楊皓東, 吳 哲
(安徽建筑大學 土木工程學院,安徽 合肥 230601)
附著式塔式起重機附臂承受塔機運行時的施工荷載和塔身受到的風荷載,是保證塔機施工安全的重要結構,其產生的附臂力和附墻處附著力是工程施工中重要的參數,正確合理的附臂力和附墻處附著力不僅能保證塔式起重機自身穩定和正常運行,還能在減少建筑物結構設計上成本的同時使建筑物的質量和安全得到保證。但在實際工程中,塔機附臂力受到風荷載、自重、吊物重量以及動荷載的影響,而這些荷載具有不確定性,同時計算理論不成熟,因此計算難度較大。塔式起重機說明書雖然給出了附著力的部分參考數據,但其附著形式是固定的,計算模式未做明確說明,且這些參數一般適用于傳統現澆結構,有大量成功案例證明其是安全可靠的。但對于裝配式建筑而言,附著處墻體剛度較傳統現澆結構明顯降低,盲目套用這些參數存在很大安全隱患,因此需要對附著力進行研究,選擇合理的計算模式,確定最不利的工況,使計算出的附臂力及附墻處附著力合理且偏于安全,以滿足施工應用。
安徽蚌埠某裝配式住宅建筑工程施工采用長沙中聯重工科技發展股份有限公司生產的TC752516D型獨立式塔式起重機:最大工作幅度75 m,獨立高度51.3 m,最大工作高度240.3 m,第一道附著架以下塔身高度為33 m
預制裝配式混凝土結構總高度為57 m,裝配率為51%。塔機實際使用2道附著,第一道附著高度33.15 m,第二道附著高度54.3 m,懸挑高度27 m(塔頂高度為10 m),最終高度81.3 m,起重臂為75 m起重臂,平衡臂為20 m平衡臂,滿配平衡重。
根據塔機實際布置,計算模型中假定塔機基礎為固定支座,附臂與塔身和建筑的連接方式為鉸支座,桁架式塔身豎向剛度無限大可視作桿件,塔身懸挑部分仍看作懸挑結構。塔機起重臂、平衡臂、平衡重以及吊重所產生的自重荷載和施工活荷載,根據其重心離塔身中心距離,轉化為不平衡力矩M作用在塔身上。風荷載q為均布荷載垂直作用在塔身上,為了方便計算并使結果偏于安全,假定風荷載始終與起重臂平行。此時,計算模型為一個作用有均布荷載和集中力矩的超靜定連續梁(圖1)。先對此模型使用結構力學求解器進行求解,可以得到虛擬支座X2和虛擬支座X3的反力PX2和PX3。此反力PX2和PX3就是由風荷載和不平衡彎矩所引起的4根附臂反力的合力。

圖1 塔機超靜定計算模型
塔吊工作時,起重臂可以360°旋轉,此時會產生一個扭矩T,對附著力產生影響,所以在計算中予以考慮。假定塔身為一個剛體,反力作用于塔身中心,附臂與塔身和附墻節點的連接為鉸接,如圖2所示,其計算模型如圖3所示。由圖中數值可計算出附著桿1和附著桿3長度為6.85 m,與墻面的夾角約為61°,附著桿2和附著桿4長度為5 m,與墻面的夾角約為53°,圖3中合力P(合力P方向為起重臂指向)可為任意角度,計算時逆時針進行360°旋轉,扭矩T可為正負。

圖2 附墻裝置圖

圖3 附墻計算模型
計算塔吊附著力,需要確定一種最不利工況。假定風荷載與起重臂平行,塔吊運行時會起吊重物,且起重臂旋轉時會產生扭矩,所以塔吊工作狀態較非工作狀態不利,但由于附臂力和附墻處附著力受起重臂角度影響,還需進行后續計算才能得出附臂力和附墻處附著力最大值,確定其最不利工況。
起重臂、吊重、平衡臂和平衡重產生的彎矩值為其重量m乘以重心到塔身中心的距離D。
起重臂自重產生的彎矩為M1=148.35×30.2=4 480 kN·m;最大吊重產生的彎矩為M2=160×15.5=2 480 kN·m;平衡臂自重產生的彎矩為M3=101×10=1 010 kN·m;平衡重自重產生的彎矩為M4=210×18=3 780 kN·m。
不平衡彎矩M=M1+1.35M2-M3-M4=3 038 kN·m[1.35為起升動力系數,根據《塔式起重機設計規范》(GB/T 13752-2017)]。
風荷載標準值應按照以下公式計算:
wk=βz×μz×μs×w
wk=1.51×2.00×2.40×0.25=1.81 kN/m2
式中:w為基本風壓,按照《建筑結構荷載規范》(GB 50009-2012)的規定采用w0=0.25 kN/m2;μz為風壓高低變化系數,地面粗糙程度B類,高度為100 m,μz=2.00;μs為風荷載體型系數,根據塔架選取,μs=2.40;βz為風振系數,根據公式βz=1+2gI10Bz1+R2計算,βz=1.51;
塔身受到的風荷載:
q風荷載=wk×B×Ks=1.09 kN/m
式中:B為塔身標準節寬度,B=2.00m;Ks為迎風面積折減系數,取Ks=0.30,偏于安全。
將風荷載q與不平衡彎矩M代入圖1,使用結構力學求解器求解,得出虛擬鉸支座PX2=-203 kN,虛擬鉸支座PX3=237 kN。

圖4 結構彎矩及虛擬支座反力
平面外穩定,計算時應考慮塔身安裝垂直度誤差所導致的偏心彎矩產生的軸向附著力,參考《建筑施工腳手架安全技術統一標準》,支撐腳手架取3 kN,考慮桁架式塔身的特點,取為6 kN較為合理。
取最上一道附著進行計算,P=PX3+6 kN=243 kN,工作狀況下扭矩T=919 kN·m,使用結構力學求解器將合力P從0°逆時針旋轉,每隔15°進行一次計算以尋找合力P最不利角度,得到附著桿軸力最大值和附墻處附著力最大值及所對應的起重臂角度,見表1。

表1 附著桿最大軸力
采用雙桿附著耳座,同側2根附臂附著在同一個耳座上,此時節點a、b為支座A,節點c、d為支座B,對附墻處產生的附著力為2根桿件軸力之合,此時附墻處的最大附著力對應的合力P的角度不再是單個附臂力最大值對應的角度,設與墻面平行方向為X方向,與墻面垂直方向為Y方向,通過計算得到表2。

表2 附墻處最大附著力
根據工程經驗,還應考慮一些特殊角度下的附墻處附著力,例如起重臂和某一根附著桿平行或平行于一側2根附著桿與墻面夾角的平均值,兩側附著桿對稱布置,表3只列出左側A支座附墻處附著力。

表3 特殊角度下附墻處附著力
對附墻處附著力計算結果與塔吊說明書中給出的數值進行對比,結果見表4。

表4 說明書數值與計算結果對比
(1) 分析計算結果,與說明書提供的數值誤差較小,說明本文提供的計算模式和計算參數選取是合理的。對于實際工程中計算塔吊附臂力和附墻處附著力具有參考意義。
(2) 對比計算結果,當風向與起重臂平行,塔吊起吊重物的同時旋轉起重臂,在起重臂旋轉至塔身的四個角的瞬間為最不利工況。
(3) 在實際工程中,考慮到墻體的受力變形,Y方向的附墻處附著力更為重要,會引起墻體的變形甚至是超出其受力范圍引起裂縫,X方向的附墻處附著力適當考慮抗剪能力。
(4) 工程中建議采用雙桿附著耳座,如果在同一側使用兩個單桿附著耳座,附墻處附著力會明顯增大。
(5) 根據表2合力P(起重臂)的角度可以看出,當起重臂指向矩形塔身的四個角時,附墻處附著力較大。根據工程經驗,將起重臂旋轉至上文所提特殊角度時,FY方向附墻處附著力與最大值相差5.5%以內,實際工程中計算附墻處最大附著力可選取這些特殊角度計算以減少工作量。
(6) 進一步簡化圖3附墻計算模型,附著桿1、2連接于節點b,附著桿3、4連接于節點d,得到的FY方向附墻處最大附著力,與本文計算結果誤差為+8%,計算時可以考慮進一步簡化。
(7) 塔吊附著對于傳統現澆結構,已有大量成功的工程案例,但對于裝配式混凝土結構,附著處墻體較傳統現澆結構薄弱,需要慎重考慮,應對附著處墻體進行適當加強。
本文對附臂力和附墻處附著力的計算結果為后續的研究與設計提供了條件。工程中會根據附臂力和附墻處附著力進行一系列設計,包括附著桿、附墻耳座、預埋鋼板和附著處墻體的設計,以確保塔機安全運行及建筑物的安全和質量。對于裝配式建筑,還需對附著邊緣墻體進行驗算,確保其在施工中不會破壞。