根據對150余家生產型和技術服務型的大中型企業的調研,德勤中國最新發布《中國智造,行穩致遠 —— 2018中國智能制造報告》指出:亞洲正受到自動化、智能化大潮沖擊。
國際勞工組織調研發現,越南、柬埔寨、菲律賓和印度尼西亞的工人的失業風險最高,據估計這幾個區域約50%的工人工作可能在未來20年被自動化取代。
亞洲尤其是中國作為制造業的重要區域,在面臨制造業向自動化、智能化、數字化轉型中,能否繼續保持其競爭力?
智能制造是基于新一代信息技術,貫穿設計、生產、管理、服務等制造活動環節,具有信息深度自感知、智慧優化自決策、精準控制自執行等功能的先進制造過程、系統與模式的總稱。簡而言之,智能制造是由物聯網系統支撐的智能產品、智能生產和智能服務。
智能制造已經成為全球價值鏈重構和國際分工格局調整背景下各國的重要選擇。發達國家紛紛加大制造業回流力度,提升制造業在國民經濟中的戰略地位。毫無疑問,在此次大潮中亞洲正在積極尋求突破。以人工智能為例,各國政府大力支持人工智能,推動科技公司、初創公司和學術界的創新。
除了政府的支持,亞洲企業更積極打破行業壁壘加快新產品開發。不同于歐美同類企業,中國領先企業間的合作屢見不鮮,一些知名范例包括:百度與小米在物聯網與人工智能領域合作開發更多應用場景;騰訊與京東合作布局電子商務生態圈;印度系統集成商組成AI聯盟(如OpenAI)。這賦予它們驚人的影響力,也意味著它們擁有可用于快速推動創新的技術實力和資本基礎。
中國是亞洲智能化轉型的重要力量。政府加強智能制造頂層設計,開展試點示范和標準體系建設;企業加快數字化轉型,提升系統解決方案能力。中國智能制造取得明顯成效,進入高速成長期。
中國智能制造進入成長期主要體現在三方面:首先,中國工業企業數字化能力素質提升,為未來制造系統的分析預測和自適應奠定基礎。第二、財務效益方面,智能制造對企業的利潤貢獻率明顯提升。第三、典型應用方面,中國已成為工業機器人第一消費大國,需求增長強勁。
企業數字化能力素質體現在其利用數據指導生產以及系統自優化的能力。我們借鑒國際普遍認可的工業4.0發展路徑,將企業智能化成熟度分為六個階段:計算機化、連接、可視、透明、預測和自適應。
計算機化:企業通過計算機化高效處理重復性工作,并實現高精度、低成本制造。但不同的信息技術系統在企業內部獨立運作,很多設備并不具備數字接口。
連接:相互關聯的環節取代各自為政的信息技術。操作技術(OT)系統的各部分 實現了連通性和互操作性,但是依舊未能達到IT層面和OT層面的完全整合。
可視:了解正在發生什么,通過現場總線和傳感器等物聯網技術,企業捕獲大量的實時數據,建立起企業的“數字孿生”,從而改變以前基于人工經驗的決策方式,轉為基于數字進行決策。
透明:了解事件發生的原因,并通過根本原因分析生成認識。
預測:將數字孿生投射到未來,模擬不同的情景對未來發展進行預測,并適時做出決策和采取適當措施。
自適應:預測能力只是自動化行為和決策的根本要求,而持續的自適應則使企業實現自主響應,以便其盡快適應變化的經營環境。
隨著中國兩化融合和工業物聯網建設等多項舉措推進,制造型企業數字化能力素質顯著提升,大部分企業正致力于數據縱向集成。
德勤調研結果顯示,81%的受訪企業已完成計算機化階段,其中41% 處于連接階段,28%處于可視階段,9%處于透明階段,而預測和自適應階段的企業各自占2%。
智能制造利潤貢獻顯著提升向工業4.0進階,為制造企業帶來真實可見的效益。2013年德勤曾調研全國200家制造型企業,結果顯示中國企業智能制造處在初級階段,且利潤微薄。經過五年的快速發展,智能制造產品和服務的盈利能力顯著提升。
2013年智能制造為企業帶來的利潤并不明顯,55%的受訪企業其智能制造產品和服務凈利潤貢獻率處于0-10%的區間,而2017年,僅有11%的受訪企業處于這個區間,而41%的企業其智能制造利潤貢獻率在11-30%之間。利潤貢獻率超過50%的企業,由2013年受訪企業占比14%提升到2017年的33%。智能制造利潤貢獻率明顯提升,利潤來源包括生產過程中效率的提升和產品服務價值的提升。
中國已連續六年為工業機器人第一消費大國。IFR數據顯示,中國工業機器人市場規模在2017年為42億美元,全球占比27%, 2020年將擴大到59億美元。2018-2020年國內機器人銷量將分別為16、19.5、23.8萬臺,未來3年CAGR達到22%。汽車、高端裝備制造和電子電器行業依然為工業機器人的主要用戶。
中國有哪些獨特優勢?首先是數據量。當前人工智能熱潮背后的機器學習技術對數據極其依賴。識別人臉、翻譯語言和試驗無人駕駛汽車需要大量的“訓練數據”。
由于中國的人口數量和設備數量龐大,中國企業在獲取數據方面具有天然的優勢。第二,中國制造業企業硬件設備和廠房相對歐美企業普遍較新,比較容易實現設備連接和廠房改造。
德勤調查發現,中國工業企業智能制造五大部署重點依次為:數字化工廠(63%)、設備及用戶價值深挖(62%)、工業物聯網(48%)、重構商業模式(36%)以及人工智能(21%)。
制造型企業面臨愈發激烈的市場競爭和日益透明的產品定價,不得不尋找新的 價值來源。德勤智能制造調研結果顯示,設備和用戶價值深度挖掘是企業智能制造部署第二重點領域。62%的受訪 企業正積極部署設備和用戶價值深度挖掘,其中41%的企業側重設備價值挖掘,21%的企業側重用戶價值挖掘。
圍繞設備進行價值挖掘可以說是制造型企業的天性。如在研發設計階段,嵌入新技術,生產更智能或更多樣化的產品;在銷售階段,提供設備相關金融服務;在售后階段,對出廠設備和產品進行實時數據采集和監控,并進行性能分析、預測性維護等,既提升安全性,也為企業創造更多服務機會。
例如:紅領集團通過打造C2M電商平臺、柔性供 應能力和大數據能力實現了大規模定制 化。顧客可以在其C2M電商平臺選擇款式、工藝、材料并下單。平臺快速收集顧客分散、個性化需求數據的同時,大數據和云計算技術按客戶需求匹配產品數據模型,其款式數據和工藝數據能滿足超過百萬萬億種設計組合,覆蓋99.9%的個性化設計需求。當版型確定后,系統自動生成工藝數據,工藝數據發送至工廠,工廠進行生產交付。整個流程從下訂單到產 品出廠僅需7個工作日,并做到按需生產、零庫存、一人一版、一衣一款。
阿里巴巴的“淘工廠”集結上萬家工廠,將電商買家訂單與制造廠商產能進行對接,把柔性產能檔期聯網,解決電商買家有訂單無工廠、制造企業有產能無訂單的結癥。