陳仕林,胡鈞銘,黃忠華,李婷婷,鄭佳舜,黃俞銘,羅維鋼,何鐵光,韋翔華
粉壟耕作對平地和坡耕地蔗田土壤有機碳礦化和結構的影響*
陳仕林1,2,胡鈞銘1**,黃忠華3,李婷婷1,鄭佳舜1,2,黃俞銘1,2,羅維鋼3,何鐵光1,韋翔華2**
(1.廣西農業(yè)科學院農業(yè)資源與環(huán)境研究所,南寧 530007;2.廣西大學農學院,南寧 530004;3.南寧市灌溉試驗站,南寧 530001)
2018-2019年在廣西南寧丘陵山區(qū)甘蔗田采用雨養(yǎng)模式,設置粉壟耕作與常規(guī)耕作兩種耕作方式,開展平地和坡耕地甘蔗田間試驗。試驗在甘蔗全生育期不進行人工灌溉,收獲期采集0-15cm耕層及15-30cm耕層土壤樣品,用土壤緊實度儀多點位測定0-45cm深度土壤緊實度,利用濕篩法測定土壤團聚體,應用室內恒溫培養(yǎng)-堿液吸收法測定土壤有機碳礦化量,以探索粉壟耕作對坡耕地雨養(yǎng)蔗田土壤有機碳礦化速率、累積礦化量及土壤團聚體與緊實度結構效應的影響。結果表明:(1)平地蔗田土壤有機碳累積礦化量始終高于坡耕地,粉壟耕作處理下,平地0-15cm和15-30cm耕層土壤有機碳礦化量較坡耕地分別提高0.32倍和1.05倍;坡耕地蔗田土壤0-15cm和15-30cm耕層有機碳7日累積礦化量粉壟耕作比常規(guī)耕作升高81.7%和降低7.5%,平地上則降低8.4%和升高2.6%;(2)與常規(guī)耕作方式相比,粉壟耕作提高了蔗田土壤大團聚體含量,平地和坡耕地分別增加5.53%和2.30%,平地土壤大團聚體含量為坡耕地的1.00~1.03倍,粉壟耕作降低了蔗田土壤中小、微團聚體含量。同時,粉壟耕作提高了土壤水穩(wěn)性團聚體平均質量直徑(MWD)和幾何平均直徑(GMD),與常規(guī)耕作相比,平地和坡耕地MWD分別提高15.6%和58.7%,GMD分別提高31.4%和48.1%。同種耕作模式下平地土壤水穩(wěn)性團聚體的MWD值和GMD值均高于坡耕地,平地常規(guī)耕作和粉壟耕作土壤MWD值較坡耕地分別提高1.19和0.60倍,平地常規(guī)耕作和粉壟耕作土壤GWD值較坡耕地分別提高0.99 和0.77倍;(3)粉壟耕作方式對坡耕地蔗田土壤緊實度的影響比平地大,粉壟耕作降低了蔗田土壤緊實度,且15-30cm耕層影響較明顯。因此,粉壟雨養(yǎng)甘蔗提高了平地和坡耕地土壤耕層碳存儲,可降低土壤緊實度,增加土壤大團聚體形成,優(yōu)化土壤耕層結構,該模式可作為南方蔗田土壤干旱逆境調控技術措施。
粉壟;坡耕地;土壤礦化;土壤團聚體;蔗田
農業(yè)是全球氣候變化的主要承受者和受害者[1-2],亞熱帶地區(qū)季節(jié)性干旱是制約農業(yè)生產的重要氣象障礙因素[3-4]。廣西地處喀斯特丘陵山區(qū),65%以上旱地屬于坡耕地類型[5],旱坡地甘蔗生產中土壤水分多寡是影響甘蔗產量的重要因素,發(fā)展坡地雨養(yǎng)適水甘蔗生產對穩(wěn)定甘蔗生產意義巨大[6]。土壤是陸地生態(tài)系統(tǒng)最大的碳庫[7],土壤有機碳礦化是土壤碳庫動態(tài)的核心[8-9]。土壤有機碳礦化和土壤結構優(yōu)劣影響土壤有機質變化,有機碳礦化速率受土壤水分影響較為敏感,在長期水分虧缺狀態(tài)下,土壤有機碳微生物呼吸作用減弱[10-11]。不合理的耕作導致土壤耕層變淺,犁底層變厚、上移,通透性變差,蓄水保肥能力下降[12-14]。理想耕作對土壤納水作用有積極的影響,利于土壤蓄水保墑和耕層營養(yǎng)調控[15],土壤深松耕,可增加土壤含水量,降低土壤容重及緊實度[16]。因此,采用現(xiàn)代農機、農藝耕作耦合技術,發(fā)展低碳綠色農業(yè)已成為現(xiàn)代高效農業(yè)典型特征之一[17-18]。
新型粉壟深旋耕技術在南方紅壤地區(qū)農業(yè)生產上已得到較為廣泛的應用[19-20]。粉壟耕作影響稻田土壤結構緊實度和容重[21],對稻田溫室氣體排放有一定的減排作用[22]。甘秀芹等研究表明,在旱作生產中,粉壟耕作有利于土壤水分存儲,促進作物增產[23],但粉壟耕作對土壤耕層碳庫環(huán)境影響方面研究仍顯不足。本研究在粉壟深旋耕技術發(fā)源地南寧,選擇典型紅壤區(qū)平地和坡耕地甘蔗園開展試驗,全生育期不進行人工灌溉,就粉壟耕作對蔗田土壤有機碳礦化速率、累積礦化量及土壤團聚體與緊實度結構效應進行研究,以期為粉壟雨養(yǎng)甘蔗生產中土壤碳庫管理與土壤耕層調控提供科學依據(jù)。
試驗位于亞熱帶紅壤黏土區(qū)南寧市雨養(yǎng)甘蔗種植區(qū),選取典型平地和坡耕地(坡度8°-10°)進行試驗,平地位于南寧市灌溉試驗站,坡耕地位于南寧市隆安縣那桐鎮(zhèn)。試驗區(qū)年均降水量約1300mm,試驗地概況及土壤背景值如表1所示。

表1 試驗地概況及土壤背景值
2018-2019年甘蔗生長季在平地和坡耕地兩種地形上開展試驗,設置粉壟耕作和常規(guī)耕作兩種耕作方式,試驗共4個處理,每處理3個重復,每處理小區(qū)面積148.5m2。2018年3月15日采用廣西產的粉壟深旋耕機進行農田耕作,耕深40cm,對照采用常規(guī)拖拉機旋耕20cm犁田整地(表2)。供試甘蔗品種為桂糖42號。甘蔗生長季施用三元復合肥(氮-磷-鉀比例為16:16:16),按2250kg·hm?2進行施肥,甘蔗種植前期(耕作時同步施肥)底肥占70%,后期(苗期、伸長期)追施占30%。于2018年3月30日下種,行距80cm,2019年1-2月采收。田間管理按廣西雙高甘蔗生產進行。

表2 田間試驗處理設置
1.3.1 土壤有機碳礦化
在甘蔗收獲期2019年1月采集土壤樣品,用S形多點法取0-15cm和15-30cm耕層土壤,新鮮土樣過10目土篩,用以測定土壤有機碳礦化。土壤有機碳礦化采用室內恒溫培養(yǎng)-堿液吸收法,每個樣品稱取50g新鮮土樣放入500mL的大白瓶中,取容量為50mL的小白瓶放入10mL濃度為0.1mol·L?1的NaOH溶液,將小白瓶放入大白瓶內,大白瓶加蓋密封。同時,對各樣品的重量含水率進行測定。以不含土樣的空白瓶為對照。樣品均培養(yǎng)7d,3個重復。在培養(yǎng)的第1、2、3、5、7天取出NaOH溶液,加入2mL濃度為1mol·L?1的BaCl2固定堿液中的CO2后,以酚酞為指示劑,即刻用0.1mol·L?1HCl滴定NaOH溶液,用以計算土壤CO2-C釋放量、CO2礦化速率和培養(yǎng)期間CO2累積釋放量,計算方式為[24]
(1)培養(yǎng)期間釋放量MC

式中,MC為培養(yǎng)期間土壤有機碳的礦化釋放量(mgCO2·kg?1干土);V0為空白標定時所消耗的鹽酸體積(mL),V為標定樣品時消耗的HCl體積(mL);CHCl為標準鹽酸濃度(mol·L?1),為0.1mol·L?1;m為試驗土樣質量(g),50g;a為土壤重量含水率(%)。
(2)培養(yǎng)期間CO2的礦化速率

式中,t為最近兩次測定間隔的時間(d)。
(3)培養(yǎng)期間CO2的累積釋放量

式中,n為CO2釋放量的測定次數(shù)。
1.3.2 土壤水穩(wěn)性團聚體
在甘蔗收獲期,每個試驗小區(qū)隨機選取3個采樣點,3次重復,每次采集土樣1kg,將采集到的土樣置于便捷式保鮮盒中帶回實驗室,將大土塊用手輕掰成直徑約1cm的小土塊,清除石塊和動植物殘體,風干備用。
土壤水穩(wěn)性團聚體采用Elliott團聚體濕篩法測定[25]:采用土壤團粒分析儀(DM200-V,上海),稱取風干土樣100g,將土樣置于3mm孔徑篩上,自上而下放孔徑為3.0、2.00、1.00、0.5、0.25、0.125和0.0625mm孔篩,再將整個套篩緩慢放入水中,使水面淹過頂層篩,土樣在水中浸泡3min,上下振蕩孔篩(上下振幅38mm,每分鐘30次),分離出>3mm(I)、2~3mm(II)、1~2mm(III)、0.5~1.0mm(IV)、0.25~0.50mm(V)、0.125~0.250(VI)和<0.125mm(VII)土壤團聚體,共7個粒徑組,I級為土壤大團聚體,II-V級為土壤中小團聚體,VI級和VII級為土壤微團聚體。將各粒徑團聚體轉移至蒸發(fā)皿中,在105℃下烘8h,干燥后稱重,計算各粒級土壤水穩(wěn)性團聚體質量百分比、平均質量直徑(MWD)和幾何平均直徑(GMD)。
(1)各級土壤團聚體質量百分比[26]

式中,wi為第i粒級團聚體質量百分比(%),Mi為第i粒級團聚體干重(g),MT為團聚體總重量(g),為100g。
(2)土壤水穩(wěn)性團聚體平均質量直徑[26]

式中,MWD為水穩(wěn)性團聚體平均質量直徑(mm),Ri為相鄰兩級團聚體的平均粒徑(mm),wi為第i粒級團聚體質量百分比(%)。
(3)土壤水穩(wěn)性團聚體幾何平均直徑[26]

式中,Mi為第i粒級團聚體干重(g),Ri為相鄰兩級團聚體的平均粒徑(mm)。
1.3.3 土壤緊實度
在甘蔗收獲期測定土壤緊實度,每個處理選取3個具有代表性區(qū)域,每個區(qū)域選取4個點用SC-900便攜式土壤緊實度儀測定0-45cm土壤緊實度。
采用IBM SPSS Statistics 19軟件分析數(shù)據(jù),用LSD法進行多重比較及差異顯著性檢驗,采用Microsoft Excel 2010制圖。
由圖1a可見,平地上土壤樣品培養(yǎng)初期,有機碳礦化速率不穩(wěn)定,培養(yǎng)3d后緩慢降低并逐漸趨于穩(wěn)定。穩(wěn)定期數(shù)據(jù)顯示,粉壟(SR)與常規(guī)(CT)耕作方式在0-15cm層土壤有機碳礦化速率差異顯著(P<0.05),培養(yǎng)結束時常規(guī)耕作的土壤有機碳礦化速率為28.2mg·kg?1·d?1,而粉壟耕作的有機碳礦化速率低于常規(guī)耕作,為常規(guī)的89.07%;在15-30cm耕層,兩種耕作方式間土壤有機碳礦化速率無顯著差異。說明在平坦耕地上,粉壟耕作可明顯降低0-15cm耕作層土壤有機碳礦化速率,對15-30cm耕層影響不大。

圖1 兩種耕作方式下平地和坡耕地土壤培養(yǎng)7d過程中有機碳礦化速率的動態(tài)變化
注:CT1和CT2分別表示常規(guī)耕作平地和坡耕地處理,SR1和SR2分別表示粉壟耕作平地和坡耕地處理,?1和?2分別表示0-15cm和15-30cm耕層。小寫字母表示處理間差異顯著性。短線表示標準誤。下同。
Note:CT1 and CT2 represent conventional tillage flat land and slope farmland treatment respectively. SR1 and SR2 represent smash ridging tillage flat land and slope farmland treatment respectively. ?1 and ?2 represent 0-15cm and 15-30cm topsoil respectively. Lowercase indicates the difference significance among treatments at 0.05 level. The bar is standard error. The same as below.
由圖1b可見,在0-15cm和15-30cm耕層,粉壟(SR)和常規(guī)(CT)兩種耕作方式下坡耕地上土壤有機碳礦化速率均低于平地,隨培養(yǎng)時間增加其變化趨勢與平地一致,后期逐漸趨于穩(wěn)定或略升高。從數(shù)據(jù)大小看,在0-15cm耕層,坡耕地上粉壟耕作的有機碳礦化速率顯著高于常規(guī)耕作(P<0.05),平均為20.23mg·kg?1·d?1,是常規(guī)耕作的1.93倍;在15-30cm耕層,兩種耕作方式間土壤有機碳礦化速率無顯著差異。可見,粉壟耕作可顯著提高坡耕地0-15cm耕層土壤有機碳礦化速率。
由圖2a可見,平地上土壤樣品培養(yǎng)初期,有機碳累積礦化量增長幅度大,3d后增長緩慢。穩(wěn)定期數(shù)據(jù)顯示,粉壟(SR)與常規(guī)(CT)兩種耕作方式在0-15cm層土壤有機碳累積礦化量差異顯著(P<0.05),培養(yǎng)結束時常規(guī)耕作的土壤有機碳累積礦化量為149.60mg·kg?1,而粉壟耕作的有機碳累積礦化量低于常規(guī)耕作,僅為常規(guī)的92.22%;15-30cm耕層,培養(yǎng)結束時粉壟耕作的土壤有機碳累積礦化量為172.98mg·kg?1,較常規(guī)耕作提高了2.7%。說明在平坦耕地上,粉壟耕作可明顯降低0-15cm耕作層土壤有機碳累積礦化量,提高15-30cm耕層土壤有機碳累積礦化量。
由圖2b可見,在0-15cm和15-30cm耕層,坡耕地上土壤有機碳累積礦化量均低于平地,隨著培養(yǎng)時間的延長,其變化趨勢與平地一致,后期增長趨緩。從數(shù)據(jù)大小看,培養(yǎng)7d后,在0-15cm耕層,坡耕地上粉壟耕作的有機碳累積礦化量顯著高于常規(guī)耕作(P<0.05),平均為104.35mg·kg?1,是常規(guī)耕作的1.82倍;在15-30cm耕層,粉壟耕作土壤有機碳累積礦化量低于常規(guī)耕作,較常規(guī)降低了7.5%。表明粉壟耕作可顯著提高坡耕地0-15cm耕作層土壤有機碳累積礦化量,降低15-30cm耕層土壤有機碳累積礦化量。
由表3可知,CT1、SR1、SR2處理中蔗田土壤水穩(wěn)性團聚體粒徑分布均以>3mm粒級為主,CT2處理團聚體粒徑主要集中在0.25~0.50mm。在平地,2~3mm粒徑團聚體含量SR1與CT1處理差異達到顯著水平(P<0.05)。在0.125~0.250mm粒徑范圍內,SR1顯著低于CT1(P<0.05),其它粒徑團聚體差異則不明顯;在坡耕地,0.125~0.250mm粒徑以及0.125~0.250mm范圍內,SR1均顯著低于CT1(P<0.05),其它粒徑團聚體差異不明顯。
不論是平地還是坡耕地,蔗田土壤粉壟耕作大團聚體含量均高于常規(guī)耕作,平地和坡耕地分別增加了28.9%、120.6%,表明粉壟耕作能促進土壤大團聚體的形成。同種耕作方式下,平地土壤大團聚體含量均高于坡耕地,其含量為坡耕地的1.06~2.53倍,表明平地對水穩(wěn)性團聚體的穩(wěn)定有積極作用。

圖2 兩種耕作方式下平地和坡耕地土壤培養(yǎng)7d過程中有機碳累積礦化量的動態(tài)變化

表3 兩種耕作方式下平地和坡耕地土壤水穩(wěn)性團聚體含量(%)
注:小寫字母表示處理間差異顯著性。
Note: Lowercase indicates the difference significance among treatments at 0.05 level.
土壤團聚體平均質量直徑(MWD)和平均幾何直徑(GMD)是反映土壤團聚體大小分布狀況及其穩(wěn)定性的重要指標,MWD和GMD值越大表明團聚體的穩(wěn)定性越強。由表3可知,平地和坡耕地中,MWD和GMD值均表現(xiàn)為SR1>CT1>SR2>CT2。與常規(guī)耕作相比,粉壟耕作條件下平地和坡耕地MWD值分別提高15.6%、58.7%,GMD值分別提高31.4%、48.1%,表明粉壟耕作土壤團聚體穩(wěn)定性相對較好。同種耕作模式下,平地MWD值和GMD值均高于坡耕地,平地常規(guī)耕作和粉壟耕作MWD值較坡耕地分別提高1.19和0.60倍,平地GWD值較坡耕地分別提高0.99和0.77倍,表明平地更有利于增加土壤團聚體穩(wěn)定性。
圖3為粉壟甘蔗各處理土壤緊實度與土層深度的關系。由圖可見,隨著土層深度的增加,各處理土壤緊實度整體呈現(xiàn)先增大后減少再增大的趨勢,0-15cm耕層土壤緊實度明顯低于15-30cm耕層。采用粉壟耕作后,平地(SR1)和坡耕地(SR2)處理,與常規(guī)耕作(CT1、CT2)處理相比,15-30cm耕層土壤緊實度明顯降低,說明粉壟耕作可有效降低蔗田15-30cm耕層土壤緊實度。
在常規(guī)耕作方式下,平地(CT1)與坡耕地(CT2)相比,0-15cm耕層CT1處理的緊實度低于CT2處理,相反,15-30cm耕層CT1處理的緊實度高于CT2處理;在粉壟耕作方式下,平地(SR1)與坡耕地(SR2)相比,0-15cm耕層SR1處理的緊實度低于SR2處理,相反,15-30cm耕層SR1處理的緊實度高于SR2處理。說明平地對0-15cm耕層土壤緊實度有降低的作用,但升高了15-30cm耕層土壤緊實度。

圖3 兩種耕作方式下平地和坡耕地土壤緊實度
粉壟耕作有利于提高平地蔗田土壤有機碳礦化量。良好的土壤環(huán)境有利于土壤微生物活動[27]。保護性耕作能夠提高土壤固碳量,減少CO2排放,有利于改善土壤碳庫[28]。坡耕地地形結構導致土壤資源重新配置,使土壤養(yǎng)分轉化產生空間格局差異,直接影響了地表植被生長、水土養(yǎng)分的分布[29]。本研究發(fā)現(xiàn),粉壟耕作增加了坡耕地蔗田土壤0-15cm耕層累積礦化量,但15-30cm耕層的累積礦化量有所降低,較常規(guī)耕作分別升高和降低了81.7%和7.5%;相反,粉壟耕作降低了平地蔗田耕層土壤累積礦化量,提高了15-30cm耕層的累積礦化量,較常規(guī)耕作分別降低7.8%和升高2.7%。形成這種差異可能是土壤礦化過程受到影響,平地和坡耕地地形差異導致土壤呼吸強度不同,同時本研究還發(fā)現(xiàn),粉壟耕作平地蔗田土壤有機碳礦化量高于坡耕地,這進一步說明可能因為地形影響了土壤養(yǎng)分分布及微生物的活動,從而影響土壤有機碳礦化過程。有關粉壟雨養(yǎng)甘蔗耕層土壤礦化效應有待進一步研究。
粉壟耕作增強了蔗田土壤團聚體穩(wěn)定性。合理的耕作措施影響土壤有機質的氧化,降低了土壤容重,增強了作物根際土壤微生物呼吸,有助于團聚體的形成[30]。MWD、GMD越高,土壤團聚體抗侵蝕能力越強[31]。保護性耕作主要影響了0-5cm土層土壤團聚體,增加團聚體含量,提高土壤團聚體穩(wěn)定性,改善土壤結構[32]。相反,傳統(tǒng)耕作措施減少了土壤大團聚體含量,這是因為其對土壤擾動程度大,導致土壤團聚體結構遭到一定程度的破壞[33]。粉壟耕作提高了蔗田土壤水穩(wěn)性大團聚體含量,平地和坡耕地分別增加了5.53%、2.30%,增加蔗田土壤團聚體形成,本研究結果與上述結論較為一致。本研究還發(fā)現(xiàn),粉壟耕作更有利于增加平地土壤團聚體穩(wěn)定性,其原因是因為南方地區(qū)降雨量大,坡耕地不利于水分的管控,雨水造成坡耕地土壤養(yǎng)分的垂直流失高于平地。在平地和坡耕地中不同粒級土壤團聚體在養(yǎng)分的保持、供應和轉化過程中的作用不同,團聚體作為土壤中物質和能量轉化與代謝的場所,其數(shù)量和質量對協(xié)調土壤肥力狀況、改善土壤耕性等有重要作用,影響土壤有機碳、生物活性和土壤其它功能的發(fā)揮。
粉壟耕作降低了蔗田土壤緊實度,對15-30cm耕層影響明顯。作物種植上可采用合理的耕作措施改善土壤結構,協(xié)調土壤水、肥、氣、熱等因素,促進農作物增產增質[34]。土壤緊實度隨土層深度的增加呈現(xiàn)出升高的趨勢,達到一定深度后趨于穩(wěn)定[35]。此外,0-15cm耕層與15-30cm耕層土壤緊實度空間分布特征受土壤質地、地形、耕作方式等多種因素的影響[36]。深松耕作能夠降低土壤緊實度,增加土壤通透性,改善土壤的物理結構[37],為作物生長提供有利的環(huán)境條件。本研究發(fā)現(xiàn),粉壟耕作降低了蔗田土壤緊實度,且對15-30cm土層影響最明顯,這與粉壟深旋耕打破土壤耕作層和犁底層,使土粒破碎均勻,增加土壤通透性有關。
粉壟雨養(yǎng)甘蔗栽培方式能改善蔗田土壤通透性,降低土壤緊實度,增加土壤大團聚體含量,同時對改善蔗田土壤礦化有一定積極作用,提高了平地和坡耕地土壤耕層碳庫存儲,該模式可作為南方蔗田土壤干旱逆境調控技術措施。
[1] 潘根興,高民,胡國華,等.氣候變化對中國農業(yè)生產的影響[J].農業(yè)環(huán)境科學學報,2011,30(9):1698-1706.
Pan G X, Gao M, Hu G H, et al.Impacts of climate change on agricultural production of China[J].Journal of Agro- Environment Science,2011,30(9):1698-1706.(in Chinese)
[2] 秦大河.氣候變化科學與人類可持續(xù)發(fā)展[J].地理科學進展,2014,33(7):874-883.
Qin D H.Climate change science and sustainable development[J]. Progress in Geography,2014,33(7):874-883.(in Chinese)
[3] 大衛(wèi)·莫登.水與可持續(xù)發(fā)展:未來農業(yè)用水對策方案及綜合評估[M].李保國,等譯.天津:天津傳媒集團,2014.
David M.Water for food,water for life:a comprehensive assessment of water management in agriculture[M]. Translated by Li B G,et al.Tianjin:Tianjin Media Group, 2014.(in Chinese)
[4] 趙鴻,肖國舉,王潤元,等.氣候變化對半干旱雨養(yǎng)農業(yè)區(qū)春小麥生長的影響[J].地球科學進展,2007,(3):322-327.
Zhao H,Xiao G J,Wang R Y,et al.Impact of clmiate change on spring wheat growth in semi-arid rain feed region[J]. Advances in Earth Science,2007,(3):322-327.(in Chinese)
[5] 趙其國,黃國勤,馬艷芹.中國南方紅壤生態(tài)系統(tǒng)面臨的問題及對策[J].生態(tài)學報,2013,33(24):7615-7622.
Zhao Q G,Huang G Q,Ma Y Q.The problems in red soil ecosystem in southern of China and its countermeasure[J]. Acta Ecologica Sinica,2013,33(24):7615-7622.(in Chinese)
[6] 康紹忠,霍再林,李萬紅.旱區(qū)農業(yè)高效用水及生態(tài)環(huán)境效應研究現(xiàn)狀與展望[J].中國科學基金,2016,30(3):208-212.
Kang S Z,Huo Z L,Li W H.High-efficient water use and eco-environmental impacts in agriculture in arid regions: advance and future strategies[J].Bulletin of National Natural Science Foundation of China,2016,30(3):208-212.(in Chinese)
[7] Lal R.Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304(5677): 1623-1627.
[8] Shen H,Yang Y S,Yang Z,et al.The dynamic response of soil respiration to land-use changes in subtropical China[J].Global Change Biology,2010,3:1107-1121.
[9] Rosenzweig C,Hillel D.Soils and global climate change: challenges and opportunities[J].Soil Science,2000,165(1): 47-46.
[10] Xu X F,Schimel J,Thornton P,et al.Substrate and environmental controls on microbial assimilation of soil organic carbon:a framework for Earth system models[J]. Ecology Letters,2014,17(5):547-555.
[11] 鞏杰,陳利頂,傅伯杰,等.黃土丘陵區(qū)小流域土地利用和植被恢復對土壤質量的影響[J].應用生態(tài)學報,2004,(12): 2292-2296.
Gong J,Chen L D,Fu B J,et al.Effects of land use and vegetation restoration on soil quality in a small catchment of the Loess Plateau[J].Chinese Journal of Applied Ecology, 2004,(12):2292-2296.(in Chinese)
[12] Tolon B A,Botta G F,Lastra B X,et al.Soil compaction distribution under tractor traffic in almond (L.) orchard in Almería Espa?a[J].Soil &, Tillage Research,2010,107(1):49-56..
[13] Papendick R I,Parr J F.No-till farming:the way of the future for a sustainable dryland agriculture[J].Annals of Arid Zone,1997,36:193-208.
[14] 賀春雄.延安治溝造地工程的現(xiàn)狀、特點及作用[J].地球環(huán)境學報,2015,6(4):255-260.
He C X.The situation,characteristics and effect of the gully reclamation project in Yan'an[J].Journal of Earth Environment,2015,6(4):255-260.(in Chinese)
[15] 胡鈞銘,陳勝男,韋翔華,等.耕作對健康耕層結構的影響及發(fā)展趨勢[J].農業(yè)資源與環(huán)境學報,2018,35(2):95-103.
Hu J M,Chen S N,Wei X H,et al.Effects of tillage model on healthy plough layer structure and its development trends[J].Journal of Agricultural Resources and Environment, 2018,35(2):95-103.(in Chinese)
[16] 劉衛(wèi)玲,程思賢,周金龍,等.深松(耕)時機與方式對土壤物理性狀和玉米產量的影響[J].河南農業(yè)科學,2018,47(3): 7-13.
Liu W L,Cheng S X,Zhou J L,et al.Effects of time and pattern of deep tillage( subsoiling) on soil physical properties and maize yield[J].Journal of Henan Agricultural Sciences,2018,47(3):7-13.(in Chinese)
[17] 楊勤業(yè),李高社,朱會義.黃土高原主要農作物水分盈虧與雨養(yǎng)農業(yè)問題[J].自然資源學報,1990,(1):51-59.
Yang Y Q,Li G S,Zhu H Y.Surplus and deficiency of water for main crops and the rainfed farming in the loess plateau[J].Journal of Natural Resources,1990,(1):51-59.(in Chinese)
[18] 王仕新,劉作新,趙煥胤,等.遼西半干旱地區(qū)主要作物耗水規(guī)律的初步研究[J].生態(tài)學雜志,1997,(3):12-19.
Wang S X,Liu Z X,Zhao H Y,et al.A preliminary study of water consumption of main crops in the semiarid area of west Liaoning[J].Chinese Journal of Eoology,1997,(3): 12-19.(in Chinese)
[19] 韋本輝.旱地作物粉壟栽培技術研究簡報[J].中國農業(yè)科學,2010,43(20):4330-4330.
Wei B H.A brief report on the technology of Fenlong cultivation for dry land crops[J].Scientia Agricultura Sinica, 2010,43(20):4330-4330.(in Chinese)
[20] Zhai L C,Xu P,Zhang Z B,et al.Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China[J]. Soil &,Tillage Research,2017,170:167-174.
[21] 陳勝男,胡鈞銘,徐憲立,等.綠肥壓青粉壟保護性耕作對土壤水分入滲及其后延效應的影響[J].中國農業(yè)氣象,2018, 39(12):778-785.
Chen S N,Hu J M,Wei X L,et al.Effect of smash ridging conservation tillage with green manure on rice field soil infiltration and its delayed action[J].Chinese Journal of Agrometeorology,2018,39(12):778-785.(in Chinese)
[22] 鄭佳舜,胡鈞銘,韋翔華,等.綠肥壓青粉壟保護性耕作對稻田土壤溫室氣體排放的影響[J].中國農業(yè)氣象,2019,40(1): 15-24.
Zheng J S,Hu J M,Wei X H,et al.Effect of conservation tillage with smash ridging under green manure condition on the emission of greenhouse gas in the rice field soil[J].Chinese Journal of Agrometeorology,2019,40(1): 15-24.(in Chinese)
[23] 甘秀芹,韋本輝,劉斌,等.粉壟后第6季稻田土壤變化與水稻產量品質分析[J].南方農業(yè)學報,2014,45(9):1603-1607.
Gan X Q,Wei B H,Liu B,et al.Effects of smash-ridging cultivation on soil properties,yield and quality of the sixth season of rice[J].Journal of Southern Agriculture,2014, 45(9):1603-1607.(in Chinese)
[24] 李順姬,邱莉萍,張興昌,等.黃土高原土壤有機碳礦化及其與土壤理化性質的關系[J].生態(tài)學報,2010,30(5): 1217-1226.
Li S J,Qiu L P,Zhang X C,et al.Mineralization of soil organic carbon and its relations with soil physical and chemical properties on the Loess Plateau[J].Acta Ecologica Sinica,2010,30(5):1217-1226.(in Chinese)
[25] Elliott E T.Aggregate structure and carbon,nitrogen and phosphorus in native and cultivated soils[J].Soil Science Society of America Journal,1986,50(3):627-633
[26] Barreto R C,Madari B E,Maddock J E L,et al.The impact of soil management on aggregation,carbon stabilization and carbon loss as CO2in the surface layer of a Rhodic Ferralsol in Southern Brazil[J].Agriculture,Ecosystems and Environment,2009,132(3):243-251
[27] 姜義亮.黑土區(qū)坡耕地土壤侵蝕對土壤有機碳流失的影響研究[D].楊凌:西北農林科技大學,2019.
Jiang Y L.Effect of soil erosion on soil organic carbon liss in sloping farmlands of Chinese mollisol region[D]. Yangling:Northwest A&F University,2019.(in Chinese)
[28] 王健波.耕作方式對旱地冬小麥土壤有機碳轉化及水分利用影響[D].北京:中國農業(yè)科學院,2014.
Wang J B.Effect of different tillage practices on soil organic carbon transformation and water use in dryland winter wheat[D].Beijing:Chinese Academy of Agricultural Sciences, 2014.(in Chinese)
[29] 孔維波,石蕓,姚毓菲,等.水蝕風蝕交錯帶退耕草坡地土壤酶活性和碳氮礦化特征[J].水土保持研究,2019,26(2):1-8.
Kong W B,Shi Y,Yao Y F,et al.Characteristics of enzyme activity,carbon and nitrogen mineralization of soil in the abandoned sloping cropland in Wind-Water erosion crisscross region[J].Research of Soil and Water Conservation, 2019,26(2):1-8.(in Chinese)
[30] 劉丹,張霞,李軍,等.渭北旱塬農田不同耕作模式對土壤性狀、玉米產量和水分利用效率的影響[J].應用生態(tài)學報,2018,29(2):573-582.
Liu D,Zhang X,Li J,et al.Effects of different tillage patterns on soil properties,maize yield and water use efficiency in Weibei Highland,China[J].Chinese Journal of Applied Ecology,2018,29(2):573-582.(in Chinese)
[31] 韓新生,馬璠,郭永忠,等.土地利用方式對表層土壤水穩(wěn)性團聚體的影響[J].干旱區(qū)資源與環(huán)境,2018,32(2):114-120.
Han X S,Ma P,Guo Y Z,et al.Effects of surface-layer soil water-stable aggregates under land use patterns[J].Journal of Arid Land Resources and Environment,2018,32(2): 114-120.(in Chinese)
[32] Du Z,Han X,Wang Y,et al.Changes in soil organic carbon concentration,chemical composition and aggregate stability as influenced by tillage systems in the semi-arid and semi-humid area of North China[J].Canadian Journal of Soil Science,2017,98(1):91-102.
[33] 王勇,姬強,劉帥,等.耕作措施對土壤水穩(wěn)性團聚體及有機碳分布的影響[J].農業(yè)環(huán)境科學學報,2012,31(7): 1365- 1373.
Wang Y,Ji Q,Liu S,et al.Effects of tillage on soil water stability aggregates and organic carbon distribution[J]. Journal of Agro-Environment Science,2012,31(7):1365-1373. (in Chinese)
[34] 王慧杰,郝建平,馮瑞云,等.微孔深松耕降低土壤緊實度提高棉花產量與種籽品質[J].農業(yè)工程學報,2015,31(8): 7-14.
Wang H J,Hao J P,Feng R Y,et al.Microhole subsoiling decreasing soil compaction,and improving yield and seed quality of cotton[J].Transactions of the CSAE ,2015,31(8): 7-14.(in Chinese)
[35] 辛平,黃高寶,張國盛,等.耕作方式對表層土壤飽和導水率及緊實度的影響[J].甘肅農業(yè)大學學報,2005,(2):203-207.
Xin P,Huang G B,Zhang G S,et al.Effects of different tillage methods on saturated hydraulic conductivity and compactiveness of the surface soil[J]Journal of Gansu Agricultural University,2005,(2):203-207.(in Chinese)
[36] Hamza M A,Anderson W K.Soil compaction in cropping systems:a review of the nature,causes and possible solutions[J].Soil and Tillage Research,2005,82(2):121-145.
[37] 劉爽,何文清,嚴昌榮,等.不同耕作措施對旱地農田土壤物理特性的影響[J].干旱地區(qū)農業(yè)研究,2010,28(2):65-70.
Liu S,He W Q,Yan C R,et al.Effects of different tillage managements on soil physical properties in dryland[J]. Agricultural Research in the Arid Areas,2010,28(2): 65-70.(in Chinese)
Effects of Smash Ridging on Soil Organic Carbon Mineralization and Structure of Sugarcane Field in Flat and Slope Farmland
CHEN Shi-lin1,2, HU Jun-ming1, LI Ting-ting1, HUANG Zhong-hua3, ZHENG Jia-shun1,2, HUANG Yu-ming1,2, Luo Wei-gang3, HE Tie-guang1, WEI Xiang-hua2
(1. Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; 2. Agricultural College, Guangxi University, Nanning 530004, China; 3. Nanning Irrigation Experiment Station, Nanning 530001, China)
It is the main way of rain-fed sugarcane in smash ridging production in hilly areas of south China. In order to explore the effects of slope farmland on the mineralization rate, accumulation of mineralization, soil aggregates and compact-degree structure of rain-raised sugarcane soil. In 2018-2019, smash ridging and conventional tillage were adopted in Nanning, Guangxi. Field positioning experiments were carried out on flat land and sloping farmland with no artificial irrigation during the whole growth period. Soil samples were collected in the 0-15cm topsoil and 15-30cm topsoil during the harvest period of sugarcane, and soil compactness meter was used to measure soil compactness at a depth of 0-45cm at multiple points. Soil aggregates were determined by wet sieve method. The content of soil organic carbon mineralization was determined by indoor constant temperature culture-alkali absorption method. The results showed that, (1)the soil organic carbon accumulative mineralization of rain-fed sugarcane soil in flat land is always higher than that in sloping farmland, the soil organic carbon mineralization in the 0-15cm topsoil and 15-30cm topsoil of the flat land under smash ridging was 0.32 and 1.05 times higher than that in the sloping farmland, respectively. The cumulative mineralization of organic carbon in the 0-15cm topsoil and the 15-30cm topsoil of the sugarcane field increased and decreased by 81.7% and 7.5%, respectively, and decreased and increased by 8.4% and 2.6%, respectively, in the flat land. (2)The content of large aggregates in the soil of rain-fed sugarcane was increased by smash ridging. Flat land and sloping land increased by 5.53 and 5.30 percent respectively. The content of large aggregates in flat soil was 1.00-1.03 times of that in sloping farmland. On the contrary, smash ridging reduced the content of small and micro aggregates in rain-fed sugarcane. The average mean weight diameter (MWD) and geometric mean diameter (GMD) of soil water stable aggregates were improved by smash ridging. Compared with conventional cultivated plain land and sloping farmland, MWD increased 15.6% and 58.7%, respectively, and GMD increased 31.4% and 48.1%, respectively. The MWD and GMD values of soil water stability aggregates in the same tillage mode were higher than those of sloping farmland. The MWD values of flat land conventional tillage and smash ridging tillage were 1.19 and 0.60 times higher than that of slope farmland respectively, and the GWD values of flat land conventional tillage and smash ridging tillage were 0.99 and 0.77 times higher than that of slope farmland respectively. (3)The soil compactness of rain-fed sugarcane was affected by smash ridging more than that of plain field. The soil compactness of rain-fed sugarcane was decreased by smash ridging, and the effect was most obvious at 15-30cm. Therefore, rain-fed sugarcane in smash ridging improves the carbon storage in the topsoil of flat land and slope farmland, reduce soil compactivity, increase the formation of large aggregates, and optimize the topsoil structure. This model can be used as a technical measure to control drought and stress in sugarcane fields in southern China.
Smash ridging; Slope farmland; Soil mineralization; Soil aggregate; Sugarcane field
10.3969/j.issn.1000-6362.2020.05.004
陳仕林,胡鈞銘,黃忠華,等.粉壟耕作對平地和坡耕地蔗田土壤有機碳礦化和結構的影響[J].中國農業(yè)氣象,2020,41(5):299-307
2019?11?15
胡鈞銘,E-mail:jmhu06@126.com;韋翔華,E-mail:xhwfd@gxu.edu.cn
廣西創(chuàng)新驅動重大專項(桂科AA17204037-3);廣西第二十一批“十百千人才工程”專項資金;廣西農業(yè)科學院創(chuàng)新團隊項目(桂農科2018YT08);廣西農業(yè)科學院科技發(fā)展專項(桂農科2017JZ09;桂農科2017ZX01)
陳仕林,E-mail: shilinz1995@163.com