-chao (1993—), Male, Doctor, Research focus: transformation of amorphous carbon to graphene.
汪愛英(1975—),女,研究員,主要研究方向為先進碳基薄膜材料和等離子體功能改性。郵箱:aywang@nimte.ac.cn
TG156
A
1001-3660(2019)06-0066-07
10.16490/j.cnki.issn.1001-3660.2019.06.006
2018-11-30;
2019-05-22
中國科學院A類戰(zhàn)略性先導科技專項(XDA22010303);寧波市科技創(chuàng)新2025重大專項(2018B10014);寧波市自然科學基金(2018A610171);寧波市江北區(qū)重大科技專項(201801A03)
Supported by A-class Pilot of the Chinese Academy of Sciences(XDA22010303), Ningbo Science and Technology Inovation Project (2018B10014), Natural Science Foundation of Ningbo (2018A610171) and Major Science and Technology Project of Jiangbei District, Ningbo (201801A03)
李漢超(1993—),男,博士研究生,主要研究方向為非晶碳轉變石墨烯的設計制備與性能調控。
WANG Ai-ying (1975—), Female, Researcher, Research focus: advanced carbon-based films and surface modification. E-mail: aywang@nimte.ac.cn