999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

地震動參數(shù)對錨固巖質(zhì)邊坡地震響應(yīng)影響權(quán)重研究

2020-05-21 13:46:54靳飛飛言志信翟聚云羅瑞翔
水力發(fā)電 2020年2期
關(guān)鍵詞:錨桿水平

靳飛飛,言志信,翟聚云,羅瑞翔

(1.安徽理工大學(xué)土木建筑學(xué)院,安徽 淮南 232001;2.河南城建學(xué)院土木與交通工程學(xué)院,河南 平頂山 467000)

0 引 言

地震是誘發(fā)滑坡的重要原因之一,而滑坡具有較大的致害力,給社會發(fā)展帶來了巨大的損害。巖土錨固因具有獨特性能和良好效果,在工程中得到了廣泛應(yīng)用[1-2]。通過錨固支護(hù),邊坡的抗震性能得到顯著提高。然而,地震作用下錨固巖質(zhì)邊坡的變形破壞十分復(fù)雜,致使現(xiàn)有研究遠(yuǎn)不能滿足工程需要,有必要對其開展研究。

在研究地震作用下錨固巖質(zhì)邊坡的穩(wěn)定性問題時,由于地震發(fā)生的時間、空間和強度都具有明顯的隨機性,因此地震動參數(shù)的選取是首要解決的問題。國內(nèi)外學(xué)者對此已有相關(guān)的研究,葉帥華等[3]依托于實際工程,利用Geostudio巖土分析軟件,研究了地震動持時對錨固多級高邊坡的動力和錨桿軸力響應(yīng)的影響;張妙芝等[4]基于振動臺邊坡模型試驗,研究了地震波波形對錨固邊坡中錨桿應(yīng)變響應(yīng)的影響;郝建斌等[5]基于振動臺邊坡模型試驗,研究了地震動峰值加速度和持時對錨固邊坡中錨桿應(yīng)變響應(yīng)的影響;葉海林等[6]利用動力有限差分軟件FLAC3D,研究了地震波波形、幅值和頻率對錨桿支護(hù)巖質(zhì)邊坡動力響應(yīng)的影響;M.L.Lin等[7]采用有限差分軟件并結(jié)合大型振動臺試驗,研究了地震動峰值加速度對邊坡穩(wěn)定性的影響;HONG等[8]利用振動臺試驗,研究了地震動頻率對邊坡的抗震性能和破壞機理的影響。迄今為止,全面地對地震動各參數(shù)影響權(quán)重的研究鮮有報道,使得在分析錨固巖質(zhì)邊坡地震動力穩(wěn)定性時,地震動參數(shù)的選取尚不統(tǒng)一。

本文采用正交設(shè)計的方法,以波形、時間壓縮比、幅值和持時為分析因素,設(shè)計多組具有不同峰值加速度(Peak Ground Acceleration,PGA)、峰值速度(Peak Ground Velocity,PGV)、阿里亞斯強度(Arias Intensity,AI)、絕對累積速度(Cumulative Absolute Velocity,CAV)、持時和特征周期的地震動[9],分析了地震動各參數(shù)與邊坡位移及錨桿軸力的相關(guān)性,計算得到地震動各參數(shù)的影響權(quán)重,為錨固巖質(zhì)邊坡的動力分析與抗震設(shè)計提供地震動參數(shù)選用的理論依據(jù)。

1 邊坡模型的建立

1.1 邊坡概況

某巖質(zhì)邊坡高為20 m,坡角為75°,為含軟弱層順傾巖質(zhì)邊坡。靜力條件下邊坡安全系數(shù)為1.19。考慮地震作用時,需要對其進(jìn)行支護(hù)。采用5根直徑為30 mm的全長粘結(jié)錨桿進(jìn)行支護(hù),錨孔直徑為120 mm,錨桿豎向間距為3 m,傾角為15°,錨入基巖長度為4 m,錨桿自上至下依次編號為1~5。巖質(zhì)邊坡模型見圖1。圖1中,巖層1為微風(fēng)化巖,定義為危巖;巖層2為軟弱夾層,傾角為55°;巖層3

圖1 巖質(zhì)邊坡模型(單位:m)

為完整基巖;A1~A12為固定的監(jiān)測點。通過現(xiàn)場勘察和室內(nèi)試驗,確定巖體物理力學(xué)參數(shù),見表1。錨桿物理力學(xué)參數(shù)見表2。

表1 巖體物理力學(xué)參數(shù)

表2 錨桿物理力學(xué)參數(shù)

1.2 數(shù)值模型建立

利用有限差分軟件FLAC3D建立邊坡模型,模型含5 700個單元,8 919個節(jié)點,邊坡巖體采用彈塑性材料和Mohr-Coulomb屈服準(zhǔn)則,用FLAC3D內(nèi)置的Cable單元模擬錨桿,以自重應(yīng)力場作為邊坡所處的初始應(yīng)力場。

本文研究對象為巖質(zhì)邊坡,基巖彈性模量大,底部可視為剛性地基,四周則采用自由場邊界。為滿足計算精度要求,根據(jù)鄭穎人等[10]所述,模型計算邊界為:坡腳到右側(cè)邊界的距離為坡高的1.5倍,坡肩到左側(cè)邊界的距離為坡高的2.5倍,上下邊界的總高度為坡高的2.0倍。施加局部阻尼,阻尼系數(shù)為0.157。

1.3 數(shù)值模擬工況

為研究地震動各參數(shù)對邊坡動力和錨桿軸力響應(yīng)的影響,本文采用具有一般性且分析結(jié)果可靠的正交試驗法[11],設(shè)計多組地震動。本次正交試驗中,選取波形、時間壓縮比、幅值和持時,作為正交設(shè)計試驗的4個因素,每個因素設(shè)置5個水平,見表3。選用4因素5水平L25(54),共25組試驗(見表4)。對獲得的25條地震動進(jìn)行積分、傅里葉變換等以統(tǒng)計其PGA、PGV、AI、CAV、持時和特征周期,并將25條地震動進(jìn)行基線矯正作為輸入地震動,進(jìn)而對地震動各參數(shù)的影響權(quán)重進(jìn)行研究分析。

表3 地震動參數(shù)正交設(shè)計水平

表4 地震動參數(shù)組合方案

2 邊坡在地震作用下的動力響應(yīng)

為研究地震作用下邊坡坡面位移和錨桿軸力的變化規(guī)律,對模型邊坡輸入表4所列工況的地震動發(fā)現(xiàn),各工況下邊坡坡面位移和錨桿軸力具有相似的規(guī)律,現(xiàn)以工況1為例進(jìn)行分析和闡述。

2.1 邊坡位移

地震波到達(dá)軟弱夾層時傳播受阻,導(dǎo)致邊坡危巖產(chǎn)生整體滑移或被拋射的趨勢[12]。位移響應(yīng)見圖2。從圖2可知,地震動結(jié)束時,基巖位移小,危巖位移大且有向外傾倒之勢,坡頂位移為0.073 m,自坡頂向下位移逐漸減小。在地震動初始階段(6.4 s內(nèi)),位移出現(xiàn)明顯的振蕩,且逐漸增大,在6.4 s內(nèi)達(dá)到最大值0.077 m;隨著地震動持續(xù)作用(6.4 s以后),水平位移振蕩減緩,位移增長逐漸趨于穩(wěn)定,即產(chǎn)生了永久水平位移。

圖2 位移響應(yīng)

2.2 錨桿軸力

為研究地震過程中錨桿軸力沿桿長的變化規(guī)律,數(shù)值計算中對1~5號錨桿軸力進(jìn)行了監(jiān)測。地震作用20 s時,各錨桿軸力沿桿長的分布情況見圖3。從圖3可知,錨桿軸力沿桿長均表現(xiàn)為中間大兩頭小的“人”字形分布,即軟弱夾層處軸力最大,自軟弱夾層向錨桿兩端軸力逐漸減小,離軟弱夾層較遠(yuǎn)的位置軸力接近于0。5根錨桿的軸力按由大到小的次序排列依次為錨桿1、2、3、4、5,即自坡頂至坡腳,錨桿軸力依次減小。這是由于坡肩處的危巖體具有坡面和坡頂2個臨空面,受到的約束較小,加之邊坡存在高程放大效應(yīng),從而坡肩處危巖體的變形和位移較大,相對于其他部位的錨桿對危巖體所起到的錨固作用更大,故該處的錨桿1所受的拉拔最明顯,軸力最大。沿坡頂向下,危巖體對錨桿的作用依次減弱,對應(yīng)的錨桿軸力依次減小。據(jù)此,以軟弱夾層為界,將危巖中的錨桿定義為拉拔段,

圖3 錨桿軸力分布情況

基巖中的錨桿定義為錨固段。錨桿軸力在地震動作用下是一個動態(tài)值,但在某一時刻,拉拔段和錨固段可視為在軟弱夾層處受到相反拉拔荷載的靜態(tài)模型,軸力自軟弱夾層向錨桿兩端逐漸減小。這與賀若蘭等[13]通過靜態(tài)拉拔試驗得到的規(guī)律一致,說明本文數(shù)值模擬結(jié)果合理可信。

圖5 A1點位移隨地震動各參數(shù)的變化

2.3 錨桿軸力時程

動力條件下1~5號錨桿軸力峰值時程曲線見圖4。從圖4可知,地震作用過程中,各錨桿軸力峰值隨地震波的持續(xù)輸入均呈階梯式波動增長,且軸力峰值的最大值位于錨桿1上,故以錨桿1為例進(jìn)行分析。地震作用6 s內(nèi),錨桿軸力峰值持續(xù)增長,從靜力時的軸力值(10.06 kN)增加到最大值(678.07 kN);地震作用10 s后,隨地震動的減弱,軸力峰值時程曲線趨于平穩(wěn),基本維持在一個恒定值(最大值668.43 kN,為震前的66.44倍)。其他4根錨桿軸力峰值時程曲線與錨桿1相似。

圖4 錨桿軸力峰值時程

3 地震動各參數(shù)對邊坡動力響應(yīng)的影響

為研究地震動各參數(shù)對邊坡坡面位移和錨桿軸力的影響,以坡面第1個監(jiān)測點的水平永久位移和第1根錨桿的軸力峰值作為研究對象進(jìn)行分析。

3.1 地震動各參數(shù)的影響規(guī)律

坡面水平永久位移隨地震動各參數(shù)的變化見圖5。從圖5可知,坡面水平永久位移與地震動各參數(shù)的敏感性存在顯著差異,在整體上隨著AI、CAV、PGA和PGV的增大呈現(xiàn)增大的變化規(guī)律,表明這4個地震動參數(shù)的強弱可以反映地震對邊坡穩(wěn)定性的影響程度。與此同時,坡面水平永久位移對4個地震動參數(shù)的敏感性不同,其中坡面水平永久位移與AI和CAV存在著明顯的相關(guān)性,近乎成斜直線增長,其次為PGA和PGV。而持時和特征周期與坡面水平永久位移的分布較為散亂,但特征周期似乎呈現(xiàn)一定的負(fù)相關(guān)性。

錨桿軸力峰值隨地震動各參數(shù)的變化見圖6。從圖6可知,不同地震動作用下錨桿軸力峰值整體隨著AI、CAV、PGA和PGV的變化呈現(xiàn)出一定的規(guī)律,其中AI、PGA和PGV表現(xiàn)出較強的正相關(guān)性,其次是CAV,說明錨桿軸力峰值隨著這4個指標(biāo)的增大總體上是增大的。而持時和特征周期對錨桿軸力峰值的影響較小,表現(xiàn)出的規(guī)律性不強,但特征周期似乎呈現(xiàn)一定的負(fù)相關(guān)性。

圖6 錨桿軸力峰值隨地震動各參數(shù)的變化

3.2 相關(guān)性計算

為進(jìn)一步分析地震動各參數(shù)對邊坡坡面水平永久位移和錨桿軸力峰值的影響權(quán)重,本文計算了邊坡坡面水平永久位移和錨桿軸力峰值與地震動各參數(shù)的相關(guān)系數(shù),得到地震動各參數(shù)的影響權(quán)重[14]。具體步驟如下:

(1)計算第i條地震動強度指標(biāo)值,并記為Ii。

(2)利用FLAC3D軟件計算邊坡模型在第i條地震動輸入下的邊坡坡面水平永久位移值和錨桿軸力峰值,并記為Ri。

(3)重復(fù)步驟(1)、(2),得到所有的Ri及其對應(yīng)的Ii,并通過下式計算R與I之間的相關(guān)系數(shù)r,即

(1)

3.3 地震動各參數(shù)的影響權(quán)重

通過上述分析,計算并獲得了邊坡坡面水平永久位移和錨桿軸力峰值與地震動各參數(shù)的相關(guān)系數(shù),結(jié)果見表5。從表5可知:

表5 邊坡地震響應(yīng)與地震動各參數(shù)的相關(guān)系數(shù)

(1)坡面水平永久位移與地震動各參數(shù)的相關(guān)性由高到低依次為:AI、CAV、PGA、PGV、持時和特征周期,對應(yīng)的相關(guān)系數(shù)分別為0.933、0.846、0.757、0.637、0.333、-0.168。其中,AI與坡面水平永久位移的相關(guān)性最高,由于AI是一個綜合了地震動幅值、持時和頻率等因素的指標(biāo),可以較好地反映地震動釋放的能量對邊坡位移的影響[15];其次為CAV,CAV考慮了地震動峰值和持時特性,能夠較好判別地震動釋放能量對邊坡是否具有破壞能力,在核電結(jié)構(gòu)的地震分析中應(yīng)用較為廣泛;PGA僅次于CAV,PGA主要是地震動高頻成分的振幅,決定于地震震源斷裂面的局部特性,不能很好反映整個震源特性,同時其離散性較大,震級、震中距或場地條件的很小改變,都會引起PGA的較大變化,因此將PGA作為強度指標(biāo)時應(yīng)考慮地震動的頻譜特性[16];地震動速度與質(zhì)點運動的能量具有直接的關(guān)系,因此PGV可以在一定程度上反應(yīng)地震時地表震動釋放能量的強度;特征周期與坡面水平永久位移相關(guān)系數(shù)為負(fù)值,說明隨著特征周期的增大,坡面水平永久位移呈現(xiàn)減小的趨勢,這是由于地震動特征周期的增加,致使地震動頻率相應(yīng)的減小,從而邊坡的震動減弱,則位移相應(yīng)減小,而持時與坡面水平永久位移的相關(guān)系數(shù)較低,即其對坡面水平永久位移影響相對較小。

(2)錨桿軸力峰值與AI、PGA和PGV有著較高的相關(guān)性,相關(guān)系數(shù)分別為0.906、0.846、0.829,其次是CAV,相關(guān)系數(shù)為0.761。而持時和特征周期對錨桿軸力峰值的相關(guān)性則較低,相關(guān)系數(shù)分別為0.261和-0.166。

4 結(jié) 語

本文基于FLAC3D軟件建立了含軟弱層錨固巖質(zhì)邊坡數(shù)值分析模型,研究了地震作用下錨固巖質(zhì)邊坡的動力響應(yīng)規(guī)律,得到了地震動各參數(shù)與邊坡位移和錨桿軸力的相關(guān)系數(shù),通過分析其相關(guān)性和影響規(guī)律,得出以下結(jié)論:

(1)坡面水平永久位移在坡頂處最大,自坡頂至坡腳位移逐漸減小;錨桿軸力沿桿長表現(xiàn)為中間大兩頭小的“人”字形分布,在軟弱夾層處錨桿軸力最大,自軟弱夾層向兩端錨桿軸力逐漸減小。

(2)對于錨固巖質(zhì)邊坡坡面的位移響應(yīng),與其相關(guān)性較高的4個地震動參數(shù)依次為阿里亞斯強度(AI)、絕對累積速度(CAV)、峰值加速度(PGA)和峰值速度(PGV)。而持時和特征周期對邊坡位移響應(yīng)的敏感性相對較低。因此在選用地震動參數(shù)研究邊坡地震響應(yīng)或災(zāi)害評估時可優(yōu)先考慮上述4個強度指標(biāo)。

(3)對于錨固巖質(zhì)邊坡錨桿軸力響應(yīng),與其相關(guān)性較高的4個地震動參數(shù)依次為阿里亞斯強度(AI)、峰值加速度(PGA)、峰值速度(PGV)和絕對累積速度(CAV)。而持時和特征周期對錨桿軸力響應(yīng)的敏感性相對較低。因此在選用地震動參數(shù)指標(biāo)研究錨桿錨固機理時可優(yōu)先選擇上述4個強度指標(biāo)。

猜你喜歡
錨桿水平
張水平作品
噴淋裝置在錨桿鋼剪切生產(chǎn)中的應(yīng)用
山東冶金(2022年1期)2022-04-19 13:40:52
作家葛水平
火花(2019年12期)2019-12-26 01:00:28
加強上下聯(lián)動 提升人大履職水平
錨桿鋼筋質(zhì)量提升生產(chǎn)實踐
山東冶金(2019年1期)2019-03-30 01:34:56
建筑施工中的錨桿靜壓樁技術(shù)
復(fù)合盾構(gòu)在縱向錨桿區(qū)的掘進(jìn)分析及實踐
老虎獻(xiàn)臀
高邊坡錨桿支護(hù)的運用
河南科技(2014年24期)2014-02-27 14:19:30
鎖腳錨桿和系統(tǒng)錨桿對軟弱圍巖隧道安全性影響研究
主站蜘蛛池模板: 国产青榴视频| 9丨情侣偷在线精品国产| 国产区精品高清在线观看| 国产免费怡红院视频| 一级毛片免费观看久| 日韩午夜片| 蜜臀av性久久久久蜜臀aⅴ麻豆| 久久久无码人妻精品无码| 成人国产免费| 欧美福利在线观看| 免费在线a视频| 欧美精品成人| 一级毛片基地| 午夜免费小视频| 免费无码AV片在线观看国产| 亚洲欧美日本国产专区一区| 欧美亚洲一二三区| 自拍偷拍欧美日韩| 欧美日韩精品一区二区视频| 在线亚洲精品自拍| 国产激情在线视频| 青青操国产| 亚洲欧美成人在线视频| 亚洲人成网18禁| 欧美在线天堂| 成人a免费α片在线视频网站| 精品免费在线视频| 欧美性精品| 亚洲成人免费在线| 五月婷婷综合在线视频| 99久久国产精品无码| 54pao国产成人免费视频 | 蜜桃臀无码内射一区二区三区| 园内精品自拍视频在线播放| 国产亚洲一区二区三区在线| 亚洲区欧美区| 国产女同自拍视频| 久久香蕉国产线看精品| 67194在线午夜亚洲| 免费观看精品视频999| 人与鲁专区| 国产96在线 | 1769国产精品视频免费观看| 日韩午夜片| 国产高清在线丝袜精品一区| 毛片视频网址| 色欲色欲久久综合网| 亚洲第一中文字幕| 日本不卡视频在线| 青青草国产一区二区三区| 91免费国产高清观看| 亚洲三级色| 国产麻豆永久视频| 美女国产在线| 久久永久精品免费视频| 在线亚洲天堂| 国产最新无码专区在线| 国产日本欧美在线观看| 色播五月婷婷| 国产精品久久自在自线观看| 亚洲国产欧美自拍| 亚洲黄色片免费看| 91精品在线视频观看| 91综合色区亚洲熟妇p| 美女裸体18禁网站| 九九九久久国产精品| 国产精品无码一二三视频| 成·人免费午夜无码视频在线观看 | 真实国产精品vr专区| 99re在线视频观看| 国产精品永久在线| 制服丝袜无码每日更新| 色成人综合| 日韩欧美中文亚洲高清在线| 中文无码精品A∨在线观看不卡| 欧美日韩福利| 国产一区自拍视频| 国产极品美女在线| 日韩成人在线网站| 国产不卡在线看| 日韩人妻少妇一区二区| 九九九精品视频|