黃聰 李有志 楊念婉



摘要 隨著全球貿易的加速發展,入侵物種對農林業、生態環境及人類健康的威脅日益嚴重?;蚪M學研究為闡明外來有害生物入侵的分子機制與生態適應性過程以及研發新型防控技術提供了新手段、新平臺與大數據。本文綜述了入侵昆蟲基因組學研究的發展現狀,系統總結了基因/基因家族、轉座子/重復序列等基因組信息在決定昆蟲入侵性中的重要作用,著力探討了基因組學研究在助力害蟲RNAi、昆蟲不育技術 (SIT)、化學生態防治和物理防治等防控新技術/新產品開發方面的潛力,并展望了基因組學研究應用于入侵昆蟲綜合防控的前景。
關鍵詞 入侵昆蟲; 基因組; 入侵性
中圖分類號: Q 963 ?文獻標識碼: A ?DOI: 10.16688/j.zwbh.2019050
Abstract With the accelerated development of global trade, invasive species seriously threaten agriculture, forestry, ecological environment and human health. Genomic study provides novel tools, platforms and big data for elucidating the molecular mechanisms and ecological adaptation of the invasive alien species (IAS), and developing new prevention and control technologies. We reviewed the status of invasive insect genomic study, systematically summarized the important roles of genes, gene families, transposons and repetitive sequences in determining insect invasiveness. We also analyzed the potential of genomic study in facilitating the development of novel pest control technologies or products such as RNAi, sterile insect technique (SIT), chemical ecology and physical methods, and envisioned the prospect of the application of genomic study for the integrated management of invasive pests.
Key words invasive insect; genome; invasiveness
外來入侵物種(invasive alien species, IAS) 是指分布在原產地以外、建立了能夠自我維持的種群并對當地的經濟、生態和社會安全造成威脅的物種[1]。在過去的200年間,全球外來入侵物種數量持續增長;尤其近50年來,隨著全球貿易的加速發展,外來物種入侵的增長越發加劇,全球16 926個新增外來物種中有超過三分之一 (37%)發生在1970年-2014年間[2]。此外,對全球首次記錄的外來物種風險評估發現,其中約16%的物種具有一定的入侵潛力[3],一旦被有意或無意地引入原產地以外的生境,不僅會危及當地經濟和生態,也會威脅到人類健康、食物資源以及國家安全[4]。昆蟲是世界上種類最多的動物群體,占所有生物種類50%以上,因此,外來入侵昆蟲對人類造成的危害十分嚴重,據統計,每年由于外來入侵昆蟲導致的全球經濟和人類健康損失分別超過700億美元和69億美元[5]。作為世界上最大的兩個經濟體,中國和美國是遭受外來入侵生物威脅最嚴重的兩個國家,年度經濟損失分別達到189億和400億美元[4,6]。
明確入侵機制有利于高效預警、阻截和治理外來入侵昆蟲?;蚪M學技術的迅速發展為深入挖掘入侵昆蟲的入侵途徑和適應性機制帶來了契機,科學家們正試圖利用組學數據來研究入侵生物學[7-9]。基因組包含生物體的全部遺傳信息,一切與入侵分子機制相關的遺傳密碼均貯藏在基因組中,通過對入侵生物進行基因組測序和重測序,深入挖掘分析組學數據有利于解密入侵物種入侵的分子基礎、遺傳機制和進化過程。本文對目前已完成基因組測序的入侵昆蟲進行了梳理,分析了入侵昆蟲基因組測序進展,總結了利用基因組測序技術揭示昆蟲入侵分子機制的研究思路,以及探討了基因組研究在害蟲防控新技術/新產品開發中的推動作用。
1 入侵昆蟲基因組測序現狀
1.1 入侵昆蟲基因組測序及動態
組學技術的發展極大地促進了昆蟲學的研究,隨著測序技術的不斷革新,近年來越來越多的昆蟲基因組被測序,據統計,2016年12月底之前已完成基因組拼接的昆蟲215種[10],而2017年12月增至近260種[11],截至2018年12月,NCBI中已有331個完整拼接的昆蟲基因組,其中入侵昆蟲67種 (20.2%) (圖1,表1)。入侵昆蟲鑒定參考中國外來入侵物種數據庫(http:∥www.chinaias.cn/wjPart/index.aspx)、GBIF (http:∥data.gbif.org)、CABI(www.cabi.org/isc)和IOBIS (http:∥www.iobis.org/)等數據庫。
分析67種入侵昆蟲基因組提交至NCBI的時間動態可以看出,2011年以前入侵昆蟲基因組測序進展緩慢,每年新增入侵昆蟲基因組數目基本為1個,這與整個昆蟲基因組測序動態基本一致[10],2011年以后隨著測序技術的革新,完成基因組測序的入侵昆蟲數量有了大幅增長,到2015年達到頂峰,新提交14個入侵昆蟲基因組數據,隨后,入侵昆蟲基因組測序進展速度放慢,每年新增7~10個 (圖1a)。
入侵昆蟲在長期與寄主植物互作過程中,為擴大寄主范圍及適應多樣化的寄主,基因組中與寄主定位、化合物識別、食物消化和解毒代謝相關的基因家族發生了擴張,甚至進化出種系特異的基因家族。紅火蟻Solenopsis invicta和阿根廷蟻是兩種雜食性入侵昆蟲,與近緣非入侵螞蟻比較發現入侵螞蟻具有更強的氣味識別和偵測能力[32],這得益于它們基因組中氣味受體的大量拷貝,如紅火蟻基因組中擁有超過400個氣味受體,阿根廷蟻基因組中氣味受體也多達367個。由于寄主多樣性,多食性的入侵昆蟲通常具有發達的味覺感受系統以識別不同寄主植物的化合物成分,如多食性的棉鈴蟲、斜紋夜蛾和美國白蛾Hyphantria cunea基因組中味覺受體(GR)發生大量擴張,分別為213、237和147個GRs,遠高于單食性和寡食性昆蟲的45~76個[33-36]。值得注意的是,與抗藥性相關的解毒代謝類基因家族也被認為與一些入侵昆蟲的寄主適應性和多食性有關,如棉鈴蟲、煙粉虱和斜紋夜蛾基因組中與解毒代謝相關的基因家族 (如P450s、UGTs、GSTs和羧酸酯酶等)的擴張[15,26,30]。多食性的入侵昆蟲取食寄主植物后,為了消化各類寄主植物,與消化相關的基因家族也發生了特異性擴張,如棉鈴蟲基因組中與食物消化相關的絲氨酸蛋白酶(主要是胰蛋白酶和胰凝乳蛋白酶)基因家族發生了顯著擴張;光肩星天牛和兩角竹節蟲基因組中與編碼降解植物細胞壁的相關酶的基因家族發生擴張[31, 37];美國白蛾基因組中參與碳水化合物代謝通路相關的基因家族發生了擴張[38]。
2.2 轉座子/重復序列與昆蟲入侵性
轉座子是真核生物基因組進化的主要驅動力[39],許多物種在不利環境下的適應性進化都離不開轉座子的作用[40-41],在進化壓力脅迫下轉座子活性可引起物種基因組大小改變[42-43]、物種分化[44]、基因復制[45] 和新基因產生[46] 等,以適應各種進化壓力。研究表明由轉座子導致的入侵物種基因組大小的改變、基因組結構的變化等可引起入侵種的快速適應性進化[47-49]。即入侵物種進入新環境后往往由少數遺傳多樣性很低的建群種迅速擴張種群,即“奠基者效應”,但遺傳多樣性低的建群種如何迅速適應新環境并擴散分布,一直以來困擾著入侵生物學者。對轉座子的研究表明,新環境壓力誘導的轉座子活性會改變基因的作用,促進結構變異,進而產生迅速適應新環境的特性[50]。
昆蟲基因組中也存在大量的轉座子[51],可以引起基因組大小進化[52],或調節昆蟲壽命[53]。近期研究成果表明轉座子在入侵昆蟲入侵性中也起著重要作用,能夠促進入侵昆蟲的適應性進化。通過基因組測序發現入侵螞蟻灰黑心結蟻基因組在已測序蟻科昆蟲中屬于最小的,其基因組中含有7.18%的轉座子,但集中在高密度的轉座子島中,轉座子島表現出更高的進化速率和序列多樣性,該島中的基因較非轉座子島區域的基因拷貝數變異發生更普遍,具有更高的進化速率,如與幼蟲發育、抗藥性、繁殖和化學感受相關的基因變異有助于對新環境的適應,促進入侵的奠基者種群迅速擴張[14]。在蚊科中,廣泛分布的入侵種白紋伊蚊擁有目前已知蚊科昆蟲中最大的基因組,主要原因是其基因組含有68%的重復序列,其轉座子含量是本地限制性分布種岡比亞按蚊Anopheles gambiae 的10倍,這種高含量的轉座子被認為與其入侵性有關[29]。隨后的研究也證實了這一猜想,研究人員為了揭示白紋伊蚊同時適應溫帶和熱帶氣候環境的生態可塑性機制,對140個來自越南本地種和歐洲入侵種的白紋伊蚊雌成蟲進行高通量測序,分析發現生活在溫帶氣候的歐洲種群具有更高的轉座子插入頻率,是入侵后的適應性進化的結果,對這些高頻率轉座子插入區域的基因分析發現與滯育、磷脂和保幼激素代謝通路相關的基因可能與入侵種對溫度的適應性進化相關[54]。
3 基因組研究助力害蟲防控新技術/新產品開發 ?通過分析基因組數據可以獲得入侵昆蟲的全部遺傳信息,挖掘與其重要生物學特性相關的基因,進而揭示其入侵性的分子機制。目前,化學農藥仍然是害蟲防治最主要的手段,如前所述,入侵昆蟲往往具有很強的適應性進化能力,迅速產生抗藥性,因此,開發新型綠色安全的害蟲防治新途徑尤為重要。
3.1 基因組研究助力RNAi防治技術
利用RNAi技術控制害蟲被證明是一項行之有效的方法,具有廣闊的應用前景[55-57]。研究表明將雙鏈RNAs (dsRNAs) 加入到入侵昆蟲玉米根螢葉甲Diabrotica virgifera virgifera人工飼料中可顯著引起幼蟲發育畸形和死亡[56],近期研究結果也表明,轉基因馬鈴薯(干擾馬鈴薯甲蟲Leptinotarsa decemlineata蛻皮相關的蛻皮激素受體基因)對馬鈴薯甲蟲具有明顯的抗性,可顯著減少馬鈴薯甲蟲造成的危害[58]。目前,玉米根螢葉甲和馬鈴薯甲蟲基因組均已測序和拼接完成,通過基因組分析,我們可以鑒定出更多可用于RNAi的靶基因,開發針對入侵昆蟲的綠色安全防治技術。值得注意的是,馬鈴薯甲蟲基因組文章中已發現更多的可用于RNAi的靶基因[59],黑森癭蚊Mayetiola destructor基因組分析也鑒定出一些具有潛在利用價值的RNAi靶基因[60],相信在不久的將來,RNAi技術防治入侵害蟲必定會取得巨大的成功。
3.2 基因組研究助力SIT防治技術
不育昆蟲釋放技術(sterile insect technique, SIT)是一種環境友好型和可持續的害蟲防控技術。該技術包括兩個難題,一是如何快速、準確地獲得單一雄蟲,二是如何導致雄蟲不育。昆蟲轉基因技術和基因編輯技術(如CRISPR/Cas9)為SIT技術的改進提供了契機。利用轉基因技術可對害蟲基因組進行遺傳修飾,獲得單一雄蟲[61],如通過與受四環素調控的tetoff基因表達系統構建地中海實蠅雌性特異致死系統可實現雌性特異的早期發育致死[62],基因組研究為該技術提供了更多的候選致死基因,如通過基因組分析,研究人員鑒定出地中海實蠅基因組中的RHG促細胞凋亡基因 (reaper、hid和grim)等致死基因,可用于指導該技術的應用[25]。此外,實蠅類害蟲SIT技術中也常用遺傳突變的白蛹來區分雌雄蟲[63-64],然而利用遺傳學方法獲得突變的白蛹品系效率低、耗時長,其遺傳分子機制尚不清楚,基因組學研究為解決這一科學問題提供了技術支持,如研究人員通過基因組測序組裝獲得高質量的染色體級別的瓜實蠅Bactrocera cucurbitae基因組,分析表明導致白蛹的突變位點位于3號染色體的42 Mb位置附近,結果對于指導其他物種獲取類似的突變品系具有重大意義[65]。
[6] PAINI D R, SHEPPARD A W, COOK D C, et al. Global threat to agriculture from invasive species [J]. Proceedings of the National Academy of Sciences, 2016, 113(27): 7575-7579.
[7] RIUS M, BOURNE S, HORNSBY H G, et al. Applications of nextgeneration sequencing to the study of biological invasions [J]. Current Zoology, 2015, 61(3): 488-504.
[8] KIRK H, DORN S, MAZZI D. Molecular genetics and genomics generate new insights into invertebrate pest invasions [J]. Evolutionary Applications, 2013, 6(5): 842-856.
[9] TAY W T, GORDON K. Going globalgenomic insights into insect invasions [J]. Current Opinion in Insect Science, 2018, 31: 1-8.
[10] 尹傳林, 李美珍, 賀康, 等. 昆蟲基因組及數據庫研究進展[J]. 環境昆蟲學報, 2017,39(1): 1-18.
[11] RICHARDS S, CHILDERS A, CHILDERS C. Editorial overview: Insect genomics: Arthropod genomic resources for the 21st century: It only counts if its in the database![J]. Current Opinion in Insect Science, 2018, 25: ivvii.
[12] MATTHEWS B J, DUDCHENKO O, KINGAN S B, et al. Improved reference genome of Aedes aegypti informs arbovirus vector control [J]. Nature, 2018, 563(7732): 501-507.
[13] HUEY R B, GILCHRIST G W, HENDRY A P. Using invasive species to study evolution[M]∥SAX D F, STACHOWICZ J J, GAINES S D. Species invasions: Insights to ecology, evolution and biogeography. Sunderland: Sinauer Associates. 2005: 139-164.
[14] SCHRADER L, KIM J W, ENCE D, et al. Transposable element islands facilitate adaptation to novel environments in an invasive species [J]. Nature Communications, 2014, 5: 5495.
[15] PEARCE S L, CLARKE D F, EAST P D, et al. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species [J]. BMC Biology, 2017, 15(1): 63.
[16] WANG Huidong, SHI Yu, WANG Lu, et al. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides [J/OL]. Nature Communications, 2018, DOI:10.1038/s41467018072266.
[17] JIN Lin, WANG Jing, GUAN Fang, et al. Dominant point mutation in a tetraspanin gene associated with fieldevolved resistance of cotton bollworm to transgenic Bt cotton [J]. Proceedings of the National Academy of Sciences, 2018, 115(46): 11760-11765.
[18] HUFBAUER R A, TORCHIN M E. Integrating ecological and evolutionary theory of biological invasions [M]∥NENTWIG W. Biological invasions. Berlin: Springer. 2008: 79-96.
[19] BLOSSEY B, NOTZOLD R. Evolution of increased competitive ability in invasive nonindigenous plantsa hypothesis[J]. Journal of Ecology, 1995, 83(5): 887-889.
[20] BENFEY P N, MITCHELLOLDS T. From genotype to phenotype: systems biology meets natural variation[J]. Science, 2008, 320(5875): 495-497.
[21] SUZUKI H C, OZAKI K, MAKINO T, et al. Evolution of gustatory receptor gene family provides insights into adaptation to diverse host plants in nymphalid butterflies [J]. Genome Biology and Evolution, 2018, 10(9): 2240.
[22] BASS C, FIELD L M. Gene amplification and insecticide resistance [J].Pest Management Science,2011,67(8):886-890.
[23] BOULAIN H, LEGEAI F, GUY E, et al. Fast evolution and lineagespecific gene family expansions of aphid salivary effectors driven by interactions with hostplants [J]. Genome Biology and Evolution, 2018, 10(6): 1554-1572.
[24] LIU Deguang, TRUMBLE J T. Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli)[J]. Entomologia Experimentalis Et Applicata, 2007, 123(1): 35-42.
[25] PAPANICOLAOU A, SCHETELIG M F, ARENSBURGER P, et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species [J]. Genome Biology, 2016, 17(1): 192.
[26] CHEN Wenbo, HASEGAWA D K, KAUR N, et al. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance[J/OL].BMC Biology,2016,14(1):110.DOI:10.1186/s129150160321y.
[27] XIE Wen, YANG Xin, CHEN Chunhai, et al. The invasive MED/Q Bemisia tabaci genome: a tale of gene loss and gene gain [J]. BMC Genomics, 2018, 19(1): 68.DOI:10.1186/s1286401841489.
[28] SMITH C D, ZIMIN A, HOLT C, et al. Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile) [J].Proceedings of the National Academy of Sciences, 2011, 108(14): 5673-5678.
[29] CHEN Xiaoguang, JIANG Xuanting, GU Jinbao, et al. Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44): E5907E5915.
[30] CHENG Tingcai, WU Jiaqi, WU Yuqian, et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest [J]. Nature Ecology & Evolution, 2017, 1(11): 1747-1756.
[31] MCKENNA D D, SCULLY E D, PAUCHET Y, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetleplant interface [J]. Genome Biology, 2016, 17(1): 227.DOI:10.1186/s1305901610888.
[32] HOLWAY D A.Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant [J]. Ecology, 1999, 80(1): 238-251.
[33] YOU Minsheng, YUE Zhen, HE Weiyi, et al. A heterozygous moth genome provides insights into herbivory and detoxification [J]. Nature Genetics, 2013, 45(2): 220-225.
[34] BRISCOE A D, MACIASMUNOZ A, KOZAK K M, et al. Female behaviour drives expression and evolution of gustatory receptors in butterflies [J/OL].PLoS Genetics,2013,9(7): e1003620.
[35] GUO Huizhen, CHENG Tingcai, CHEN Zhiwei, et al. Expression map of a complete set of gustatory receptor genes in chemosensory organs of Bombyx mori [J]. Insect Biochemistry and Molecular Biology, 2017, 82: 74-82.
[36] KOENIG C, HIRSH A, BUCKS S, et al. A reference gene set for chemosensory receptor genes of Manduca sexta[J]. Insect Biochemistry and Molecular Biology, 2015, 66: 51-63.
[37] BRAND P, LIN Wei, JOHNSON B R. The draft genome of the invasive walking stick, Medauroidea extradentata, reveals extensive lineagespecific gene family expansions of cell wall degrading enzymes in Phasmatodea[J]. G3: Genes|Genomes|Genetics, 2018, 8(5): 1403-1408.
[38] WU Ningning, ZHANG Sufang, LI Xiaowei, et al. Fall webworm genomes yield insights into rapid adaptation of invasive species [J]. Nature Ecology & Evolution, 2018, 3: 105-115.
[39] BELYAYEV A. Bursts of transposable elements as an evolutionary driving force[J]. Journal of Evolutionary Biology, 2014, 27(12): 2573-2584.
[40] SCHRADER L, SCHMITZ J. The impact of transposable elements in adaptive evolution [J/OL].Molecular Ecology,2018.DOI:10.1111/mec.14794.
[41] LI Ziwen, HOU Xinghui, CHEN Jiafu, et al. Transposable elements contribute to the adaptation of Arabidopsis thaliana[J].Genome Biology and Evolution,2018,10(8):2140-2150.
[42] KREINER J M, WRIGHT S I. A less selfish view of genome size evolution in maize [J/OL].PLoS Genetics,2018,14(5):e1007249.
[43] PELLICER J, HIDALGO O, DODSWORTH S, et al. Genome size diversity and its impact on the evolution of land plants [J]. Genes, 2018, 9(2).DOI:10.3390/genes9020088.
[44] SERRATOCAPUCHINA A,MATUTE D R.The role of transposable elements in speciation [J/OL]. Genes, 2018, 9(5): 254.DOI:10.3390/genes9050254.
[45] CERBIN S, JIANG N. Duplication of host genes by transposable elements [J/OL]. Current Opinion in Genetics & Development, 2018, 49: 63-69.DOI:10.1016/j.gde.2018.03.005.
[46] JOLYLOPEZ Z, HOEN D R, BLANCHETTE M, et al. Phylogenetic and genomic analyses resolve the origin of important plant genes derived from transposable elements [J]. Molecular Biology and Evolution, 2016, 33(8): 1937-1956.
[47] LAVERGNE S, MUENKE N J, MOLOFSKY J. Genome size reduction can trigger rapid phenotypic evolution in invasive plants [J]. Annals of Botany, 2010, 105(1): 109-116.
[48] PYSEK P, SKALOVA H, CUDA J, et al. Small genome separates native and invasive populations in an ecologically important cosmopolitan grass [J]. Ecology, 2018, 99(1): 79-90.
[49] SPECCHIA V, JANZEN S, MARINI G, et al. The potential link between mobile DNA and the invasiveness of the species[J].Journal of RNAi & Gene Silencing,2017,13(1):557-561.
[50] STAPLEY J, SANTURE A W, DENNIS S R. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species [J]. Molecular Ecology, 2015, 24(9): 2241-2252.
[51] PECCOUD J, LOISEAU V, CORDAUX R, et al. Massive horizontal transfer of transposable elements in insects [J].Proceedings of the National Academy of Sciences, 2017, 114(18): 4721-4726.
[52] TALLA V, SUH A, KALSOOM F, et al. Rapid increase in genome size as a consequence of transposable element hyperactivity in woodwhite (Leptidea) butterflies [J]. Genome Biology and Evolution, 2017, 9(10): 2491-2505.
[53] ELSNER D, MEUSEMANN K, KORB J. Longevity and transposon defense, the case of termite reproductives [J]. Proceedings of the National Academy of Sciences, 2018, 115(21): 5504-5509.
[54] GOUBERT C, HENRI H, MINARD G, et al. Highthroughput sequencing of transposable element insertions suggests adaptive evolution of the invasive Asian tiger mosquito towards temperate environments [J].Molecular Ecology,2017,26(15):3968-3981.
[55] BURAND J P, HUNTER W B. RNAi: future in insect management [J]. Journal of Invertebrate Pathology, 2013, 112: S68S74.
[56] BAUM J A, BOGAERT T, CLINTON W, et al. Control of coleopteran insect pests through RNA interference [J]. Nature Biotechnology, 2007, 25(11): 1322-1326.
[57] KATOCH R, SETHI A, THAKUR N, et al. RNAi for insect control: current perspective and future challenges [J]. Applied Biochemistry and Biotechnology, 2013, 171(4): 847-873.
[58] HUSSAIN T, AKSOY E, CALISKAN M E, et al. Transgenic potato lines expressing hairpin RNAi construct of moltingassociated EcR gene exhibit enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata, Say) [J]. Transgenic Research, 2019, 28(1): 151-164.
[59] SCHOVILLE S D, CHEN Y H, ANDERSSON M N, et al. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae)[J/OL]. Scientific Reports,2018,8(1):1931.DOI:10.1038/s41598018201541.
[60] KHAJURIA C, WILLIAMS C E, BOUHSSINI M E, et al. Deep sequencing and genomewide analysis reveals the expansion of MicroRNA genes in the gall midge Mayetiola destructor[J].BMC Genomics,2013,14:187.DOI:10.1186/1471216414187.
[61] 武強, 呂志創, 張桂芬, 等. 遺傳控制技術在實蠅類害蟲中的研究進展[J]. 生物安全學報, 2015, 24(2): 161-170.
[62] FU Guoliang, CONDON K C, EPTON M J, et al. Femalespecific insect lethality engineered using alternative splicing [J]. Nature Biotechnology, 2007, 25(3): 353-357.
[63] ISASAWIN S, AKETARAWONG N, THANAPHUM S. Characterization and evaluation of microsatellite markers in a strain of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), with a genetic sexing character used in sterile insect population control [J]. European Journal of Entomology, 2012, 109(3): 331-338.
[64] MCINNIS D O, TAM S, LIM R, et al. Development of a pupal colorbased genetic sexing strain of the melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae)[J]. Annals of the Entomological Society of America,2004,97(5):1026-1033.
[65] SIM S B, GEIB S M. A chromosomescale assembly of the Bactrocera cucurbitae genome provides insight to the genetic basis of white pupae [J]. G3: Genes|Genomes|Genetics, 2017, 7(6): 1927-1940.
[66] KANDUL N P, LIU Junru, SANCHEZ C H, et al. Transforming insect population control with precision guided sterile males with demonstration in flies [J/OL].Nature Communications, 2019, 10(1): 84.DOI:10.1038/s41467018079647.
[67] ZHANG Ruibin, WANG Bing, GROSSI G, et al. Molecular basis of alarm pheromone detection in aphids [J]. Current Biology, 2017, 27(1): 55-61.
[68] JAYANTHI K P, KEMPRAJ V, AURADE R M, et al. Computational reverse chemical ecology: virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis [J/OL]. BMC Genomics, 2014, 15: 209.DOI:10.1186/1471216415209.
[69] LEAL W S, BARBOSA R M, XU Wei, et al. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes[J/OL]. PLoS ONE, 2008, 3(8): e3045.DOI:10.1371/journal.pone.0003045.
[70] 萬方浩,嚴盈,王瑞,等.中國入侵生物學學科的構建與發展[J].生物安全學報,2011,20(1): 1-19.
[71] RICHARDSON D M, PYEK P. Fifty years of invasion ecologythe legacy of Charles Elton[J]. Diversity and Distributions, 2008, 14(2): 161-168.
[72] 羅嘉鵬. 利用組學數據檢測昆蟲的抗藥性和入侵性[D]. 南京: 南京師范大學, 2018.
[73] QIAN Wanqiang, WAN Fanghao. China launches the “IAS1000 Project” [J]. Journal of Integrative Agriculture, 2018, 17(12): 2840-2841.
(責任編輯: 田 喆)