陳建華,李文戈,趙遠濤,錢素萍,Odhiambo J. Gerald,4
?
石墨烯在防腐防污涂料中的應用進展
陳建華1,李文戈2,趙遠濤2,錢素萍3,Odhiambo J. Gerald2,4
(1.威海海洋職業(yè)學院 船舶工程系,山東 威海 264300;2.上海海事大學 商船學院, 上海 201306;3.上海奇想青晨涂料技術(shù)有限公司,上海 201505; 4. School of Mechanical, Manufacturing & Materials Engineering, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200 Nairobi, Kenya)
石墨烯具有極好的阻隔性能、屏蔽性能及化學穩(wěn)定性,其在防腐防污涂料中的應用已經(jīng)被深入研究。介紹了石墨烯對防腐防污涂層性能的影響:降低水、氧氣等腐蝕介質(zhì)的滲透率,加強抗生物附著性,抑制微生物腐蝕。分析了石墨烯在涂料中的應用缺陷及產(chǎn)生原因:極強的范德華力導致石墨烯在涂料中分散性差、易團聚,高化學穩(wěn)定性及疏水性導致石墨烯與成膜物質(zhì)結(jié)合性差,超高的導電性導致石墨烯膜在失效時加速金屬腐蝕。綜述了為應對石墨烯在防腐防污涂料中的應用缺陷,國內(nèi)外學者采用的主要方法:采用改性處理方法制備改性石墨烯(GO、RGO、FG)以及合成石墨烯復合顆粒(石墨烯修飾納米粒子,即GO-Al2O3顆粒、GO-TiO2顆粒、GO-SiO2顆粒等;樹脂負載石墨烯復合填料,即石墨烯/聚苯胺復合填料等)。最后展望了石墨烯及其衍生物在防腐防污涂料中的發(fā)展。
石墨烯;防蝕性能;防腐涂料;表面改性;防污涂料;復合顆粒
石墨烯因其化學穩(wěn)定性高、抗氧化性能強以及獨特的化學惰性而受到重視[1-4]。此外,石墨烯對氧氣和水等腐蝕介質(zhì)還具有極高的抗?jié)B透性[5-8],加入到防腐涂層中可以起到較好的物理屏障作用,在防腐涂料中用作防腐添加劑的研究已有一定進展[9]。傳統(tǒng)防污涂料通常采用添加汞、銅、錫等重金屬氧化物(毒性物質(zhì))的方式,來抑制海洋微生物附著在船體表面,以達到防污的效果[10]。但該類添加劑對海洋環(huán)境具有高破壞性,因此為滿足綠色環(huán)保的要求,需要探索一些新型綠色添加劑。石墨烯作為一種綠色環(huán)保材料,因具有獨特的幾何性質(zhì)(高縱橫比、二維形狀)、化學和熱穩(wěn)定性、高透明度以及高機械性能而受到防污涂料領(lǐng)域?qū)<业闹匾昜11-15]。在涂料中加入石墨烯可以在不破壞海洋環(huán)境的前提下,顯著降低細菌附著在涂層表面的結(jié)合力[16]。另外,石墨烯的加入還可以減弱微生物腐蝕電流對金屬基體的影響[17]。但是,石墨烯在涂料中的應用也存在一定弊端:1)由于石墨烯片層之間存在較強的范德華力作用,因此石墨烯在有機涂料中容易發(fā)生團聚[18]、沉淀現(xiàn)象,且穩(wěn)定性較差[19]。2)石墨烯本質(zhì)上的高化學穩(wěn)定性和疏水性表面狀態(tài)等,極易導致石墨烯分散和功能化困難[20]。3)由于石墨烯導電性能優(yōu)異并且電位要高于大多數(shù)金屬,因此當石墨烯膜存在缺陷或者失效時,海水等電解質(zhì)溶液與石墨烯和金屬基體接觸后,會構(gòu)成原電池腐蝕反應,加速腐蝕效應[21]。
因此,為解決以上弊端,研究人員大多選擇在涂料制備前對石墨烯進行預處理,主要方法有采用改性處理方法制備改性石墨烯和合成石墨烯復合顆粒(石墨烯修飾納米粒子、樹脂負載石墨烯復合填料),這些方法成功地克服了石墨烯在防腐防污涂料中的應用缺點,使涂料性能得到顯著提高。本文主要對上述石墨烯的改性方法進行綜述,并對石墨烯在防腐防污涂料應用中的發(fā)展趨勢進行分析。
石墨烯作為防腐添加劑,可以與傳統(tǒng)樹脂相結(jié)合,制備性能優(yōu)良的防腐蝕涂料,目前已報道的有:石墨烯-聚苯胺防腐涂料[22]、石墨烯-環(huán)氧樹脂防腐涂料[23-25]、石墨烯-聚乙烯醇縮丁醛防腐涂料[26]、石墨烯-聚苯乙烯防腐涂料[27]、石墨烯-聚甲基苯烯酸甲酯防腐涂料[28-29]、石墨烯-聚氨酯防腐涂料[30-32]、石墨烯-醇酸樹脂防腐涂料等。此外,石墨烯改性涂料還具有良好的防污和抗菌能力[33]。
直接在涂料中添加石墨烯會出現(xiàn)石墨烯分散不均勻、易沉聚的情況,從而導致石墨烯在防腐防污涂料中不能表現(xiàn)出其該有的防腐蝕特性。團聚成顆粒狀的石墨烯導電性極強,Sun等[34]的研究證明了在涂層的破損處,電位更高的石墨烯與金屬接觸可以構(gòu)成電化學腐蝕條件,加速金屬腐蝕。對于這些問題,目前國內(nèi)外的研究者主要是通過對石墨烯進行改性處理或修飾處理制作納米復合顆粒等方法來提高石墨烯在涂料中的分散性。
為解決石墨烯在涂料中易團聚以及與樹脂結(jié)合力差的難題,國內(nèi)外學者通過借助熱還原[29]或者化學偶聯(lián)劑[35]等方法對石墨烯表面進行改性處理,從而制作氧化石墨烯(GO)、還原氧化石墨烯(RGO)以及功能化石墨烯(FG)。表面改性后的石墨烯具有更多的官能團,與樹脂的結(jié)合力更好,在涂料中的分散更均勻。
Li等[9]分別制作了100%聚氨酯涂層樣板(PU)、添加0.2%氧化石墨烯的聚氨酯涂層樣板(0.2% GO/PU),添加0.2%還原氧化石墨烯的聚氨酯涂層樣板(0.2%RGO/PU)以及添加0.2%功能化石墨烯的聚氨酯涂層樣板(0.2%FG/PU)。各涂層斷裂面的SEM圖像如圖1所示。純聚氨酯涂層的斷面表面光滑,而添加GO,RGO和FG的聚氨酯復合涂層的斷裂面由于石墨烯層的分布而變得粗糙。相比較添加FG的聚氨酯復合涂層,添加GO和RGO的聚氨酯復合涂層的斷裂面相對平滑,表明添加GO和RGO的聚氨酯復合涂層具有更好的統(tǒng)一性和相容性。利用鹽霧實驗(實驗條件為35 ℃,5%氯化鈉溶液,時間為24、48 h)與電化學阻抗譜(EIS)實驗(采用PARSTAT 4000電化學工作站,電位振幅為±5 mV,頻率范圍為0.1~10 000 Hz)對各個樣板的腐蝕性能進行分析,結(jié)果分別如圖2與圖3所示。可以看出,0.2%RGO/PU比0.2%GO/PU和0.2%FG/PU具有更好的防腐蝕性能。這是由于相較于氧化石墨烯和功能化石墨烯,還原氧化石墨烯表面具有更多的官能團,與樹脂的結(jié)合效果更好,在聚氨酯樹脂中分散性更好,分散更均勻。

圖1 涂層斷裂面的SEM圖像[9]

圖2 幾種聚氨酯涂層的鹽霧實驗效果圖[9]
Wang等[36]通過控制GO還原時間,成功制備了不同含量含氧官能團的還原氧化石墨烯(RGO),并把制備的RGO作為增強劑分散在環(huán)氧樹脂(EP)中,觀察經(jīng)RGO強化后環(huán)氧樹脂的防腐性能。研究表明,RGO表面含氧官能團的數(shù)量直接影響石墨烯的結(jié)構(gòu)、分散狀態(tài)和表面性質(zhì)。表面大量的含氧官能團為RGO與環(huán)氧樹脂鏈之間的相互作用提供了良好的條件,這就使得石墨烯片更好地分散在環(huán)氧樹脂基體中。通過對制備好的涂層進行EIS與鹽霧實驗檢測發(fā)現(xiàn),添加適量含氧官能團的RGO可顯著提高涂層的防腐蝕性能。圖4為各試樣經(jīng)過148 h鹽霧實驗的外觀腐蝕形態(tài)。可以發(fā)現(xiàn),鐵試片在還原1 h的EP/RGO涂層的劃痕處,腐蝕蔓延程度最輕,說明該EP/RGO涂層防腐性能最佳。此外,研究還發(fā)現(xiàn),EP/RGO涂層可以有效抑制大腸桿菌的生長,這主要是由于存在含氧官能團,這會在石墨烯片中產(chǎn)生大量缺陷,以吸收更多的氧,從而增加氧化電位,并使細菌喪失活性。

圖3 PU、0.2%GO/PU、0.2%RGO/PU與0.2%FG/PU的EIS計算電阻值與浸泡時間的關(guān)系圖[9]

圖4 各試樣經(jīng)過148 h鹽霧試驗的外觀腐蝕形態(tài)[36]
Chang等[29]研究發(fā)現(xiàn),用熱還原的方法可以改變氧化石墨烯表面羧基官能團的數(shù)量,從而影響石墨烯在聚甲基苯烯酸甲酯涂料中的分散性。研究表明,石墨烯表面羧基官能團的數(shù)量越多,石墨烯在聚甲基苯烯酸甲酯涂料中分散越均勻,固化后的涂層的防腐蝕性能越好。Li等[35]研究發(fā)現(xiàn),用鈦酸酯偶聯(lián)劑處理后的功能化石墨烯可以均勻地分布在水性聚氨酯樹脂中,當涂層中石墨烯含量(質(zhì)量分數(shù)計)為0.4%時,所得到的石墨烯水性聚氨酯防腐涂層的防腐性能最佳。房亞楠等[37]采用硅烷偶聯(lián)劑對石墨烯的表面進行官能團接枝改性處理,并將處理后的石墨烯加入到氟碳樹脂中,成功制備了石墨烯氟碳復合涂層,利用阻抗譜、極化曲線和鹽霧實驗分析了不同石墨烯含量的石墨烯氟碳復合涂層的耐蝕性能。研究發(fā)現(xiàn),表面接枝改性后的石墨烯在涂層中分散更均勻,當涂層中石墨烯含量(質(zhì)量分數(shù)計)為0.4%時,石墨烯氟碳復合涂層對Q235鋼的防護性能最佳。
石墨烯在涂料中易團聚、分散不均勻以及與涂層結(jié)合力差一直是阻礙石墨烯防腐涂料發(fā)展的一大障礙,通過對石墨烯進行表面改性可以改變石墨烯表面含氧官能團的數(shù)量,增強石墨烯與樹脂的親和力,從而提高石墨烯在涂料中的分散性,使得石墨烯均勻地分布在涂層中,更加高效地阻礙腐蝕介質(zhì)穿過涂層腐蝕基材。改性石墨烯的出現(xiàn)推動了石墨烯防腐防污涂料的應用研究。
1.2.1 石墨烯-納米粒子復合顆粒
通過將納米粒子負載在石墨烯片層上制作石墨烯-納米粒子復合顆粒,已經(jīng)成為海洋防腐防污涂料石墨烯基填料的另一個研究方向。目前,國內(nèi)外學者在石墨烯片層上負載銀、二氧化鈦、氧化鋁、二硫化鉬、四氧化三鈷、二氧化硅、碳酸鈣和氧化鋅等納米顆粒,成功制作了石墨烯-納米粒子復合顆粒,研究了石墨烯-納米粒子復合顆粒對涂料防腐防污性能的影響[38-51]。研究發(fā)現(xiàn),石墨烯-納米粒子復合顆粒能夠有效提高涂層的防腐防污性能,其效果明顯優(yōu)于在涂料中直接加入石墨烯和納米顆粒。
Yee等[38]采用新型二步聲化學剝離法從石墨中剝離出大片狀的石墨烯片,并用檸檬酸鹽對石墨烯片進行水熱還原,再加入硝酸銀,將Ag顆粒負載在微米尺寸的石墨烯薄片上,合成石墨烯-銀復合顆粒(GAg),其SEM圖像及EDS分析如圖5所示。可以發(fā)現(xiàn),隨著硝酸銀質(zhì)量的升高,石墨烯片上所負載的Ag顆粒容易發(fā)生團聚現(xiàn)象,且顆粒尺寸相對較大。當硝酸銀所占比重較小時,Ag顆粒尺寸較小,且分布較均勻。通過防污實驗發(fā)現(xiàn),石墨烯-銀復合顆粒可以干擾海洋細菌生物膜的形成,與純石墨烯和純銀顆粒相比,石墨烯-銀復合顆粒更能抑制海洋微藻的生長活性。
Zhou等[39]制備了石墨烯-二氧化鈦(RGO-TiO2)納米復合顆粒改性的聚氨酯防污涂料,并研究了不同組分對防污性能的影響。實驗表明,當RGO-TiO2中石墨烯含量(質(zhì)量分數(shù)計)為5%時,改性的聚氨酯防污涂料表現(xiàn)出最好的防污性能。M. Safarpour等[40]在聚醚砜(PES)樹脂中添加RGO-TiO2復合顆粒來制備復合材料膜,并研究了RGO-TiO2含量對制備膜形貌和性能的影響。研究表明,與TiO2/PES膜和GO/PES膜相比,RGO/TiO2/PES膜具有最佳的防污性能。

圖5 石墨烯-銀復合顆粒掃描電子圖像[38]
Zhu等[41]為了制備防污性能更好的海洋船舶防污涂料,把RGO-TiO2納米復合顆粒作為填料摻入到疏水氟碳樹脂(PEVE)中制成了復合涂料。研究發(fā)現(xiàn),當RGO與TiO2的質(zhì)量比為1∶100時,復合涂層表現(xiàn)出最好的抗菌性能。在紫外線照射1 h后,這種涂層可以殺死絕大多數(shù)附著于其表面的細菌,并且這種殺菌性能遠高于純PEVE涂層和TiO2/PEVE復合涂層。石墨烯特殊的結(jié)構(gòu)對這種復合涂層的高防污性能起到了至關(guān)重要的作用:一方面,石墨烯和TiO2形成的異質(zhì)結(jié)能夠有效地提高TiO2的羥基自由基產(chǎn)率,不斷產(chǎn)生的大量羥基自由基具備強氧化性,可以將附著于涂層表面的細菌和微生物殺死;另一方面,原本TiO2/PEVE復合涂層因為TiO2的加入,導致氟碳樹脂涂層疏水性降低,而石墨烯的共軛結(jié)構(gòu)使得這種疏水性降低的現(xiàn)象得到改善。
Yu等[20]借助3-氨基丙基三乙氧基硅烷將氧化鋁(Al2O3)負載在氧化石墨烯(GO)片上,制造了氧化石墨烯-氧化鋁(GO-Al2O3)片狀復合物,并研究了GO、Al2O3和GO-Al2O3在環(huán)氧樹脂中的分布狀況及其對環(huán)氧樹脂防腐性能的影響。結(jié)果發(fā)現(xiàn),在相同濃度的情況下,GO-Al2O3復合物能夠在環(huán)氧樹脂中達到更加均勻的分散性和相容性,而且其在增強環(huán)氧樹脂防腐性能方面的表現(xiàn)相對其他兩種添加物更好。
Chen等[42]采用水熱反應將MoS2納米顆粒均勻地負載在GO薄片的表面,對其改性處理,制備了MoS2-RGO納米復合填料。將該填料添加到環(huán)氧樹脂中,制備了MoS2-RGO/環(huán)氧樹脂復合涂層。采用EIS和極化曲線等對MoS2-RGO/環(huán)氧復合涂層的防腐蝕性能進行了表征,結(jié)果表明,當MoS2與GO的比例為1∶1時,MoS2可均勻負載在GO表面。MoS2-RGO優(yōu)異的阻隔性能能夠使得添加了MoS2-RGO納米復合填料的環(huán)氧樹脂涂層的抗腐蝕性和抗?jié)B透性得到顯著提高。
Yu等[43]制備了RGO-(ZnAl-LDH)(還原氧化石墨烯-鋅-鋁層狀雙氫氧化物)納米復合填料,改性處理后,將其摻入到水性環(huán)氧樹脂中,制備了M-rGO- (ZnAl-LDH)/EP復合涂層,并研究了GO∶ZnAl-LDH的比例以及M-RGO-(ZnAl-LDH)復合物的含量對復合涂層防腐蝕性能的影響。極化曲線、EIS和鹽霧實驗結(jié)果表明,當GO∶ZnAl-LDH的比例為2∶1,添加量為0.5%時,涂層的防腐蝕性明顯提高。
在石墨烯片層上負載納米顆粒,改變了石墨烯的表面結(jié)構(gòu),解決了石墨烯本身分散難、易團聚的難題,石墨烯本身的高比表面積以及低滲透率降低了腐蝕介質(zhì)穿過涂層腐蝕基材的可能性,石墨烯與納米顆粒的結(jié)構(gòu)互補使得像TiO2等納米顆粒的防污效果發(fā)揮得更好。石墨烯-納米粒子復合顆粒為石墨烯在海洋防腐防污涂料中更廣泛的應用提供了新的空間。
1.2.2 樹脂負載石墨烯復合填料
為了克服石墨烯在防腐防污涂料中的應用缺陷,研究者將樹脂包裹在石墨烯表面,制備了石墨烯復合顆粒,并將這種復合顆粒作為防腐防污填料應用到涂料中。因此樹脂負載石墨烯復合填料也成為石墨烯防腐防污涂料的一個研究方向。
Mansourpanah等[52]利用聚乙二醇-氧化石墨烯(PEG-GO)納米復合填料對聚酰胺樹脂(PA)薄膜進行改性研究。研究表明,改性后的PA薄膜對NaCl和Na2SO4的排斥力有顯著的提高,薄層的防污性能從62%提高到約90%。Sun等[53]利用原位聚合還原/去摻雜法制備了石墨烯/聚苯胺復合材料(GPC),其具有片狀結(jié)構(gòu),電導率低至2.3×10?7S/cm。同時,他們把GPC嵌入聚乙烯醇縮丁醛涂層(PVBc)中,制作了復合涂層,該涂層在銅的防腐蝕保護方面具有應用前景。由電化學極化曲線(圖6)和EIS(圖7)分析發(fā)現(xiàn),與聚苯胺或還原氧化石墨烯(RGO)改性的PVBc相比,GPC改性的PVBc具有更優(yōu)秀的防腐蝕性能。范壯軍等[54]公布了一種制備聚苯胺負載石墨烯復合材料的專利,并將這種復合材料作為填料應用于防腐涂料中。實驗發(fā)現(xiàn),添加聚苯胺負載石墨烯復合材料的涂料的防腐性能顯著提高,明顯優(yōu)于單純的聚苯胺涂料。添加石墨烯/聚苯胺復合材料的涂層具有更優(yōu)異的防腐蝕性能,主要有以下原因:1)生長在還原氧化石墨烯表面的聚苯胺樹脂具有隔離作用,這樣就避免了石墨烯與金屬底板的直接接觸,具有高導電性的石墨烯就不會因為與金屬接觸產(chǎn)生加速腐蝕效應;2)相比于石墨烯,被聚苯胺包覆的石墨烯在涂料中的團聚作用明顯減弱,分散更均勻,這可以大大延長涂層中腐蝕性介質(zhì)的擴散路徑[55]。
將石墨烯包裹在樹脂中制作石墨烯復合顆粒,并把其作為填料應用到防腐涂料中,可以提高涂料的防腐防污性能。這種被包裹的石墨烯填料在涂料中無法與金屬基材直接接觸,從而避免了石墨烯在腐蝕介質(zhì)中與金屬基材構(gòu)成電化學腐蝕條件加速腐蝕的情況。另外,該填料相對于表面改性石墨烯(GO、RGO、FGO)具有更好的分散性,能夠保證涂層對腐蝕介質(zhì)的低滲透率,進而能夠更好地降低腐蝕介質(zhì)穿過涂層腐蝕基材的可能性。

圖6 聚乙烯醇縮丁醛涂層(PVBc)、石墨烯/聚苯胺復合材料涂層(GPCc)、還原氧化石墨烯涂層(RGOc)、翠綠亞胺鹽涂層(ESc)、聚苯胺涂層(PEc)在0.03 mol/L鹽水溶液中24 h后的極化曲線圖[53]

圖7 PVBc(聚乙烯醇縮丁醛涂層)、GPCc(石墨烯/聚苯胺復合材料涂層)、RGOc(還原氧化石墨烯涂層)、ESc(翠綠亞胺鹽涂層)、PEc(聚苯胺涂層)在0.03 mol/L鹽水溶液中的Bode相圖和Bode模圖[53]
石墨烯已經(jīng)成功應用到防腐防污領(lǐng)域,但在其應用過程中仍然存在一些問題:石墨烯表面官能團較少,導致石墨烯與涂料的結(jié)合力較差;化學性質(zhì)穩(wěn)定導致石墨烯官能化困難;片層之間范德華作用導致石墨烯在涂料中分散困難;高導電性導致石墨烯與金屬直接接觸時易產(chǎn)生加速腐蝕效應。因此,需要通過對石墨烯進行改性處理以改善石墨烯在防腐防污領(lǐng)域中的應用。現(xiàn)在流行的主要改性方法為制備改性石墨烯(GO、RGO、FG)以及合成石墨烯復合顆粒(石墨烯修飾納米粒子,即GO-Al2O3顆粒、GO-TiO2顆粒、GO-SiO2顆粒等;樹脂負載石墨烯復合填料,即石墨烯/聚苯胺復合填料等)。這些方法可以改善以上應用問題,顯著提高涂料的防蝕性能以及防污性能,具有應用可行性。
石墨烯經(jīng)過十幾年的研究發(fā)展取得了較大的進步,但是石墨烯在防腐防污涂料中應用的研究仍以各大高校以及研究所為主。對于石墨烯在防腐防污涂料中的研究仍以實驗探索為主,而對石墨烯的作用機理以及更深的作用空間研究仍不足。因此,關(guān)于石墨烯在防腐防污涂料中的作用機理,需要更深入且全面地研究,從而為石墨烯材料的市場化應用奠定理論基礎(chǔ)。但是,石墨烯高昂的市場價格仍極大地限制了石墨烯在防腐防污涂料市場中的應用。隨著生產(chǎn)工藝的進步和科研水平的提高,石墨烯的生產(chǎn)成本勢必會降低,石墨烯材料在防腐防污涂料中的應用也會逐漸走向工業(yè)化。
[1] BUNCH J S, VERBRIDGE S S, ALDEN J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano letters, 2008, 8(8): 2458-2462.
[2] SREEVATSA S, BANERJEE A, HAIM G. Graphene as a permeable ionic barrier[J]. Ecs transactions, 2009, 19(5): 259-264.
[3] YU L, LIM Y S, HAN J H, et al. A graphene oxide oxygen barrier film deposited via a self-assembly coating method[J]. Synthetic metals, 2012, 162(7-8): 710-714.
[4] HASLAM G E, CHIN X Y, BURSTEIN G T. Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon[J]. Physical chemistry chemical physics, 2011, 13(28): 12968-12974.
[5] COMPTON O C, SOYOUNG K, CYNTHIA P, et al. Crumpled graphene nanosheets as highly effective barrier property enhancers[J]. Advanced materials, 2010, 22(42): 4759-4763.
[6] YANG Y, LAURA B, PRIOLO M A, et al. Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films[J]. Advanced materials, 2013, 25(4): 503- 508.
[7] UNALAN I U, WAN C, FIGIEL ?, et al. Exceptional oxygen barrier performance of pullulan nanocomposites with ultra-low loading of graphene oxide[J]. Nanotec-hnology, 2015, 26(27): 275703.
[8] YOUSEFI N, GUDARZI M M, ZHENG Q, et al. Highly ali-g-ned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture per-m-eability[J]. Composites part A applied science & manu-facturing, 2013, 49: 42-50.
[9] LI J, CUI J, YANG J, et al. Reinforcement of graphene and its derivatives on the anticorrosive properties of waterborne polyurethane coatings[J]. Composites science & technology, 2016, 129: 30-37.
[10] DAFFORN K A, LEWIS J A, JOHNSTON E L. Antifouling strategies: history and regulation, ecological impacts and mitigation[J]. Marine pollution bulletin, 2011, 62(3): 453-465.
[11] JELVESTAM M, EDRUD S, PETRONIS S, et al. Biomi-metic materials with tailored surface micro-architecture for prevention of marine biofouling[J]. Surface & interface analysis, 2003, 35(2): 168-173.
[12] ZHAO Q, LIU Y, WANG C, et al. Effect of surface free energy on the adhesion of biofouling and crystalline fouling[J]. Chemical engineering science, 2005, 60(17): 4858- 4865.
[13] HO K C, TEOW Y H, ANG W L, et al. Novel GO/ OMWCNTs mixed-matrix membrane with enhanced antifouling property for palm oil mill effluent treatment[J]. Separation & purification technology, 2017, 177: 337-349.
[14] YOSHIOKA K, OKUDA T, FUJII H, et al. Effect of TiO2, nanoparticles aggregation in silicate thin coating films on photocatalytic behavior for antifouling materials [J]. Advanced powder technology, 2013, 24(5): 886-890.
[15] AYYARU S, AHN Y H. Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes[J]. Journal of membrane science, 2017, 525: 210-219.
[16] PARRA C, DORTA F, JIMENEZ E, et al. A nanomole-cular approach to decrease adhesion of biofouling- producing bacteria to graphene-coated material[J]. Journal of nanobiotechnology, 2015, 13(1): 1-10.
[17] KRISHNAMURTHY A, GADHAMSHETTY V, MUK-HE-RJEE R, et al. Passivation of microbial corrosion using a graphene coating[J]. Carbon, 2013, 56(5): 45-49.
[18] 姜逢維, 吳英豪, 劉剛, 等. 耐腐蝕氧化石墨烯復合涂層的研究進展[J]. 表面技術(shù), 2017, 46(11): 126-134. JIANG Feng-wei, WU Ying-hao, LIU Gang, et al. Research progress of corrosion resistant graphene oxide composite coatings[J]. Surface technology, 2017, 46(11): 126-134.
[19] LI Y, YANG Z, QIU H, et al. Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings[J]. Journal of materials chemistry A, 2014, 2(34): 14139-14145.
[20] YU Z, DI H, MA Y, et al. Fabrication of graphene oxide- alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings[J]. Applied surface science, 2015, 351: 986-996.
[21] CHANG K, CHEN W. l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries[J]. ACS nano, 2011, 5(6): 4720-4728.
[22] CHANG C H, HUANG T C, PENG C W, et al. Novel anticorrosion coatings prepared from polyaniline/graphene composites[J]. Carbon, 2012, 50(14): 5044-5051.
[23] RAMEZANZADEH B, NIROUMANDRAD S, AHMADI A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide[J]. Corrosion science, 2016, 103: 283-304.
[24] CHANG K C, HSU M H, LU H, et al. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel[J]. Carbon, 2014, 66 (2): 144-153.
[25] LIU D, ZHAO W, LIU S, et al. Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene[J]. Surface & coatings technology, 2016, 286: 354-364.
[26] QI K, SUN Y, DUAN H, et al. A corrosion-protective coating based on a solution-processable polymer-grafted graphene oxide nanocomposite[J]. Corrosion science, 2015, 98: 500-506.
[27] KRISHNAMOORTHY K, JEYASUBRAMANIAN K, PREMANATHAN M, et al. Graphene oxide nanopaint[J]. Carbon, 2014, 72(3): 328-337.
[28] YU Y H, LIN Y Y, LIN C H, et al. High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties[J]. Polymer chemistry, 2013, 5(2): 535-550.
[29] CHANG K C, JI W F, LI C W, et al. The effect of varying carboxylic group content in reduced graphene oxides on the anticorrosive properties of PMMA/graphene composites[J]. Express polymer letters, 2014, 8(12): 908-919.
[30] MO M, ZHAO W, CHEN Z, et al. Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets[J]. RSC advances, 2015, 5(70): 56486-56497.
[31] MO M, ZHAO W, CHEN Z, et al. Corrosion inhibition of functional graphene reinforced polyurethane nanocomposite coatings with regular textures[J]. RSC advances, 2016, 6(10): 7780-7790.
[32] CHRISTOPHER G, KULANDAINATHAN M A, HARI-CHANDRAN G. Comparative study of effect of corrosion on mild steel with waterborne polyurethane dispersion containing graphene oxide versus carbon black nano-composites[J]. Progress in organic coatings, 2015, 89: 199-211.
[33] 徐孝敏, 劉奕, 侯文佳, 等. 碳材料在抗海洋生物污損領(lǐng)域中應用的研究進展[J]. 表面技術(shù), 2017, 46(11): 172-182. XU Xiao-min, LIU Yi, HOU Wen-jia, et al. Progress in the application of carbon materials in the field of marine biofouling resistance[J]. Surface technology, 2017, 46(11): 172-182.
[34] SUN W, WANG L, WU T, et al. Inhibiting the corrosion-promotion activity of graphene[J]. Chemistry of materials, 2015, 27(7): 2367-2373.
[35] LI Y, YANG Z, QIU H, et al. Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings[J]. Journal of materials chemistry A, 2014, 2(34): 14139-14145.
[36] WANG M H, LI Q, LI X, et al. Effect of oxygen- containing functional groups in epoxy/reduced graphene oxide composite coatings on corrosion protection and antimicrobial properties[J]. Applied surface science, 2018, 448: 351-361 .
[37] 房亞楠, 劉栓, 趙文杰, 等. 石墨烯/氟碳涂層的制備及其耐蝕性能[J]. 表面技術(shù), 2016, 45(11): 67-75. FANG Ya-nan, LIU Shuan, ZHAO Wen-jie, et al. Preparation and corrosion resistance of graphene/fluorocarbon coatings[J]. Surface technology, 2016, 45(11): 67-75.
[38] YEE M S, KHIEW P S, CHIU W S, et al. Green synthesis of graphene-silver nanocomposites and its application as a potent marine antifouling agent[J]. Colloids & surfaces B: Biointerfaces, 2016, 148: 392-401.
[39] FENG Z, SU Z, YU T. Antifouling improvement of graphene/TiO2modified polyurethane coatings[J]. Journal of controlled release, 2017, 259: e33.
[40] SAFARPOUR M, VATANPOUR V, KHATAEE A. Preparation and characterization of graphene oxide/TiO2, blended PES nanofiltration membrane with improved antifouling and separation performance[J]. Desalination, 2016, 393: 65-78.
[41] ZHU Z, ZHOU F, ZHAN S, et al. Study on the bactericidal performance of graphene/TiO2composite photocatalyst in the coating of PEVE[J]. Applied surface science, 2017, 430: 116-124.
[42] CHEN C, HE Y, XIAO G, et al. Two-dimensional hybrid materials: MoS2-RGO nanocomposites enhanced the barrier properties of epoxy coating[J]. Applied surface science, 2018,444: 511-521.
[43] YU D, WEN S, YANG J, et al. RGO modified ZnAl- LDH as epoxy nanostructure filler: A novel synthetic approach to anticorrosive waterborne coating[J]. Surface & coatings technology, 2017, 326: 207-215 .
[44] DI H, YU Z, MA Y, et al. Anchoring calcium carbonate on graphene oxide reinforced with anticorrosive properties of composite epoxy coatings[J]. Polymers for advanced technologies, 2016, 27(7): 915-921.
[45] SONG Z, ZHANG Y, LIU W, et al. Hydrothermal synthesis and electrochemical performance of Co3O4/reduced graphene oxide nanosheet composites for supercapacitors[J]. Electrochimica acta, 2013, 112(12): 120-126.
[46] YU Z, DI H, MA Y, et al. Preparation of graphene oxide modified by titanium dioxide to enhance the anti- corrosion performance of epoxy coatings[J]. Surface & coatings technology, 2015, 276: 471-478.
[47] YU Z, DI H, MA Y, et al. Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings[J]. Applied surface science, 2015, 351: 986-996.
[48] MA Y, DI H, YU Z, et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied surface science, 2016, 360: 936-945.
[49] SMAOUI H, MIR L E L, GUERMAZI H, et al. Study of dielectric relaxations in zinc oxide-epoxy resin nanocomposites[J]. Journal of alloys & compounds, 2009, 477(1-2): 316-321.
[50] HUANG L, ZHU P, LI G, et al. Core-shell SiO@RGO hybrids for epoxy composites with low percolation thres-hold and enhanced thermo-mechanical properties[J]. Journal of materials chemistry A, 2014, 2(43): 18246-18255.
[51] YOUSEFZADEH S, FARAJI M, NIEN Y T, et al. CdS nanoparticle sensitized titanium dioxide decorated graphene for enhancing visible light induced photoanode[J]. Applied surface science, 2014, 320: 772-779.
[52] MANSOURPANAH Y, SHAHEBRAHIMI H, KOLV-ARI E. PEG-modified GO nanosheets, a desired additive to increase the rejection and antifouling characteristics of polyamide thin layer membranes[J]. Chemical engineering research & design, 2015, 104: 530-540.
[53] SUN W, WANG L, WU T, et al. Synthesis of low- electrical-conductivity graphene/pernigraniline composites and their application in corrosion protection[J]. Carbon, 2014, 79(1): 605-614.
[54] 范壯軍, 魏彤, 閆俊, 等. 一種基于聚苯胺與石墨烯復合材料的防腐涂料及制備方法: 中國, CN102604533A [P]. 2012. FAN Zhuang-jun, WEI Tong, YAN Jun, et al. An anticorr-osive coating based on Polyaniline and graphene composite and its preparation method: China, CN102604533A [P]. 2012.
[55] 康佳, 劉勝林, 李自軍, 等. 聚苯胺/石墨烯原位復合水性防腐涂料耐蝕性能的研究[J]. 表面技術(shù), 2017, 46(11): 287-291. KANG Jia, LIU Sheng-lin, LI Zi-jun, et al. Study on corrosion resistance of polyaniline/graphene in-situ composite waterborne anticorrosive coatings[J]. Surface technology, 2017, 46(11): 287-291.
Application of Graphene in Anti-corrosive and Anti-fouling Coating
1,2,2,3,2,4
(1.Department of Ship Engineering, Weihai Ocean Vocational College, Weihai 264300, China; 2.Merchant Maritime College, Shanghai Maritime University, Shanghai 201306, China; 3.Shanghai QXQC Coating Technology Co., Ltd, Shanghai 201505, China; 4.School of Mechanical, Manufacturing & Materials Engineering, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200 Nairobi, Kenya)
Graphene has excellent barrier, shielding and chemical stability, the application of graphene in anti-corrosion and anti-fouling coatings has been deeply studied. Studies have shown that adding a certain amount of graphene to traditional coatings can significantly reduce the permeability to corrosive media such as water, oxygen, etc., and can enhance the bioadhesion of coatings and inhibit microbial corrosion. However, some disadvantages also appear in applications of graphene. For example, the strong van der Waals force between graphene lamellae leads to poor agglomeration and dispersion of graphene in coatings; the high chemical stability and hydrophobicity of graphene lead to poor adhesion between graphene and film-forming materials; and the superconductivity of graphene leads to the acceleration of metal corrosion when graphene film fails. In order to diminish the disadvantages of graphene during application, many methods have been explored, in which modified graphene (GO, RGO, FG) and synthetic graphene composite particles (graphene modified nanoparticles: GO-Al2O3particles, GO-TiO2particles, GO-SiO2particles, etc.; resin-supported graphene composite filler: graphene/polyaniline composite filler, etc.) are main methods. Finally, the development of graphene and its derivatives in anticorrosive and antifouling coatings is prospected.
graphene; corrosion resistance; anti-corrosion coating; surface modification; anti-fouling coatings; composite particles
2018-12-13;
2019-03-05
CHEN Jian-hua (1989—), Male, Master, Teaching assistant, Research focus: corrosion and protection of materials.
李文戈(1966—),男,博士,教授,主要研究方向為材料腐蝕與防護、激光表面工程、金屬基復合材料。郵箱:liwenge66@163.com
TG174.4; TQ630
A
1001-3660(2019)06-0089-09
10.16490/j.cnki.issn.1001-3660.2019.06.009
2018-12-13;
2019-03-05
陳建華(1989—),男,碩士,助教,主要研究方向為材料腐蝕與防護。
LI Wen-ge (1966—), Male, Doctor, Professor, Research focus: corrosion and protection of materials, laser surface engineering, metal matrix composite. E-mail: liwenge66@163.com