邵瑋璐 李莉 劉震 唐延枝



摘 要: 在3D多輸入多輸出正交頻分復用(MIMO-OFDM)系統模型中,分析了基于導頻的信道估計方案.針對線性最小均方誤差方法的算法復雜度高的問題,應用奇異值分解(SVD)算法降低信道自相關矩陣的維數,以減小算法的復雜度.仿真結果表明:所提出的基于奇異值分解的信道估計算法,能夠在保證誤碼率(BER)性能的情況下,具有更低的算法復雜度.
關鍵詞: 3D多輸入多輸出正交頻分復用(MIMO-OFDM); 信道估計; 奇異值分解(SVD); 導頻
中圖分類號: TN 929.5文獻標志碼: A文章編號: 1000-5137(2019)01-0020-06
Abstract: The model of 3D multiple input multiple output and orthogonal frequency division multiplexing(MIMO-OFDM) system was introduced,and the channel estimation scheme based on pilot was analyzed.In view of the problem of high complexity of the linear least mean square error algorithm,the singular value decomposition(SVD) algorithm was proposed and applied to reduce the dimension of channel autocorrelation matrix,thus reducing computational complexity.The simulation results showed that the proposed channel estimation algorithm based on singular value decomposition could maintain the bit error rate(BER) performance with lower computational complexity.
Key words: 3D multiple input multiple output and orthogonal frequency division multiplexing(MIMO-OFDM); channel estimation; singular value decomposition(SVD); pilot
0 引 言
為了滿足通信系統對高傳輸速率的要求,多輸入多輸出(MIMO)與正交頻分復用(OFDM)相結合的技術一直是無線通信中的關鍵技術之一.3D MIMO技術通過引入天線的俯仰角概念,更好地利用了空間域的資源,能夠進一步提高系統吞吐量和頻譜效率.
信道估計是獲取信道狀態信息的重要技術,可用于接收端傳輸信號的有效恢復.目前,3D MIMO系統的信道估計方法的優化研究主要有兩類.第一類是從信道估計算法出發,減小原有算法的復雜度或者探尋新的估計算法,優化系統的誤碼率(BER)和均方誤差(MSE)等性能指標.ZHANG等[1]針對最小均方誤差(MMSE)算法復雜度高的問題,提出了一種級聯型(Cascaded)的最小均方誤差算法,該方法要對高維的自相關矩陣進行求逆運算,但算法復雜度依然很高.XUE等[2]從3D MIMO信道的稀疏性出發,利用壓縮感知理論將信道估計問題轉化為凸優化問題,提出了量子細菌覓食優化(QBFO)算法,提高系統的MSE性能,但未討論在不同導頻負載情況下該方法是否仍然具有優勢.第二類是通過優化導頻的設計,減少導頻開銷、系統的負載.WANG等[3]引入了導頻負載概念,主要討論了基于壓縮感知的估計算法在不同導頻負載影響下的性能,但未討論其他信道估計算法的性能.ZHANG等[4]提出了基于相關性的導頻分配方案,優化了導頻分配的復雜度,但仿真中只針對最小二乘(LS)信道估計算法,能否將其廣泛推廣有待討論.
本文作者針對3D MIMO-OFDM系統中線性最小均方誤差(LMMSE)估計方法的算法復雜度高的缺陷,提出了基于奇異值分解(SVD)的改進信道估計方法,來降低算法的復雜度.
1 信道估計方案設計
1.1 信道估計模型
對于3D MIMO-OFDM系統在接收端的信道響應,可以建模如下[5]:
1.2 基于SVD的信道估計方案
1.3 相關算法的復雜度比較
3種算法中SVD算法的算法復雜度優于文獻[1]中的級聯算法和LMMSE算法.
2 仿真分析
3 結 論
分析了3D MIMO-OFDM的信道模型和導頻的設計方案,對LMMSE和SVD兩種信道估計方案進行了仿真分析,并進行了算法復雜度比較.仿真結果表明:所提出的基于SVD的信道估計算法在所述系統中,能夠在保證誤碼率性能的情況下,具有更低的算法復雜度.未來可以在以下兩個方面進行更深入的研究:一是在導頻設計上實現算法復雜度和性能的平衡;二是從信道稀疏性入手,研究以壓縮感知和生物智能為主的尋優算法.
參考文獻:
[1] ZHANG H,LIANG Y,LI T,et al.Low complexity channel estimation in 3D MIMO systems [C]//2016 8th International Conference on Wireless Communications & Signal Processing (WCSP).Yangzhou:IEEE,2016:1-4.
[2] XUE J,JIANG S,LIANG Y,et al.Quantum bacterial foraging optimization based sparse channel estimation for 3D MIMO systems [C]//2016 8th International Conference on Wireless Communications & Signal Processing (WCSP).Yangzhou:IEEE,2016:1-5.
[3] WANG A,WANG Y,XU J,et al.Low complexity compressed sensing based channel estimation in 3D MIMO systems [C]//2015 IEEE 81st Vehicular Technology Conference (VTC Spring).Glasgow:IEEE,2015:1-5.
[4] ZHANG J,HE X.Pilot aided channel estimation for 3D MIMO-OFDM systems with planar transmit antennas and elevation effect [C]//2013 IEEE 24th Annual International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC).London:IEEE,2013:316-320.
[5] AUER G.3D MIMO-OFDM channel estimation [J].IEEE Transaction on Communication,2012,60(4):972-985.
[6] MA W,QI C.Channel estimation for 3D lens millimeter wave massive MIMO system [J].IEEE Communications Letters,2017,21(9):2045-2048.
[7] 3GPP Organizational Partners.3GPP TS38.211:V15.0.0 7-12 [S].Valbonne:3GPP Organizational Partners,2017.
[8] 孫鍇,黃威.MIMO-OFDM移動通信技術及MATLAB實現 [M].北京:電子工業出版社,2013.
SUN K,HUANG W.MIMO-OFDM mobile communication technology and MATLAB implementation [M].Beijing:Publishing House of Electronics Industry,2013.
[9] 杜盈.LTE上行鏈路信道估計與均衡算法研究 [D].長沙:湖南大學,2013.DU Y.Research on LTE uplink channel estimation and equalization algorithm [D].Changsha:Hunan University,2013.
[10] 何小丹.3D MIMO信道估計技術研究 [D].北京:北京郵電大學,2013.HE X D.Research on 3D MIMO channel estimation technology [D].Beijing:Beijing University of Posts and Telecommunications,2013.
(責任編輯:包震宇,顧浩然)