999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

IGF-1對6-OHDA誘導人神經母細胞瘤細胞損傷作用

2020-04-12 00:00:00王曉雯晏振陳夙袁良杰陳文芳
青島大學學報(醫學版) 2020年2期

[摘要] 目的 探討胰島素樣生長因子-1(IGF-1)對6-羥基多巴胺(6-OHDA)誘導的人神經母細胞瘤細胞(SK-N-SH細胞)神經毒性反應的抑制作用。方法 將SK-N-SH細胞種于96孔板,首先用不同濃度的IGF-1(6.25、12.50、25.00、50.00 μg/L)預處理細胞24 h,然后與6-OHDA(100 μmol/L)共同孵育細胞24 h,采用MTT法檢測細胞活力。再將SK-N-SH細胞分為對照組(細胞不處理)、6-OHDA組(用100 μmol/L 6-OHDA處理細胞24 h)、6-OHDA+IGF-1組(細胞先用6.25 μg/L IGF-1預處理24 h,再與100 μmol/L 6-OHDA共同作用24 h),應用Western blot方法檢測Bcl-2及Bax蛋白表達。結果 6.25~50.00 μg/L IGF-1均能夠明顯對抗6-OHDA誘導的神經毒性作用,提高細胞的存活率(F=11.53,q=4.795~5.556,Plt;0.05)。與對照組相比較,6-OHDA組Bcl-2蛋白的表達水平明顯降低,而Bax蛋白的表達水平明顯升高,差異有顯著性(F=22.92、35.80,q=8.223、8.727,Plt;0.01);6.25 μg/L IGF-1能夠明顯對抗6-OHDA誘導的Bcl-2蛋白表達的下調和Bax蛋白表達的上調(q=8.361、11.450,Plt;0.01)。結論 IGF-1可對抗神經毒素6-OHDA誘導的SK-N-SH細胞凋亡相關蛋白Bcl-2及Bax的蛋白表達變化,發揮神經保護作用。

[關鍵詞] 胰島素樣生長因子1;細胞凋亡;帕金森病;神經母細胞瘤

[中圖分類號] R742.5;R338 "[文獻標志碼] A "[文章編號] 2096-5532(2020)02-0161-04

doi:10.11712/jms.2096-5532.2020.56.090 [開放科學(資源服務)標識碼(OSID)]

[網絡出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200519.1433.007.html;2020-05-19 17:24

[ABSTRACT] Objective To investigate the inhibitory effect of insulin-like growth factor-1 (IGF-1) on the neurotoxic response of SK-N-SH human neuroblastoma cells induced by 6-hydroxydopamine (6-OHDA). "Methods SK-N-SH cells were ino-culated into 96-well plates and pretreated with different concentrations of IGF-1 (6.25,12.50,25.00, and 50.00 μg/L) for 24 h. After that, the cells were co-incubated with 6-OHDA (100 μmol/L) for another 24 h. MTT assay was performed to determine the cell viability. In order to explore the protective mechanisms of IGF-1 on dopaminergic neurons, SK-N-SH cells were divided into control group (cells were left untreated), 6-OHDA group (cells were treated with 100 μmol/L 6-OHDA for 24 h), and 6-OHDA+IGF-1 group (cells were pre-treated with 6.25 μg/L IGF-1 for 24 h and then co-incubated with 100 μmol/L 6-OHDA for 24 h). Western blot was used to measure the expression of anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax in the SK-N-SH cells. Results Compared with the 6-OHDA group, 6.25-50.00 μg/L IGF-1 could significantly protect against the neurotoxic effects of 6-OHDA and improve the survival rate of SK-N-SH cells (F=11.53,q=4.795-5.556,Plt;0.05). Compared with the control group, the 6-OHDA group had significantly down-regulated protein expression of Bcl-2 and significantly up-regulated protein expression of Bax (F=22.92,35.80;q=8.223,8.727;Plt;0.01); 6.25 μg/L IGF-1 could significantly protect against 6-OHDA-induced down-regulation of Bcl-2 protein expression and up-regulation of Bax protein expression (q=8.361,11.450;Plt;0.01). Conclusion IGF-1 can protect against the neurotoxin 6-OHDA-induced apoptosis-related Bcl-2 and Bax protein expression changes in SK-N-SH cells, and exert a neuroprotective effect.

[KEY WORDS] insulin-like growth factorⅠ; apoptosis; Parkinson disease; neuroblastoma

帕金森病(PD)又名震顫麻痹,是一種中樞神經系統退行性疾病[1]。PD的主要臨床表現為運動癥狀,如靜止性震顫、肌強直、運動遲緩和姿勢不穩等;其次為非運動癥狀,比如嗅覺功能異常、睡眠異常、腸道功能障礙等[2]。PD的主要病理表現是中腦黑質多巴胺(DA)能神經元的漸進性缺失,紋狀體投射神經纖維的丟失以及嗜酸性包涵體路易小體(LBs)沉積[3-4]。導致PD病理改變的原因極其復雜,主要有環境因素、免疫炎癥反應、遺傳因素、線粒體功能異常、自噬功能的紊亂等[5-7]。一些神經毒素,如1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)、6-羥基多巴胺(6-OHDA)、百草枯和魚藤酮等被用于PD模型的制備,這些藥物大多與增強細胞凋亡有關[8]。6-OHDA屬于DA與去甲腎上腺素類似物,其結構與兒茶酚胺相似,有研究顯示其可以損毀神經末梢,導致遞質減少,被廣泛用于制備PD的細胞和動物模型[9]。胰島素樣生長因子-1(IGF-1)是一種含有70個氨基酸的多肽激素,其通過細胞膜表面的IGF-1受體(IGF-1R)發揮生物學作用[10]。IGF-1通過促進不同類型細胞的存活和增殖在中樞神經系統的發育和成熟中起著關鍵作用[11-12]。已有研究顯示,血清IGF-1水平隨著年齡增加而降低,PD病人早期血清IGF-1水平升高,隨著病情的進展,IGF-1水平明顯下降,提示其與PD的發病有關[13]。因此,探討IGF-1的神經保護作用能夠為防治PD奠定實驗基礎。本研究在前期研究的基礎上,采用分子生物學技術,探討IGF-1對6-OHDA誘導的人神經母細胞瘤細胞(SK-N-SH細胞)多巴胺能細胞損傷的作用。現將結果報告如下。

1 材料與方法

1.1 試劑及其來源

SK-N-SH細胞由中國科學院上海細胞庫提供;IGF-1購自BioVision公司,用生理鹽水配制成1 g/L的溶液;DMEM購自Gibco公司;青霉素/鏈霉素儲存液購自新華制藥廠,分裝后,-20 ℃保存備用;胎牛血清購自Hyclone公司,分裝后,-40 ℃保存備用;二甲基亞砜(DMSO)購自Sigma公司;兔抗-Bcl-2抗體購自CST公司;兔抗-Bax抗體購自CST公司;6-OHDA由Sigma公司提供;BCA試劑盒由碧云天公司提供。

1.2 細胞培養

將SK-N-SH細胞接種于25 cm2的細胞培養瓶中,加入含有體積分數0.10胎牛血清、100 mg/L鏈霉素和100 kU/L青霉素的DMEM培養液,置于37 ℃含體積分數0.05 CO2的細胞培養箱中。當細胞達到80%~90%融合時進行實驗。

1.3 MTT法檢測細胞活力

將SK-N-SH細胞接種于96孔板上,每孔加細胞懸浮液100 μL(含6×104個細胞),放置于細胞培養箱中培養至細胞達80%~90%融合時,開始加藥處理。先加入不同濃度的IGF-1(6.25、12.50、25.00、50.00 μg/L)預保護SK-N-SH細胞24 h,然后再與100 μmol/L 6-OHDA共同作用24 h。棄去培養液,每孔加入20 μL MTT溶液(5 g/L),繼續避光培養4 h。小心吸除多余MTT,每孔加100 μL 的DMSO,搖床80~90 r/min避光振蕩10 min,使結晶物充分溶解。應用酶標儀(490 nm)檢測各孔的吸光度(A)值。細胞活力以實驗組A值/對照組A值表示。

1.4 Bcl-2和Bax蛋白表達檢測

應用Western blot方法。將SK-N-SH細胞接種于96孔板中,分為對照組、損傷組、保護藥組。對照組細胞不處理;損傷組細胞應用100 μmol/L的6-OHDA處理24 h;保護藥組細胞先用6.25 μg/L的IGF-1預保護24 h,再與100 μmol/L 6-OHDA共同作用24 h。棄去細胞培養液,每孔加入裂解液(lysis∶PMSF=99∶1)100 μL,冰上裂解30 min,然后用細胞刮輕輕刮下細胞,收集至1.5 mL的EP管中[14]。置于離心機中離心20 min (4 ℃,12 000 r/min),吸取80 μL上清,用BCA法檢測蛋白濃度。電泳30~40 min (80 V穩壓),上樣量為15 μg;待蛋白Maker的不同分子量條帶分離開時,將電壓改為120 V,繼續電泳,根據所檢測蛋白分子量的大小來確定具體的電泳結束時間。然后,將膠和PVDF膜置于轉膜夾中進行轉膜,條件為300 mA、90 min。轉膜結束后將PVDF膜使用50~100 g/L的脫脂奶粉封閉1 h,清洗掉殘留的奶粉加一抗,4 ℃搖床過夜后洗膜3次,每次10 min;二抗孵育1~2 h后洗膜3次,每次10 min,以發光液顯影。檢測Bcl-2、Bax與β-actin蛋白A值,以Bcl-2、Bax與β-actin的A值比值表示蛋白表達[15]。

1.5 統計學處理

應用Graph Pad Prism 5.0統計軟件進行數據分析,計量資料結果以±s表示,數據間比較用單因素方差分析(One-Way ANOVA),并繼以Tukey法進行兩兩比較。Plt;0.05表示差異有顯著性。

2 結 "果

2.1 不同濃度IGF-1對6-OHDA誘導SK-N-SH細胞活力影響

與對照組(A組)相比,6-OHDA組(B組)的細胞活力明顯降低 (F=11.53,q=5.967,Plt;0.05);6.25 μg/L(C組)、12.50 μg/L(D組)、25.00 μg/L(E組)和50.00 μg/L(F組) IGF-1均可對抗6-OHDA的神經毒性作用,提高SK-N-SH細胞的活力(q=4.857~5.556,Plt;0.05)。見表1。

2.2 IGF-1對6-OHDA誘導SK-N-SH細胞Bcl-2和Bax蛋白表達的影響

與對照組(A組)相比較,6-OHDA組(B組)SK-N-SH細胞Bcl-2蛋白表達水平明顯降低(F=22.92,q=8.223,Plt;0.01),Bax蛋白表達明顯升高(F=35.80,q=8.727,Plt;0.01);與6-OHDA組(B組)相比,IGF-1+6-OHDA組(C組)Bcl-2蛋白的表達明顯上升(q=8.361,Plt;0.01),Bax蛋白表達明顯下降(q=11.45,Plt;0.001)。見表2。

3 討 "論

PD是一種遲發性、進行性、神經退行性的運動障礙疾病,占65歲及以上人口的1%[16-17],隨著中國人口老齡化狀況的日益加劇,PD的發病率也逐年增高,造成的家庭和社會負擔也日益嚴重[18]。目前,PD病人尚無有效的治療方法,開發研制有效防治PD的藥物迫在眉睫。6-OHDA是目前常用的建立PD模型的神經毒素,能夠引起DA能神經元的大量變性死亡,繼而導致錐體外系運動功能障礙,如震顫、強直、運動過緩等表現[19]。

IGF-1是一種天然存在于中樞神經系統的強效神經營養和抗凋亡因子,可以促進不同類型細胞的發育分化[20-22]。IGF-1主要是通過IGF-1R信號通路,促進細胞的生長、分化和存活,發揮神經保護作用。有研究顯示,IGF-1R在腦組織內廣泛表達,其中在黑質幾乎所有的DA能神經元以及多數的膠質細胞內均存在[23]。許多研究表明,人體內IGF-1水平與年齡相關,幼兒期含量相對較低,成年后達到高峰,之后隨著年齡的增加逐漸降低[24]。臨床研究發現,PD早期病人血清中IGF-1的水平升高,隨著病情的進展IGF-1的水平逐漸下降。在認知障礙病人中,IGF-1水平亦明顯降低[25-26]。

AYADI等[27]的研究顯示,IGF-1能夠通過激活下游的Ras/ERK1/2和PI3K/Akt信號通路,對抗6-OHDA對大鼠黑質紋狀體系統DA能神經元的損傷。在氧葡萄糖剝奪/再灌注SH-SY5Y神經細胞模型中,miR-186-5p可通過降低IGF-1的表達,誘導細胞凋亡[28]。離體細胞實驗證明IGF-1通過抗凋亡和抗氧化應激發揮神經元保護功能[29-30]。本研究應用6-OHDA損傷SK-N-SH細胞,制備PD細胞模型,探究IGF-1的神經保護作用及其可能機制。MTT結果顯示,6-OHDA明顯損傷了SK-N-SH細胞,而IGF-1能夠明顯對抗6-OHDA的這種神經毒性作用。為了進一步探討IGF-1的保護作用及其機制,本實驗應用Western blot技術,檢測了凋亡相關蛋白Bcl-2及Bax蛋白表達情況。實驗結果顯示,與對照組相比,6-OHDA組抗凋亡蛋白Bcl-2蛋白的表達明顯降低,促凋亡蛋白Bax蛋白的表達顯著升高;而給予IGF-1預處理細胞后,Bcl-2蛋白表達明顯上調,而Bax蛋白的表達明顯下調。表明IGF-1神經元保護功能與抑制6-OHDA誘導的細胞凋亡有關。

綜上所述,IGF-1可對抗神經毒素6-OHDA誘導的SK-N-SH細胞凋亡相關蛋白Bcl-2及Bax蛋白表達變化,發揮神經保護作用。

[參考文獻]

[1] DAWSON T M, DAWSON V L. Molecular pathways of neurodegeneration in Parkinson’s disease[J]. Science, 2003,302(5646):819-822.

[2] NEIKRUG A B, MAGLIONE J E, LIU L Q, et al. Effects of sleep disorders on the non-motor symptoms of Parkinson di-sease[J]. Journal of Clinical Sleep Medicine: JCSM, 2013,9(11):1119-1129.

[3] LASHUEL H A, OVERK C R, OUESLATI A, et al. The many faces of α-synuclein: from structure and toxicity to therapeutic target[J]. Nature Reviews Neuroscience, 2013,14(1):38-48.

[4] KALIA L V, LANG A E. Parkinson’s disease[J]. The Lancet, 2015,386(9996):896-912.

[5] NING Baile, ZHANG Qinxin, WANG Ninzhen, et al. β-Asarone regulates ER stress and autophagy via inhibition of thePERK/CHOP/Bcl-2/beclin-1 pathway in 6-OHDA-induced " Parkinsonian rats[J]. Neurochemical Research, 2019,44(5):1159-1166.

[6] ZHONG Jiahong, XIE Jinfeng, XIAO Jiao, et al. Inhibition of PDE4 by FCPR16 induces AMPK-dependent autophagy and confers neuroprotection in SH-SY5Y cells and neurons exposed to MPP(+)-induced oxidative insult[J]. Free Radical Biology and Medicine, 2019,135:87-101.

[7] LUDTMANN M H R, ABRAMOV A Y. Mitochondrial cal-cium imbalance in Parkinson’s disease[J]. Neuroscience Letters, 2018,663:86-90.

[8] SU Lingyan, LI Hao, LV Li, et al. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/alpha-synuclein aggregation[J]. Autophagy, 2015,11:1745-1759.

[9] GLINKA Y, TIPTON K F, YOUDIM M B. Mechanism of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine and its prevention by desferrioxamine[J]. European Journal of Pharmacology, 1998,351(1):121-129.

[10] ZHENG W H, QUIRION R. Insulin-like growth factor-1 (IGF-1) induces the activation/phosphorylation of Akt kinase and cAMP response element-binding protein (CREB) by activating different signaling pathways in PC12 cells[J]. BMC Neuroscience, 2006,7:51-61.

[11] BECK K D, POWELL-BRAXTON L, WIDMER H R, et al. IGF1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons[J]. Neuron, 1995,14(4):717-730.

[12] RUSSO V C, GLUCKMAN P D, FELDMAN E L, et al. The insulin-like growth factor system and its pleiotropic functions in brain[J]. Endocrine Reviews, 2005,26(7):916-943.

[13] MARCO P D, BARTELLA V, VIVACQUA A, et al. Insulin-like growth factor-Ⅰ regulates GPER expression and function in cancer cells[J]. Oncogene, 2013,32(6):678-688.

[14] CHEN Wenfang, ZHOU Liping, CHEN Lei, et al. Involvement of IGF-Ⅰ receptor and estrogen receptor pathways in the protective effects of ginsenoside Rg1 against A beta(25-35)-induced toxicity in PC12 cells[J]. Neurochemistry International, 2013,62(8):1065-1071.

[15] 任曉璠,孫憲昌,王宇鑫,等. Rg1和GR阻斷劑對脂多糖誘導的BV2小膠質細胞iNOS及COX2蛋白表達影響[J]. 青島大學醫學院學報, 2016,52(2):148-152.

[16] BRAAK H, DEL TREDICI K, RB U, et al. Staging of brain pathology related to sporadic Parkinson’s disease[J]. Neurobiology of Aging, 2002,24(2):197-211.

[17] JAKOWEC M W, PETZINGER G M. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned model of Parkinson’s di-sease, with emphasis on mice and nonhuman primates[J]. Comparative Medicine, 2004,54(5):497-513.

[18] MICHEL P P, HIRSCH E C, HUNOT S. Understanding dopaminergic cell death pathways in Parkinson disease[J]. Neuron, 2016,90(4):675-691.

[19] TEISMANN P, TIEU K, COHEN O, et al. Pathogenic role of glial cells in Parkinson’s disease[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2003,18(2):121-129.

[20] BENARROCH E E. Insulin-like growth factors in the brain and their potential clinical implications[J]. Neurology, 2012,79(21):2148-2153.

[21] GASPERI M, CASTELLANO A E. Growth hormone/insulin-like growth factor 1 axis in neurodegenerative diseases[J]. Journal of Endocrinological Investigation, 2010,33(8):587-591.

[22] DYER A H, VAHDATPOUR C, SANFELIU A, et al. The role of insulin-like growth factor 1 (IGF-1) in brain development, maturation and neuroplasticity[J]. Neuroscience, 2016,325(14):89-99.

[23] QUESADA A, ROMEO H E, MICEVYCH P. Distribution and localization patterns of estrogen receptor-beta and insulin-like growth factor-1 receptors in neurons and glial cells of the female rat substantia nigra: localization of ERbeta and IGF-1R in substantia nigra[J]. The Journal of Comparative Neurology, 2007,503(1):198-208.

[24] SMITH C P, DUNGER D B, WILLIAMS A J, et al. Relationship between insulin,insulin-like growth factor 1, and dehydroepiandrosterone sulfate concentrations during childhood, puberty, and adult life[J]. The Journal of Clinical Endocrino-logy and Metabolism,1989,68(5):932-937.

[25] GODAU J, HERFURTH M, KATTNER B, et al. Increased serum insulin-like growth factor 1 in early idiopathic Parkinson’s disease[J]. Journal of Neurology Neurosurgery and Psychiatry, 2010,81(5):536-538.

[26] GODAU J, KNAUEL K, WEBER K, et al. Serum insulin like growth factor 1 as possible marker for risk and early diagnosis of parkinson disease[J]. Archives of Neurology, 2011,68(7):925-931.

[27] AYADI A E, ZIGMOND M J, SMITH A D. IGF-1 protects dopamine neurons against oxidative stress: association with changes in phosphokinases[J]. Exp. Brain Res, 2016,234(7):1863-1873.

[28] WANG Rui, BAO Hongbo, ZHANG Shihua, et al. miR-186-5p promotesapoptosisby targeting IGF-1 in SH-SY5Y OGD/R model[J]. International Journal of Biological Scirnces, 2018,14(13):1791-1799.

[29] PARK Y G, JEONG J K, MOON M H, at el. Insulin-like growth factor-1 protects against prion peptide-induced cell death in neuronal cellsvia inhibition of Bax translocation[J]. International Journal of Molecular Medicine, 2012,30(5):1069-1074.

[30] WEN Di, CUI Can, DUAN Weisong, et al. The role of insulin-like growth factor 1 in ALS cell and mouse models: a mitochondrial protector[J]. Brain Research Bulletin, 2019,144:1-13.

(本文編輯 黃建鄉)

主站蜘蛛池模板: 日韩精品专区免费无码aⅴ| 亚洲天堂首页| 国产成人高清精品免费软件| 1024你懂的国产精品| 国产精品自在在线午夜区app| 无码高清专区| 亚洲大尺码专区影院| 欧美成人亚洲综合精品欧美激情| 91www在线观看| 激情乱人伦| 国产精品自在拍首页视频8| 久久国产精品夜色| 欧美精品伊人久久| 亚洲视频免| 亚洲精品成人福利在线电影| 日本亚洲国产一区二区三区| 色综合狠狠操| 欧美激情一区二区三区成人| 亚洲精品图区| 91精品在线视频观看| 亚洲香蕉久久| 国产伦精品一区二区三区视频优播 | 911亚洲精品| 日韩色图区| 国产尹人香蕉综合在线电影| 日日拍夜夜嗷嗷叫国产| 亚洲小视频网站| 黄色网址免费在线| 免费在线观看av| 她的性爱视频| 97国产精品视频自在拍| 狠狠色成人综合首页| 国产激情国语对白普通话| 宅男噜噜噜66国产在线观看| 国产成人乱无码视频| 有专无码视频| 亚洲欧洲日产无码AV| 国产亚洲精品自在线| 亚洲av无码牛牛影视在线二区| 麻豆AV网站免费进入| 国产成人精品在线1区| 日韩经典精品无码一区二区| 精品久久久久久久久久久| 美女一区二区在线观看| 国产激情在线视频| 天天做天天爱夜夜爽毛片毛片| 国产精品部在线观看| 欧美区一区二区三| 国产门事件在线| 亚洲视频免费在线看| 亚洲男人的天堂久久香蕉| 国产真实乱子伦精品视手机观看 | 熟妇丰满人妻av无码区| 亚洲人成亚洲精品| 日韩免费毛片| 亚洲人成网站日本片| 亚洲成av人无码综合在线观看| 99久久精品久久久久久婷婷| 色婷婷国产精品视频| 毛片免费在线视频| 1024你懂的国产精品| 国产综合精品日本亚洲777| 亚洲国内精品自在自线官| 91福利国产成人精品导航| 国产网站在线看| 日韩精品中文字幕一区三区| 国产成人精品2021欧美日韩| 久久国产精品嫖妓| 久久黄色毛片| 福利在线不卡| 91po国产在线精品免费观看| yy6080理论大片一级久久| 亚洲中文字幕精品| 日韩在线播放欧美字幕| 婷婷色婷婷| 国产乱人伦精品一区二区| 国产97色在线| 久久青草免费91线频观看不卡| 欧美 国产 人人视频| AV不卡在线永久免费观看| 欧美性精品| 国产女主播一区|