[摘要] 目的 探討枸櫞酸鐵銨(FAC)處理對原代培養的小膠質細胞M1亞型標志物CD86及M2亞型標志物CD206表達的影響。方法 FAC處理原代培養的小膠質細胞24 h后,應用蛋白質免疫印跡(Western Blot)方法檢測小膠質細胞內CD86和CD206的表達。結果 FAC處理小膠質細胞24 h后,M1亞型的標志物CD86的表達明顯降低,而M2亞型的標志物CD206的表達明顯升高,與對照組相比差異均有統計學意義(t=2.160、3.543,P<0.05)。結論 高鐵能夠將小膠質細胞激活為抗炎性的M2表型。
[關鍵詞] 帕金森病;鐵;小神經膠質細胞;B7-2抗原;CD206抗原
[中圖分類號] R338.2 "[文獻標志碼] A "[文章編號] 2096-5532(2020)02-0147-03
doi:10.11712/jms.2096-5532.2020.56.061 [開放科學(資源服務)標識碼(OSID)]
[網絡出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200407.0943.009.html;2020-04-08 09:48
[ABSTRACT] Objective To investigate the effect of ferric ammonium citrate (FAC) on the expression of M1 subtype marker CD86 and M2 subtype marker CD206 in primary cultured microglia. "Methods Primary cultured microglial cells were treated with FAC for 24 h, and Western Blot was performed to determine the expression levels of CD86 and CD206. "ResultsFAC treatment (24 h) significantly decreased the expression of CD86 and significantly increased the expression of CD206 in the primary cultured microglial cells compared with the control group (t=2.160,3.543;Plt;0.05). "Conclusion High level of iron can activate microglia into an anti-inflammatory M2 phenotype.
[KEY WORDS] Parkinson disease; iron; microglia; B7-2 antigen; CD206 antigen
作為第二大最常見的神經退行性疾病——帕金森病(PD)的癥狀主要包括靜止性震顫、運動遲緩等運動癥狀[1-4]。越來越多的證據表明,黑質(SN)區鐵的過度沉積是PD發病的關鍵因素之一[5-7]。小膠質細胞是駐留在中樞神經系統中的最豐富的免疫細胞,與神經元在生理和功能上都存在緊密的聯系[8],在生理和病理條件下表現出廣泛的功能。研究發現,在病理狀態下,小膠質細胞可由靜止狀態轉變為激活狀態并遷移到損傷部位,分泌促炎或抗炎的細胞因子,減弱或加劇損傷[9]。當大腦受到缺血損傷后,大量小膠質細胞迅速激活并轉化為兩種不同的激活亞型,即M1型和M2型[10-15]。但高鐵對小膠質細胞激活狀態的影響目前尚不明確。本實驗旨在研究高鐵狀態下小膠質細胞的激活亞型,以闡明高鐵在小膠質細胞激活中的作用。
1 材料與方法
1.1 實驗材料
原代培養的小膠質細胞(從大鼠乳鼠中腦內獲取),DMEM/F12基礎培養液、胰酶(美國Hyclone公司),胎牛血清(FBS,美國Gibco公司),青霉素-鏈霉素溶液(100×,中國北京索萊寶科技有限公司),枸櫞酸鐵胺(FAC)、D-多聚賴氨酸(美國Sigma公司),ECL發光液(Millipore公司),CD86抗體和CD206抗體(美國RD System公司)。
1.2 原代小膠質細胞的培養
實驗前高壓滅菌實驗器具。150 cm2細胞培養瓶用D-多聚賴氨酸處理過夜,再用高壓滅菌后的去離子水洗3次備用。取2個玻璃培養皿,加入基礎培養液(蓋過底部即可),置于冰上。將乳鼠斷頸,用眼科鑷剝取中腦置于培養皿中,眼科剪剪碎后,用移液槍將中腦組織塊輕輕吹打至消散,將其吸至離心管中,以1 000 r/min離心5 min。棄上清,用完全培養液重懸沉淀,接種于培養瓶中,置于37 ℃、含體積分數0.05 CO2的培養箱中培養。細胞培養7 d后,將細胞培養瓶封口后固定在空氣浴恒溫搖床上,以230 r/min劇烈震蕩2 h。取上清培養液至離心管中,以1 000 r/min離心5 min。棄上清,加入完全培養液重懸沉淀,接種到孔板或培養瓶中。
1.3 實驗分組及處理
實驗分為對照組和FAC處理組。將原代培養的小膠質細胞接種于6孔板中,每孔1.5 mL細胞懸液;第2天分組處理細胞,將兩組細胞培養液均換成基礎培養液,FAC處理組加用FAC(100 μmol/L)處理,置于37 ℃、含體積分數0.05 CO2的培養箱中孵育24 h。
1.4 蛋白質免疫印跡(Western Blot)檢測
將6孔板每孔加入80 μL蛋白裂解液,冰上裂解30 min,用刮板刮下貼附在板底的小膠質細胞,用移液槍移入預先標記好的EP管中,在4 ℃下以12 000 r/min離心20 min,吸取上清至另一個EP管中,用BCA試劑盒檢測蛋白濃度,加入Loading Buffer,95 ℃煮5 min。SDS-PAGE電泳之后轉至PVDF膜上,室溫下用50 g/L脫脂奶粉封閉目的條帶2 h后,分別加入CD206、CD86和β-actin的一抗,于4 ℃搖床上孵育過夜。用TBST洗3次,每次10 min,再用對應的山羊抗兔的二抗室溫孵育1 h,最后以TBST洗3次后應用ECL發光液底物避光孵育1 min,顯影。用Image J軟件進行分析,結果以目的條帶與內參條帶灰度值之比表示。
1.5 統計學處理
應用SPSS 17.0軟件進行統計學處理,實驗結果以±s表示,兩獨立樣本比較采用Student’s t檢驗,以P<0.05為差異有統計學意義。
2 結 "果
2.1 FAC對小膠質細胞CD86蛋白表達的影響
FAC處理組和對照組細胞內CD86蛋白表達水平分別為1.557±0.336和2.272±0.517(n=6),FAC處理組較對照組明顯降低,差異有統計學意義(t=2.160,P<0.05)。
2.2 FAC對小膠質細胞CD206蛋白表達的影響
FAC處理組和對照組細胞內CD206蛋白表達水平分別為0.538±0.074和0.367±0.039(n=6),FAC處理組CD206的表達水平明顯高于對照組,差異有統計學意義(t=3.543,P<0.05)。
3 討 "論
PD是世界第二大常見的神經退行性疾病,但迄今為止,其病因尚不明確。研究表明,環境因素、遺傳因素、年齡老化、氧化應激均可能參與了PD的發病[5,16-21]。尸檢發現,PD病人腦內SN有大量的鐵沉積[6-7]。SN鐵的異常沉積,可以導致腦內鐵代謝紊亂,是PD發病的關鍵病因之一[5,16-21]。神經退行性疾病的病理特征是神經變性,而小膠質細胞的活化通常與神經變性有關[22-25]。在生理條件下,小膠質細胞雙向信號對于神經回路的信息傳導尤為重要,介導各種腦功能,例如突觸可塑性[26-28]。在PD病理狀態下,小膠質細胞可以由靜止狀態轉變為激活狀態并遷移到損傷部位,而從靜止狀態到激活狀態的轉變需要復雜的調控機制,以嚴格調控小膠質細胞的激活[29]。不同的靶標和受體可能以不同的方式調節小膠質細胞的激活狀態,以減弱或加劇神經元的損傷[8,30-31]。
本實驗以從出生24 h內大鼠中腦提取并培養成熟的小膠質細胞作為實驗對象,用高濃度的FAC處理小膠質細胞來制備高鐵模型,以還原PD病人腦內高鐵環境對小膠質細胞的刺激,觀察小膠質細胞的激活狀態,從而確定高鐵環境對小膠質細胞激活狀態的影響。CD86為小膠質細胞M1型的標記物,其表達增加提示小膠質細胞被激活為促炎狀態,而CD206則是小膠質細胞M2型的標記物,其表達增加則提示小膠質細胞被激活為抗炎狀態。本實驗結果顯示,在高鐵環境下,原代培養的小膠質細胞內的CD86表達較對照組明顯降低,而CD206表達水平明顯高于對照組,差異具有統計學意義。提示在高鐵環境下,小膠質細胞被激活為M2狀態,可能在保護神經元免受外界損傷中發揮抗炎作用。本研究結果為鐵在調控小膠質細胞激活狀態中的作用提供了新的證據。
[參考文獻]
[1] KANSARA S, TRIVEDI A, CHEN S, et al. Early diagnosis and therapy of Parkinson’s disease: can disease progression be curbed[J]? Journal of Neural Transmission (Vienna, Austria:1996), 2013,120(1):197-210.
[2] BARNETT R. Parkinson’s disease[J]. Lancet, 2016,387(10015):217.
[3] GRAYSON M. Parkinson’s disease[J]. Nature, 2016,538(7626):S1.
[4] KLIETZ M, SCHNUR T, DREXEL S, et al. Association of motor and cognitive symptoms with health-related quality of life and caregiver burden in a German cohort of advanced Parkinson’s disease patients[J]. Parkinsons Dis, 2020,2020:1-8.
[5] COOKSON M R. The biochemistry of Parkinson’s disease[J]. Annual Review of Biochemistry, 2005,74(1):29-52.
[6] DE FARIAS C C, MAES M, BONIFACIO K L, et al. Parkinson’s disease is accompanied by intertwined alterations in iron metabolism and activated immune-inflammatory and oxidative stress pathways[J]. CNS amp; Neurological Disorders-Drug Targets, 2017,16(4):484-491.
[7] JIANG H, WANG J, ROGERS J, et al. Brain iron metabolism dysfunction in Parkinson’s disease[J]. Molecular Neurobiology, 2017,54(4):3078-3101.
[8] WOLF S A, BODDEKE H W, KETTENMANN H. Microglia in physiology and disease[J]. Annual Review of Physiology, 2017,79(1):619-643.
[9] HO M S. Microglia in Parkinson’s disease[J]. Adv Exp Med Biol, 2019,1175:335-353.
[10] WYSS-CORAY T, MUCKE L. Inflammation in neurodege-nerative disease—a double-edged sword[J]. Neuron, 2002,35(3):419-432.
[11] HANISCH U K. Functional diversity of microglia-how heterogeneous are they to begin with[J]? Front Cell Neurosci, 2013,7(65):65.
[12] KIM C C, NAKAMURA M C, HSIEH C L, et al. Brain trauma elicits non-canonical macrophage activation states[J]. Journal of Neuroinflammation, 2016,13(1):117.
[13] MORGANTI J M, RIPARIP L K, ROSI S, et al. Call off the dog(ma): M1/M2 polarization is concurrent following traumatic brain injury[J]. PLoS One, 2016,11(1):e0148001.
[14] TANG Yu, LE Weidong. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016,53(2):1181-1194.
[15] YANG Xiaodong, XU Shaoqing, QIAN Yiwei, et al. Resveratrol regulates microglia M1/M2 polarization via PGC-1alpha in conditions of neuroinflammatory injury[J]. Brain Behav Immun, 2017,64:162-172.
[16] RANSOHOFF R M. A polarizing question: do M1 and M2 microglia exist[J]? Nature Neuroscience, 2016,19(8):987-991.
[17] FLEMING S M. Mechanisms of gene-environment interactions in Parkinson’s disease[J]. Curr Environ Health Rep, 2017,4(2):192-199.
[18] REEVE A, SIMCOX E, TURNBULL D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor[J]? Ageing Research Reviews, 2014,14(100):19-30.
[19] DAUER W, PRZEDBORSKI S. Parkinson’s disease: mechanisms and models[J]. Neuron, 2003,39(6):889-909.
[20] SHULMAN J M, DE JAGER P L, FEANY M B. Parkin-euroson’s disease: genetics and pathogenesis[J]. Annu Rev Pathol, 2011,6:193-222.
[21] BRAAK H, DEL TREDICI K, RB U, et al. Staging of brain pathology related to sporadic Parkinson’s disease[J]. Neuro-biology of Aging, 2002,24(2):197-211.
[22] SULZER D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease[J]. Trends in Neurosciences, 2007,30(5):244-250.
[23] WANG Ruili, LI Qing, HE Ya, et al. MiR-29c-3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinson’s disease[J]. Genes Cells, 2020. doi:10.1111/gtc.12764.
[24] WANG Le, GONG Xiaoli, LIU Yang, et al. CD200 maintains the region-specific phenotype of microglia in the midbrain and its role in Parkinson’s disease[J]. Glia, 2020. doi:10.1002/glia.23811.
[25] CHENG Jinbo, LIAO Yajin, DONG Yuan, et al. Microglial autophagy defect causes Parkinson disease-like symptoms by accelerating inflammasome activation in mice[J]. Autophagy, 2020. doi:10.1080/15548627.2020.1719723.
[26] ZHAN Y, PAOLICELLI R, SFORAZZINI F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior[J]. Nature Neuroscience, 2014,17(3):400-406.
[27] SCHAFER D P, LEHRMAN E K, KAUTZMAN A G, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner[J]. Neuron, 2012,74(4):691-705.
[28] PAOLICELLI R C, BOLASCO G, PAGANI F, et al. Synaptic pruning by microglia is necessary for normal brain development[J]. Science, 2011,333(648):1456-1458.
[29] JOERS V, TANSEY M G, MULAS G, et al. Microglial phenotypes in Parkinson’s disease and animal models of the di-sease[J]. Prog Neurobiol, 2017,155:57-75.
[30] HANISCH U K, KETTENMANN H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain[J]. Nature Neuroscience, 2007,10(11):1387-1394.
[31] SIERRA A, ABIEGA O, SHAHRAZ A, et al. Janus-faced microglia: beneficial and detrimental consequences of microg-lial phagocytosis[J]. Front Cell Neurosci, 2013,7:6.
(本文編輯 馬偉平)