

摘要:公元1742年,德國數學家哥德巴赫發現每個≥6 的偶數都等于兩個質數的和(歐拉版本)。這就是著名的哥德巴赫猜想,從此這個猜想引起全世界的轟動,數學家們都對其展開圍攻,但成果不大,200多年過去了,還是沒有人證明他。并把它比喻為數學皇冠上的“明珠”。到了20世紀20年代,猜想才有些進展,直到1966年中國的數學家陳景潤證明了“任何充分大的偶數,都是一個質數與一個自然數之和,而這個自然數僅僅是至多兩個質數的乘機”。即大偶數可表示為“1+2”,這就是陳氏定理。(引自百度百科)但陳氏定理距最終結果還有一步之遙!
關鍵詞:猜想,“1+1”,皇冠上的“明珠”。
前言:200多年的一道數學難題,哥德巴赫猜想,筆者被深深吸引,經過多年努力,終于有了進展。本人試著以全新的思維來論證哥德巴赫猜想之“1+1”成立。
目錄:
一、猜想分析
二、用數學代數式表達偶數質數
三、解題
四、疑點分析
五、證明猜想成立
一、猜想分析
任意一個≥6 的偶數都等于兩個質數的和(歐拉版本)。
①:要了解偶數,質數,就要從自然數說起,自然數:自然數概念指用以計量事物的件數或表示事物件數的數。即用數碼0,1,2,3,4,……所表示的數。自然數由0開始一個接一個,組成一個無窮集體。自然數只是不小于0的整數(也就是0和正整數),所以自然數有無數個,通常用n表示。自然數的個數是無限的。
為了國際交流的方便,1993年頒布的《中華人民共和國國家標準》(GB3100~3102-93)《量和單位》(11-2.9)第311頁,規定自然數包括0。所以在近幾年進行的中小學數學教材修訂中,我們的教材研究編寫人員根據上述國家標準進行了修改。