□ 杜月嬌
1900年,巴黎國際數學家代表會上,數學家希爾伯特發表了題為“數學問題”的著名演講。在這個演講中,他根據19世紀數學研究的成果和趨勢,提出了23個最重要的數學問題。這些問題后來被統稱為“希爾伯特問題”,100多年過去了,希爾伯特問題有的已經得到圓滿解決,有的至今懸而未決。
南京大學數學系教授劉公祥十分欽佩希爾伯特,不止源于希爾伯特樹起了19世紀末20世紀初國際數學界的一面旗幟,更因為他堅信每個數學問題都可以得到解決的信念。
“在我們中間,常常聽到這樣的呼聲:這里有一個數學問題,去找出它的答案!你能通過純思維找到它,因為在數學中沒有不可知。”在“數學問題”演講中,希爾伯特說道。
隔著一個時代,劉公祥依然能感受到這句話中澎湃的激情。“熱愛+堅持+勤奮”,這份赤子之心是他十數年數學之路上的行走秘籍。“做學問就要有一顆純粹的心去追求未知的世界,‘功利’只能是一種額外獎賞,而不應該是肩上的負重。”劉公祥說。
1941年,德國數學家H.Hopf發現球面的上同調群具有特殊的代數結構,即Hopf代數結構。從此,Hopf代數這個嶄新的代數結構迅速發展了起來。

劉公祥在課堂上
“Hopf代數結構最初來源于拓撲學,它描述了一些拓撲空間的對稱性,隨著研究的發展,人們發現它不僅僅能描述拓撲空間的對稱性,也能用來描繪量子世界的某種對稱性。”劉公祥介紹道,“Hopf代數與物理和數學的很多分支有著意想不到的聯系,例如共形場論、低維拓撲、非交換幾何、特征p域上的代數群表示理論等。……