在一張長方形的桌面上放了n個一樣大小的圓形硬幣。這些硬幣中可能有一些不完全在桌面內,也可能有一些彼此重疊;當再多放一個硬幣而它的圓心在桌面內時,新放的硬幣便必定與原先某些硬幣重疊。請證明整個桌面可以用4n個硬幣完全覆蓋。
要想讓新放的硬幣不與原先的硬幣重疊,兩個硬幣的圓心距必須大于直徑。也就是說,對于桌面上任意一點,到最近的圓心的距離都小于2。所以,整個桌面可以用n個半徑為2的硬幣覆蓋。
把桌面和硬幣的尺度都縮小一倍,那么,長、寬各是原桌面一半的小桌面,就可以用n個半徑為1的硬幣覆蓋。把原來的桌子分割成相等的4個小桌子,那么每個小桌子都可以用n個半徑為1的硬幣覆蓋。因此,整個桌面就可以用4n個半徑為1的硬幣覆蓋。