999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于分步小波變換的對流層電波傳播特性和分析軟件

2019-08-27 02:26:02韋姍姍胡圣波鄢婷婷莫金容
計算機(jī)應(yīng)用 2019年6期

韋姍姍 胡圣波 鄢婷婷 莫金容

摘 要:為滿足對流層無線通信系統(tǒng)設(shè)計和優(yōu)化的需要,基于拋物型波動方程和分步小波變換,研究了對流層電波傳播特性,開發(fā)了電波傳播特性分析軟件。首先,通過建立數(shù)值求解的計算場景,給出了一種基于分步小波變換的對流層電波傳播特性分析方法;其次,基于提出的分析方法和Matlab,開發(fā)了對流層電波傳播特性分析軟件。數(shù)值計算表明,提出的分步小波變換方法收斂性比分步傅里葉變換方法好;對流層傳播損耗與天線高度和仰角密切相關(guān),天線仰角越小傳播損耗也越小,天線高度越大傳播損耗越小;蒸發(fā)波導(dǎo)環(huán)境下的傳播損耗比標(biāo)準(zhǔn)大氣環(huán)境下的傳播損耗要小。此外,開發(fā)的分析軟件圖形用戶界面友好,操作簡單、靈活。

關(guān)鍵詞:分步小波;電波傳播特性;收斂性;傳播損耗;圖形用戶界面

中圖分類號: TP802+.4遠(yuǎn)動信號、信號發(fā)射、接收及轉(zhuǎn)換

文獻(xiàn)標(biāo)志碼:A

Abstract: In order to meet the needs of tropospheric wireless communication system design and optimization, based on parabolic wave equation and Split Step Wavelet Method (SSWM), the tropospheric radio wave propagation characteristics were studied, and the wave propagation characteristic analysis software was developed. Fristly,a method for analyzing the tropospheric propagation characteristics based on split step wavelet method was presented by establishing a computation scene of numerical solution. Then, the tropospheric radio wave propagation characteristics analysis software was developed based on the proposed analysis method and Matlab.The numerical results show that the convergence of the proposed SSWM is better than that of Split Step Fourier Method (SSFM); tropospheric propagation loss is closely related to antenna height and elevation: the smaller the antenna elevation angle, the smaller the propagation loss; the larger the antenna height, the smaller the propagation loss; the propagation loss in an evaporation duct environment is smaller than that in the standard atmospheric environment. In addition, the developed analysis software has a user-friendly graphical user interface and is simple and flexible to operate.

Key words: split step wavelet; radio wave propagation characteristics; convergence; propagation loss; Graphical User Interface (GUI)

0 引言

對流層散射傳播具有超視距、大容量、高可靠等優(yōu)點,在軍事、民用領(lǐng)域應(yīng)用前景十分廣闊。但是,受大氣動力學(xué)和熱力學(xué)條件的影響,對流層折射率呈現(xiàn)時變、空變特性,再加上反射、繞射、折射等交織在一起,使得對流層散射傳播十分復(fù)雜。而研究對流層散射傳播特性主要采用數(shù)值求解拋物型波動方程的方法,如文獻(xiàn)[1-5]。

拋物型波動方程由Helmholtz波動方程作旁軸近似得到。一般地,拋物型波動方程具有這些獨特優(yōu)勢[5-8]:1)可同時處理折射效應(yīng)和衍射效應(yīng),計算簡單、精度高。2)可有效處理非均勻、非規(guī)則的電磁分布,適合時變、空變電磁環(huán)境下的無線傳播的信道建模。3)采用迭代算法求解方程,可預(yù)測傳播路徑的損耗[9]。因此,拋物型波動方程非常適合折射率時變、空變的對流層傳播建模。

數(shù)值求解拋物型波動方程普遍采用時域有限差分法(Finite-Difference Time-Domain, FDTD)和頻域有限差分法(Finite-Difference Frequency-Domain, FDFD)。但從提高精度和魯棒性的考慮,分步傅里葉變換法(Split Step Fourier Method, SSFM)在數(shù)值求解拋物型波動方程更得到廣泛應(yīng)用[3,10-11] 。由于傅里葉變換在處理時變、空變等非平穩(wěn)環(huán)境時具有局限性[12],因此,以小波變換為重要內(nèi)容的調(diào)和分析在數(shù)值求解拋物型波動方程領(lǐng)域的研究正成為新的熱點[13]。如文獻(xiàn)[14]基于周期性Daubechies小波,采用一種Galerkin投影方法,通過求解波動拋物型方程,研究了一種對流層電波傳播建模方法。但這種Galerkin 建模方法計算成本大,為此,文獻(xiàn)[15]研究了一種新穎分步小波方法(Split Step Wavelet Method, SSWM),求解對流層環(huán)境下二維拋物線電波傳播方程,在對流層電波傳播建模方面取得了很好的效果。

此外,從無線通信、雷達(dá)系統(tǒng)分析和設(shè)計優(yōu)化看,對流層電波傳播特性分析和建模分析軟件非常重要。例如,基于分步傅里葉變換法,人們開發(fā)了許多計算軟件,如綜合折射效應(yīng)預(yù)測系統(tǒng) (Integrated Refraction Effects Prediction System, IREPS)、工程折射效應(yīng)預(yù)報系統(tǒng)(Engineers Refractive Effects Prediction System, EREPS)、戰(zhàn)術(shù)電子支援系統(tǒng)(Tactical Electronic Support System, TESS )等[16-18]。而基于分步傅里葉變換法,Ozgun等[18]采用Matlab開發(fā)了具有圖形用戶界面(Graphical User Interface, GUI)的軟件工具PETOOL,用于分析和可視化輸出對流層電波傳播特性。但目前鮮少有基于分步小波變換的對流層電波傳播特性分析和建模軟件的研究。因此,基于Matlab平臺,在分析基于SSWM的對流層電波傳播建模的基礎(chǔ)上,本文開發(fā)了一種開源的分析軟件,該軟件友好,可選擇不同環(huán)境下的折射率,能在傳播距離和高度二維平面上可視化輸出電波傳播特性。

1 求解波動拋物型方程

1.1 對流層環(huán)境下的波動拋物型方程

一般地,如記電磁場分量ψ(x,z)=u(x,z)exp(jk0t),根據(jù)麥克斯韋理論,可得二維空間波動拋物型方程。如:忽略時諧因子和后向傳播,并記場分量為u(x,z),作近軸近似,得如下平面上二維波動拋物型方程[15]:

1.2 分步小波法(SSWM)

SSWM采用一種具有周期小波函數(shù)的鏡像處理方法,鏡像處理[15]后,求解式(1)涉及到的積分區(qū)域則從z∈[0,zmax]變?yōu)閦∈[-zmax,zmax]。這樣,利用小波展開,待求解場分量u(x,z)可表示為如下離散形式:

1.3.3 初始條件的確定

對于x=0處初始場,可通過天線輻射模式f(p)和天線孔徑分布函數(shù)A(z)的傅里葉變換對關(guān)系確定。對于完全導(dǎo)體邊界,場分量在邊界將消失,應(yīng)用鏡像理論,式(15)成立:

4 結(jié)語

從無線通信、雷達(dá)系統(tǒng)分析和設(shè)計優(yōu)化出發(fā),通過研究分步小波變換求解二維拋物型波動方程的數(shù)值方法,本文開發(fā)了基于Matlab的分步小波變換求解對流層電波傳播特性的交互式分析軟件。其中,針對分步小波變換不能自動處理有損地表面的邊界條件的問題,提出了一種采用離散混合傅里葉變換的處理方法。分析結(jié)果表明:分步小波變換法比分步傅里葉變換法具有更好的收斂性;而開發(fā)的對流層電波傳播特性分析軟件,圖形用戶界面友好,操作簡單、靈活,并可實現(xiàn)對流層電波傳播特性數(shù)據(jù)的可視化輸出。最后,應(yīng)用開發(fā)的軟件,分析了標(biāo)準(zhǔn)環(huán)境和蒸發(fā)波導(dǎo)兩種環(huán)境下的電波傳播特性,結(jié)果表明:傳播損耗隨傳播距離增加而增加,傳播損耗與天線高度和仰角密切相關(guān),天線仰角越小,傳播損耗也越小;天線高度越大,傳播損耗也越小。此外,蒸發(fā)波導(dǎo)環(huán)境下的傳播損耗比標(biāo)準(zhǔn)大氣環(huán)境下的傳播損耗要小。

參考文獻(xiàn) (References)

[1] 張金鵬.海上對流層波導(dǎo)的雷達(dá)海雜波/GPS信號反演方法研究[D].西安:西安電子科技大學(xué),2013:6.(ZHANG J P. Methods of retrieving tropospheric ducts above ocean surface using radar sea clutter and GPS signals [D]. Xian: Xidian University, 2013: 6.)

[2] 肖金光,劉曉娣,周新力,等.基于PE的海洋蒸發(fā)波導(dǎo)寬帶通信信道建模方法[J].計算機(jī)仿真,2015,32(11):216-220.(XIAO J G, LIU X D, ZHOU X L, et al. A method of modeling wideband channel in sea evaporation duct communication based on PE [J]. Computer Simulation, 2015, 32(11): 216-220.)

[3] 陳瑩.拋物線方程法求解電波傳播問題快速算法研究[D].南京:南京郵電大學(xué),2016:13-24.(CHEN Y. Research on fast algorithm for solving electromagnetic wave propagation problem with parabolic equation method [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2016: 13-24.)

[4] KARIMIAN A, YARDIM C, GERSTOFT P, et al. Refractivity estimation from sea clutter: an invited review [J]. Radio Science, 2011, 46(6): 1-16.

[5] 邱志勇.對流層電磁波傳播的拋物型方程法研究[D].鄭州:鄭州大學(xué),2015:23-29.(QIU Z Y. Study on electromagnetic wave propagation parabolic equation method in tropospheric atmosphere [D]. Zhengzhou: Zhengzhou University, 2015: 23-29.)

[6] ENGQUIST B, MAJDA A. Numerical radiation boundary conditions for unsteady transonic flow [J]. Journal of Computational Physics, 1981, 40(1): 91-103.

[7] SINKIN O V, HOLZLOHNER R, ZWECK J, et al. Optimization of the split-step Fourier method in modeling optical-fiber communications systems [J]. Journal of Lightwave Technology, 2003, 21(1): 61-68.

[8] APAYDIN G, SEVGI L. Propagation modeling and path loss prediction tools for high frequency surface wave radars [J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2014, 18(3): 469-484.

[9] 周春海.二維波動方程的全變分正則化正反演方法研究[D].哈爾濱:哈爾濱工程大學(xué),2016:37-46.(ZHOU C H. Research on the total variation regularization simulation and inversion method of two-dimensional wave equations [D]. Harbin: Harbin Engineering University, 2016: 37-46.)

[10] 李德鑫,楊日杰,王元誠,等.不規(guī)則地形條件下雙向DMFT電波傳播特性算法研究[J].航空學(xué)報,2012,33(2):297-305.(LI D X, YANG R J, WANG Y C, et al. Study on two-way DMFT algorithm of predicting radio propagation characteristics in irregular terrain environment [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 297-305.)

[11] BAO W, CAI Y. Mathematical theory and numerical methods for Bose-Einstein condensation [J]. Kinetic & Related Models, 2013, 6(1): 1-135.

[12] 林艷.傅里葉變換和小波分析在地震勘探中的處理[D].成都:成都理工大學(xué),2012:9-10.(LIN Y. Fourier transformation and wavelet analysis application in seismic exploration [D]. Chengdu: Chengdu University of Technology, 2012: 9-10.)

[13] IQBAL A, JEOTI V. A split step wavelet method for radiowave propagation modelling in tropospheric ducts [C]// Proceedings of the 2011 IEEE International RF & Microwave Conference. Piscataway, NJ: IEEE, 2011: 67-70.

[14] IQBAL A, JEOTI V. A novel wavelet-galerkin method for modeling radio wave propagation in tropospheric ducts [J]. Progress in Electromagnetics Research B , 2012, 36: 35-52.

[15] IQBAL A, JEOTI V. An improved split-step wavelet transform method for anomalous radio wave propagation modeling [J]. Radio Engineering, 2014, 23(4): 987-996.

[16] 張永棟.基于拋物方程的電波傳播問題研究[D].長沙:國防科學(xué)技術(shù)大學(xué),2011:1.(ZHANG Y D. Analysis of radio propagation using parabolic wave equation [D]. Changsha: National University of Defense Technology, 2011: 1.)

[17] PAULUS R A. Practical application of an evaporation duct model [J]. Radio Science, 1985, 20(4): 887-896.

[18] OZGUN O, APAYDIN G, KUZUOGLU M, et al. PETOOL: MATLAB-based one-way and two-way split-step parabolic equation tool for radiowave propagation over variable terrain [J]. Computer Physics Communications , 2011, 182(12): 2638-2654.

[19] BULUT F. An alternative approach to compute wavelet connection coefficients [J]. Applied Mathematics Letters, 2016, 53: 1-9.

[20] ARRIDGE S R, BETCKE M M, HARHANEN L. Iterated preconditioned LSQR method for inverse problems on unstructured grids [J]. Inverse Problems, 2014, 30(7): 075009-1-075009-27.

[21] 黃穎.電波傳播預(yù)測計算中的準(zhǔn)三維拋物線方程法[D].南京:南京郵電大學(xué),2017:11-22.(HUANG Y. Quasi three dimensional parabolic equation method for prediction of radio wave propagation [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017: 11-22.)

[22] MUMFORD D. Pattern theory: a unifying perspective [M]// Perception as Bayesian Inference. New York: Cambridge University Press, 1996: 25-62.

[23] LI X F, WANG Z L, LIU H J. Optimizing initial chirp for efficient femtosecond wavelength conversion in silicon waveguide by split-step Fourier method [J]. Applied Mathematics and Computation, 2012, 218(24): 11970-11975.

[24] 劉帥,李智.分步傅里葉算法在求解拋物型波動方程中的應(yīng)用及精度分析[C]//第13屆中國系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)年會論文集.北京:中國自動化學(xué)會系統(tǒng)仿真專業(yè)委員會、中國系統(tǒng)仿真學(xué)會仿真技術(shù)應(yīng)用專業(yè)委員會,2011:5.(LIU S, LI Z. Application of split-step Fourier transformation method in parabolic type wave equation and its error analysis [C]// Proceedings of the 13th China System Simulation Technology and its Application Annual Conference. Beijing: Chinese Association of Automation System Simulation Committee, China System Simulation Society Simulation Technology Application Committee, 2011: 5.)

[25] KARIMIAN A,YARDIM C, GERSTOFT P, et al. Refractivity estimation from sea clutter: an invited review [J]. Radio Science, 2011, 46(6): 1-16.

[26] 徐高晨.復(fù)雜環(huán)境下高頻電波傳播的拋物線方程方法研究[D].西安:西安理工大學(xué),2016:50-59.(XU G C. Parabolic equation method of high frequency radio wave propagation in complex environment [D]. Xian: Xian University of Technology, 2016: 50-59.)

[27] 趙春麗.基于蒸發(fā)波導(dǎo)的雷達(dá)電磁盲區(qū)特性與補(bǔ)盲策略研究[D].新鄉(xiāng):河南師范大學(xué),2017:9-17.(ZHAO C L. Research of radar blind zone and correction strategy based on evaporation duct [D]. Xinxiang: Henan Normal University, 2017: 9-17.)

[28] 張愛麗,王艷軍,張瑜.蒸發(fā)波導(dǎo)測量儀器的精度分析與檢驗[J].西安電子科技大學(xué)學(xué)報(自然科學(xué)版),2012,39(4):191-196.(ZHANG A L, WANG Y J, ZHANG Y. Test and analysis of accuracy of the evaporation duct measuring instrument [J]. Journal of Xidian University (Natural Science), 2012, 39(4): 191-196.)

主站蜘蛛池模板: 国产精品自在线拍国产电影| 久久综合AV免费观看| jizz国产视频| 久久精品国产电影| 国产欧美日韩视频一区二区三区| 午夜精品福利影院| 久久网综合| 国产尤物在线播放| 国产中文在线亚洲精品官网| 久久久久久久久18禁秘| 黄网站欧美内射| 久久黄色小视频| 久久这里只有精品2| 亚洲精品无码高潮喷水A| 国产真实二区一区在线亚洲| 亚洲日本中文字幕乱码中文 | 夜夜拍夜夜爽| 乱码国产乱码精品精在线播放| 亚洲 日韩 激情 无码 中出| 最新日韩AV网址在线观看| 在线视频亚洲色图| 亚洲视频影院| 日本高清免费一本在线观看| 人妻91无码色偷偷色噜噜噜| 免费一级毛片在线播放傲雪网| 久久精品人人做人人| a毛片在线| 午夜福利免费视频| 综合色区亚洲熟妇在线| 国产性生大片免费观看性欧美| 成人在线天堂| 免费中文字幕在在线不卡| 精品综合久久久久久97| 亚洲制服丝袜第一页| 玖玖免费视频在线观看| 国产成人精品男人的天堂下载| 亚洲色图欧美视频| 97在线国产视频| 人妻丰满熟妇av五码区| 日韩免费视频播播| 国产综合亚洲欧洲区精品无码| 九色在线视频导航91| 99精品一区二区免费视频| 国产精品久久久久久久久久98| 亚洲中文无码av永久伊人| 青青草国产免费国产| 亚洲人成日本在线观看| 国产日韩丝袜一二三区| 欧美一区二区三区国产精品| 97视频免费在线观看| 久久天天躁夜夜躁狠狠| 在线观看亚洲人成网站| 中文字幕 日韩 欧美| 在线视频亚洲色图| 亚洲男人的天堂久久香蕉| 亚洲无码四虎黄色网站| 国产成人精彩在线视频50| 内射人妻无码色AV天堂| 在线亚洲小视频| 天堂中文在线资源| 91人妻日韩人妻无码专区精品| 伊在人亚洲香蕉精品播放 | 欧美在线中文字幕| 人妻少妇乱子伦精品无码专区毛片| 无码免费的亚洲视频| 九九热这里只有国产精品| 日韩欧美亚洲国产成人综合| 58av国产精品| 国产拍揄自揄精品视频网站| 久久精品无码一区二区日韩免费| 久夜色精品国产噜噜| 天天色天天操综合网| 欧美一级视频免费| 日韩中文无码av超清| 亚洲天堂免费| 国产美女视频黄a视频全免费网站| 国产极品美女在线| 制服丝袜 91视频| 久久婷婷国产综合尤物精品| 国产精品林美惠子在线播放| 四虎综合网| 91精品亚洲|