999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

昆蟲谷氨酸門控氯離子通道研究進展

2020-06-08 10:55:23孟祥坤楊雪梅戈惠臣王建軍
植物保護 2020年3期

孟祥坤 楊雪梅 戈惠臣 王建軍

摘要 谷氨酸門控氯離子通道(GluCls)介導快速抑制性神經傳導,目前只發現于無脊椎動物中,是開發新型殺蟲劑的理想作用靶標。GluCls屬于半胱氨酸環超家族的配體門控離子通道,在昆蟲中只發現有1個α亞基,但可以通過選擇性剪接生成多種亞基剪接變體并且能夠形成功能性受體。除了典型的神經傳導功能外,GluCls還參與調控昆蟲保幼激素合成及生長發育等生理功能。GluCls的氨基酸突變和表達量變化是導致昆蟲對殺蟲劑產生抗藥性的部分原因。本文主要從GluCls的分子特征、選擇性剪接、藥理學性質、生理功能和昆蟲的抗藥性5個方面對昆蟲GluCls的研究進展作一綜述,為新型殺蟲劑的研發提供理論基礎。

關鍵詞 谷氨酸門控氯離子通道; 分子特征; 選擇性剪接; 藥理學性質; 生理學功能; 昆蟲抗藥性

中圖分類號: Q 966

文獻標識碼: A

DOI: 10.16688/j.zwbh.2019106

Research advances in insect glutamate-gated chloride channels

MENG Xiangkun, YANG Xuemei, GE Huichen, WANG Jianjun

(College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China)

Abstract

Glutamate-gated chloride channels (GluCls) mediate fast inhibitory neurotransmission in invertebrate nervous systems, and are of considerable interest in insecticide discovery. GluCls belong to the ligand-gated ion channels (LGICs) superfamily. Although only one α subunit was found in insects, a number of variants are generated by the alternative splicing of GluCl α subunit and form the functional GluCls receptors. In addition to the classical neurotransmission function, GluCls have been demonstrated to regulate the biosynthesis of juvenile hormone and the growth and development of insects. The mutation and changes of expression level of GluCls contributed to insecticide resistance in insects. This review introduced the research status of insect GluCls,including the molecular characteristics, alternative splicing, pharmacological properties, physiological function, relationships with insect resistance, and provide the basis for the development of new insecticides.

Key words

GluCls; molecular characteristic; alternative splicing; pharmacological property; physiological function; insect resistance

谷氨酸是脊椎動物和無脊椎動物神經系統中主要的神經傳遞遞質,作用于細胞膜上的谷氨酸受體,在脊椎動物中通過門控陽離子通道介導興奮性傳遞。而在無脊椎動物中谷氨酸既是興奮性的神經遞質,又是抑制性的神經遞質[1]。哺乳動物中,谷氨酸受體可分為離子型和代謝型兩種類型。其中離子型受體包括N-甲基-D-天冬氨酸受體(NMDAR)、海人藻酸受體(KAR)和α-氨基-3羥基-5甲基-4異惡唑受體(AMPAR),它們與離子通道偶聯形成受體通道復合物,介導信號傳導[2]。代謝型谷氨酸受體屬于G蛋白偶聯受體,這類受體被激活后通過G蛋白效應酶、第二信使等組成的信號轉導系統起作用,產生相應的生理反應[3]。此外,在無脊椎動物中還發現一種離子型抑制性谷氨酸受體(inhibitory glutamate receptors,IGluRs),谷氨酸作為抑制性的神經遞質與此類受體結合進一步開啟氯離子通道,因此這類受體也被稱為谷氨酸門控氯離子通道(glutamate-gated chloride channels,GluCls)[1]。在昆蟲神經系統的殺蟲劑靶標中,GluCls只在線蟲、昆蟲等無脊椎動物神經和肌肉細胞中被發現,在脊椎動物中尚未發現。因此,昆蟲GluCls是開發高選擇性殺蟲劑的一個理想作用靶標[45]。目前作用于昆蟲GluCls的殺蟲劑主要有大環內酯類殺蟲劑伊維菌素、阿維菌素和苯基吡唑類殺蟲劑氟蟲腈等。

1 GluCls的分子特征

GluCls與煙堿型乙酰膽堿受體(nAChRs)、5-羥色胺(5-HT)受體及γ-氨基丁酸(GABA)受體均是屬于半胱氨酸環超家族的配體門控離子通道,它們具有相似的結構特征,都是由5個亞基組成的五聚體跨膜蛋白,蛋白中包括激動劑/競爭性抑制劑結合位點和跨膜通道等結構[6]。每個亞基從N端到C端可以分為4個區域:即包含配體結合區的N端親水區、3個跨膜片段(TM1~TM3)組成的疏水區、長度可變的胞內親水大環和包括第4個跨膜片段TM4在內的C端疏水區[7]。其中,5個亞基的第2個跨膜片段TM2共同組成受體的離子通道。根據受體亞基組成的異同,可分為5個亞基相同的同型五聚體和亞基不同的異型五聚體。GluCls與其他配體門控氯離子通道具有密切關系,GluCls與γ-氨基丁酸受體在生理功能和藥理特性上最為類似,但其氨基酸序列卻與甘氨酸受體相似性最高[89]。

GluCl受體基因最早于秀麗隱桿線蟲Caenorhabditis elegans中被克隆發現,在線蟲中共克隆到6個GluCl受體亞基,包括4個α亞基,1個β亞基以及1個可能的γ亞基[1011]。但目前在昆蟲中只發現1個GluCl受體亞基,即α亞基。首個昆蟲GluCl受體亞基在黑腹果蠅Drosophila melanogaster中被克隆,與秀麗隱桿線蟲的GluCl α和β亞基具有很高相似性,在核苷酸水平相似性高達67%和62%,因此被命名為DmGluCl α亞基[12]。隨后GluCl α亞基在其他一些昆蟲,如赤擬谷盜Tribolium castaneum、家蠅Musca domestica、意大利蜜蜂Apis mellifera中被鑒定發現,它們同DmGluCl α亞基的氨基酸相似性高達80%~90%[13]。昆蟲GluCl α亞基在4個重要的TM跨膜區氨基酸序列一致性極高,主要的序列變異區域在TM3和TM4間的胞內環中。胞內環中包含若干不同的蛋白激酶磷酸化位點,在決定亞基的功能上起重要作用[14]。

2 GluCl的選擇性剪接

選擇性剪接是指從一個mRNA前體通過不同的剪接方式(選擇不同的剪接位點)產生不同的mRNA剪接變體的過程。目前,已發現在黑腹果蠅、赤擬谷盜、家蠶Bombyx mori、意大利蜜蜂、家蠅、灰飛虱Laodelphax striatellus、小菜蛾Plutella xylostella和西花薊馬Frankliniella occidentalis等多種昆蟲中均存在不同的GluCl α亞基剪接變體[4,6,1520]。昆蟲GluCl α亞基由10個外顯子組成,可通過氨基酸缺失、互斥外顯子、外顯子跳躍、3′選擇性剪接和內含子保留5種方式生成不同的亞基剪接變體,而發生在外顯子3和9中的選擇性剪接則是昆蟲GluCl的研究熱點[20]。外顯子3選擇性剪接普遍存在于昆蟲GluCl中,編碼部分N端區域,緊鄰配體結合區Loop D上游[21]。GluCl外顯子3選擇性剪接可生成3種不同的GluCl剪接變體(GluCl 3A、GluCl 3B和GluCl 3C);此外在家蠶和小菜蛾中還發現一種完全缺失外顯子3的GluCl剪接變體[20,22]。相對于外顯子3,目前關于昆蟲GluCl外顯子9選擇性剪接的研究較少。GluCl外顯子9選擇性剪接位于TM3和TM4之間的胞內大環中,其選擇性剪接造成不同數目的氨基酸缺失,從而產生不同的GluCl剪接變體(GluCl 9A、GluCl 9B和GluCl 9C)[1820,2325]。GluCl選擇性剪接不但可以單獨發生在外顯子3或外顯子9中,還可以同時在2個外顯子中發生,進一步豐富昆蟲GluCl亞基的多樣性[19,21]。

對昆蟲GluCl不同選擇性剪接變體的表達定位分析發現,不同GluCl剪接變體在昆蟲不同部位的表達豐度存在差異[19,21]。通過精細免疫定位對意大利蜜蜂中GluCl α亞基剪接變體在腦中的分布進行分析,發現3個亞基在蜜蜂腦的不同部位均有表達,其中GluCl 3A主要分布于神經纖維網,GluCl 3B則主要分布于細胞體[15]。不同亞基在一些部位的共同表達說明它們可能組成異型五聚體,而在一些部位的差異表達也預示著它們可能具有不同的生理功能。對家蠅的3個GluCl亞基剪接變體研究發現,它們在家蠅不同組織及不同發育齡期的表達量各不相同,其中GluCl 3A和GluCl 3B主要在家蠅成蟲的頭部組織中表達,而GluCl 3C則主要在成蟲的足等外周組織中表達[17]。目前在灰飛虱中已發現由外顯子3和外顯子9選擇性剪接產生的6種GluCl亞基,這些剪接變體都在灰飛虱頭部組織中具有最高的表達量并且隨著灰飛虱的生長發育剪接變體的表達量均逐漸上升[19]。在鱗翅目昆蟲二化螟Chilo suppressalis中,3個外顯子3剪接變體均在神經索和腦組織中高表達,相對于GluCl 3A和GluCl 3C,GluCl 3B在二化螟中樞神經組織中的表達量更高[21]。不同于在灰飛虱中的發現,隨著二化螟的生長發育,3個外顯子3剪接變體的表達量在幼蟲期間均逐漸下降,在蛹期間逐漸增加。此外,GluCl 3C在二化螟表皮和腸道組織中同樣具有很高的表達量,并且在二化螟蛹后期表達量顯著增加[21]。這些結果表明,昆蟲GluCl剪接變體主要在神經組織中表達,在一些非神經組織如足、表皮和腸道中也具有較高的表達量,但在不同昆蟲中其表達模式可能不同。

3 GluCls的藥理學性質

利用電生理技術對昆蟲神經元細胞中的GluCls研究發現,昆蟲中至少存在2種藥理學性質不同的GluCls受體[2629]。例如,在美洲大蠊Periplaneta americana神經元中發現2種GluCls,它們對激動劑鵝膏蕈氨酸及阻斷劑木防己苦毒素表現出不同的敏感性[2829]。在意大利蜜蜂和飛蝗Locusta migratoria的神經元細胞中同樣發現2種能被谷氨酸引發不同電流的GluCls,并且氟蟲腈對2種受體的抑制效果也不同[2627,30]。此外,對意大利蜜蜂觸角葉細胞的研究發現,谷氨酸能夠引發一種短暫的和一種持續的反應電流;GluCls能被氟蟲腈和木防己苦毒素抑制,并且受體對木防己苦毒素表現出不同的反應電流,這也說明在意大利蜜蜂觸角葉細胞中同樣存在2種不同的GluCls[26,31]。對線蟲的研究表明,亞基組成不同可導致受體藥理學性質的差異[3233],但目前在昆蟲中只發現1個GluCl亞基,推測昆蟲的GluCls可能由GluCl α通過選擇性剪接產生的不同亞基組成,從而具有不同的藥理學性質[24]。

利用體外表達及電生理學的方法,對昆蟲GluCl不同剪接變體的藥理學性質測定發現,不同GluCl剪接變體組成的受體對激動劑或抑制劑的敏感性存在差異。單獨或共表達3個外顯子3剪接變體組成的家蠅GluCls對激動劑谷氨酸和伊維菌素的敏感性相同,但對阻斷劑氟蟲腈和木防己苦毒素的敏感性卻不同,說明家蠅3個GluCl亞基剪接變體具有不同的藥理學性質[17]。對小菜蛾GluCls的研究發現,單獨或共同表達3個外顯子9剪接變體組成的GluCls對谷氨酸的敏感性幾乎相同,但對阿維菌素和氟蟲腈的敏感性卻不同[20]。這些研究結果說明昆蟲GluCl的外顯子3和外顯子9選擇性剪接都能夠生成功能性的GluCls,但可能具有不同的藥理學性質。但對灰飛虱GluCl外顯子9剪接變體的研究發現,分別表達的2個剪接變體組成的GluCls對谷氨酸、氟蟲腈和木防己苦毒素具有相似的EC50和IC50值,這可能是由于2個剪接變體的配體結合區域具有相似的氨基酸[19]。此外,由于單個亞基剪接變體體外表達就能組成功能性GluCls,目前尚不明確昆蟲體內GluCls是同聚體還是由α亞基的不同剪接變體形成的異聚體。

4 GluCls的生理功能

GluCls主要分布于無脊椎動物的中樞神經和神經肌肉連接處。對線蟲的研究發現,GluCls除了具有典型的神經興奮傳遞功能外,還能夠調節線蟲的運動、取食、信號感知和繁殖[11,34]。昆蟲中,GluCls作為殺蟲劑靶標的離子通道功能已被廣泛研究,同時其他的生理功能也逐漸被發現。對意大利蜜蜂的研究中,通過注射GluCls抑制劑能夠影響蜜蜂的嗅覺記憶和對刺激的感知,使用伊維菌素和氟蟲腈處理蜜蜂則能夠破壞蜜蜂的長期記憶[31,3537]。意大利蜜蜂GluCl α 亞基被干擾后,能夠破壞其嗅覺記憶的恢復[38]。當分別沉默不同的GluCl亞基剪接變體后,則能夠影響蜜蜂對不同氣味的嗅覺記憶恢復[39]。對太平洋折翅蠊Diploptera punctata咽側體的研究發現,當使用GluCls激動劑鵝膏蕈氨酸、伊維菌素或谷氨酸處理腺體后,能夠降低保幼激素的合成量;繼續使用GluCls阻斷劑木防己苦毒素處理,則能夠使保幼激素含量恢復到正常水平;不同濃度的激動劑或阻斷劑對保幼激素合成的影響也各不相同[40]。鑒于興奮性的離子型谷氨酸受體如N-甲基-D-天冬氨酸受體、海人藻酸受體等同樣能夠影響太平洋折翅蠊咽側體中保幼激素的合成,推測不管是抑制性還是興奮性的谷氨酸受體,都可能是通過改變咽側體細胞內鈣離子的濃度來進一步影響保幼激素的合成[4142]。另一方面,不同齡期的蜜蜂體內保幼激素含量的不同能夠影響蜜蜂嗅覺記憶和行為,說明GluCls在生物體內的生理功能可能存在內在聯系[4344]。

此外,研究還發現GluCls能夠調控飛蝗和果蠅的飛行、靜止和喚醒行為,調節果蠅對光的逃避和嗅覺行為[30,4547]。昆蟲GluCl被干擾后,谷實夜蛾Helicoverpa zea卵的孵化率降低,二化螟幼蟲體重和化蛹率顯著下降,說明GluCls在昆蟲的生長發育過程中具有重要功能[21,48]。不同GluCl剪接變體在昆蟲不同組織中的差異表達,也可能預示著GluCl剪接變體具有不同的生理功能[21]。這些研究說明,昆蟲GluCls具有功能多樣性,但不同GluCl剪接變體的具體功能,GluCls在昆蟲生理功能之間的聯系以及如何影響保幼激素的合成進而影響昆蟲的生長發育還有待進一步探索。

5 GluCls與昆蟲抗藥性

目前,關于殺蟲劑作用靶標GluCls與昆蟲抗藥性關系的研究主要集中在大環內酯類殺蟲劑阿維菌素和伊維菌素。已經明確GluCls突變是導致昆蟲、螨類對阿維菌素和伊維菌素產生抗藥性的主要原因。DmGluCl的P299S突變造成果蠅對伊維菌素產生3倍的抗藥性[49]。位于TM3跨膜區的TuGluCl1 G323D和TuGluCl3 G326E突變分別導致二斑葉螨Tetranychus urticae對阿維菌素產生了18倍和2 000倍的抗藥性[5052]。同樣位于GluCl TM3跨膜區的A309V突變則導致小菜蛾對阿維菌素產生了10倍的抗藥性[25]。電生理試驗同樣證明了小菜蛾GluCl的A309V和G315E(分別對應于TuGluCl1 G323D和TuGluCl3 G326E)突變可導致體外表達的受體對阿維菌素的敏感性分別下降4.8倍和493倍[53]。近期的一項研究發現,GluCls中的A251V、S46P和H272R突變在對伊維菌素具有抗藥性的頭虱Pediculus humanus capitis中具有較高的突變頻率,可能是導致頭虱對伊維菌素產生抗藥性的部分原因[54]。

越來越多的研究證明,殺蟲劑靶標的表達量變化影響昆蟲對殺蟲劑的敏感性。乙酰膽堿酯酶(AChEs)編碼基因ace在對有機磷殺蟲劑抗性麥二叉蚜Schizaphis graminum中的表達量是敏感性試蟲中的1.5倍,而在對氧化樂果有抗藥性的棉蚜Aphis gossypii中卻下調表達[5556]。魚尼丁受體(RyRs)編碼基因在對氟蟲雙酰胺抗性小菜蛾中的表達量是敏感品系中的2.93倍[57]。對新煙堿類殺蟲劑產生抗性的褐飛虱Nilaparvata lugens和家蠅中,煙堿型乙酰膽堿受體(nAChRs)的亞基表達量顯著下降[5859]。對阿維菌素抗性西花薊馬研究發現,雖然解毒代謝是導致抗藥性的主要因素,但殺蟲劑作用靶標的氨基酸變化和表達量改變也可能是造成抗藥性的原因[6,60]。通過對阿維菌素作用靶標的分析,沒有發現相關的抗性突變,但GluCl在抗性西花薊馬中的表達量是敏感性西花薊馬中的2.63倍[6]。在小菜蛾中同樣發現,GluCl在阿維菌素抗性品系中的表達量顯著高于敏感品系[6162]。當GluCl被干擾后,二化螟幼蟲對阿維菌素的敏感性顯著上升[21]。但在對煙粉虱Bemisia tabaci、小菜蛾、黏蟲Mythimna separata和朱砂葉螨Tetranychus cinnabarinus的研究中發現,GluCl被干擾后試蟲對阿維菌素的敏感性降低[6366]。GluCls在昆蟲中具有多種生理功能,當被干擾后會對昆蟲的生理狀態產生多種負面作用,進而影響昆蟲對殺蟲劑的敏感性,這可能是導致GluCls在不同昆蟲中研究結果有差異的原因。

6 結語

至今GluCls只在無脊椎動物中被發現,是一個理想的殺蟲劑作用靶標。雖然對昆蟲GluCls已有了較深入的研究,但仍有很多問題尚不清楚。除了離子通道功能,GluCls在昆蟲中還有哪些具體的生理功能以及如何在這些生理功能中發揮作用?昆蟲GluCls只有一個α亞基,卻可以通過選擇性剪接等生成多個剪接變體,不同剪接變體各有哪些生理功能?昆蟲內源性GluCls是由單個剪接變體組成的同型五聚體還是由不同剪接變體組成的異型五聚體?這些問題仍需要我們去探索解決。

害蟲防治中作用于GluCls的藥劑主要有伊維菌素、阿維菌素和氟蟲腈等,由于農藥的不合理使用,多種害蟲已對這些殺蟲劑產生抗藥性,急需新型替代藥物。關于昆蟲GluCls的研究,不但可以為田間害蟲抗性監測提供幫助,同時也為新型高效高選擇性殺蟲劑的研發提供理論基礎。

參考文獻

[1] CLELAND T A. Inhibitory glutamate receptor channels [J]. Molecular Neurobiology, 1996, 13(2): 97136.

[2] GASIC G P, HEINEMANN S. Receptors coupled to ionic channels: the glutamate receptor family [J]. Current Opinion in Neurobiology, 1991, 1(1): 2026.

[3] CONN P J, PIN J P. Pharmacology and functions of metabotropic glutamate receptors [J]. Annual Review of Pharmacology and Toxicology, 1997, 37: 205237.

[4] JONES A K, SATTELLE D B. The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum [J/OL]. BMC Genomics, 2007, 8: 327.

[5] WOLSTENHOLME A J. Glutamate-gated chloride channels [J]. Journal of Biological Chemistry, 2012, 287(48): 4023240238.

[6] MENG Xiangkun, XIE Zhijuan, ZHANG Nan, et al. Molecular cloning and characterization of GABA receptor and GluCl subunits in the western flower thrips, Frankliniella occidentalis [J]. Pesticide Biochemistry and Physiology, 2018, 150: 3339.

[7] JONES A K. Genomics, cys-loop ligand-gated ion channels and new targets for the control of insect pests and vectors [J]. Current Opinion in Insect Science, 2018, 30: 17.

[8] VASSILATIS D K, ELLISTON K O, PARESS P S, et al. Evolutionary relationship of the ligand-gated ion channels and the avermectin-sensitive, glutamate-gated chloride channels [J]. Journal of Molecular Evolution, 1997, 44(5): 501508.

[9] 吳青君, 張友軍, 徐寶云. 抑制性谷氨酸受體(IGluRs)通道及其相關殺蟲劑的作用 [J]. 農藥學學報, 2008, 10(3): 251259.

[10]CULLY D F, VASSILATIS D K, LIU K K, et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans [J]. Nature, 1994, 371(6499): 707711.

[11]LI Benwen, RUSH A C, WEIL G J. High level expression of a glutamate-gated chloride channel gene in reproductive tissues of Brugia malayi may explain the sterilizing effect of ivermectin on filarial worms [J]. International Journal for Parasitology-Drugs and Drug Resistance, 2014, 4(2): 7176.

[12]CULLY D F, WILKINSON H, VASSILATIS D K, et al. Molecular biology and electrophysiology of glutamate-gated chloride channels of invertebrates [J]. Parasitology, 1996, 113(S1): S191S200.

[13]EGUCHI Y, IHARA M, OCHI E, et al. Functional characterization of Musca glutamate-and GABA-gated chloride channels expressed independently and coexpressed in Xenopus oocytes [J]. Insect Molecular Biology, 2006, 15(6): 773783.

[14]SIN S M, ENGELA G. Recent advances in Cys-loop receptor structure and function [J]. Nature, 2006, 440(7083): 448455.

[15]DEMARES F, RAYMOND V, ARMENGAUD C. Expression and localization of glutamate-gated chloride channel variants in honeybee brain (Apis mellifera) [J]. Insect Biochemistry and Molecular Biology, 2013, 43(1): 115124.

[16]FURUTANI S, IHARA M, KAI K, et al. Okaramine insecticidal alkaloids show similar activity on both exon 3c and exon 3b variants of glutamate-gated chloride channels of the larval silkworm, Bombyx mori [J]. Neurotoxicology, 2017, 60: 240244.

[17]KITA T, OZOE F, OZOE Y. Expression pattern and function of alternative splice variants of glutamate-gated chloride channel in the housefly Musca domestica [J]. Insect Biochemistry and Molecular Biology, 2014, 45: 110.

[18]SEMENOV E P, PAK W L. Diversification of Drosophila chloride channel gene by multiple posttranscriptional mRNA modifications [J]. Journal of Neurochemistry, 1999, 72(1): 6672.

[19]WU Shunfan, MU Xichao, DONG Yaoxue, et al. Expression pattern and pharmacological characterisation of two novel alternative splice variants of the glutamate-gated chloride channel in the small brown planthopper Laodelphax striatellus [J]. Pest Management Science, 2017, 73(3): 590597.

[20]WANG Xingliang, O′ REILLY A O, WILLIAMSON M S, et al. Function and pharmacology of glutamate-gated chloride channel exon 9 splice variants from the diamondback moth Plutella xylostella [J]. Insect Biochemistry and Molecular Biology, 2019, 104: 5864.

[21]MENG Xiangkun, MIAO Lijun, GE Huichen, et al. Molecular characterization of glutamate-gated chloride channel and its possible roles in development and abamectin susceptibility in the rice stem borer, Chilo suppressalis [J]. Pesticide Biochemistry and Physiology, 2019, 155: 7280.

[22]FURUTANI S, IHARA M, NISHINO Y, et al. Exon 3 splicing and mutagenesis identify residues influencing cell surface density of heterologously expressed silkworm(Bombyx mori)glutamate-gated chloride channels [J]. Molecular Pharmacology, 2014, 86(6): 686695.

[23]LIU Feng, SHI Xiuzhen, LIANG Yanpo, et al. A 36-bp deletion in the alpha subunit of glutamate-gated chloride channel contributes to abamectin resistance in Plutella xylostella [J]. Entomologia Experimentalis et Applicata, 2014, 153(2): 8592.

[24]MEYERS J I, GRAY M, KUKLINSKI W, et al. Characterization of the target of ivermectin, the glutamate-gated chloride channel, from Anopheles gambiae [J]. Journal of Experimental Biology, 2015, 218(10): 14781486.

[25]WANG Xingliang, WANG Ran, YANG Yihua, et al. A point mutation in the glutamate-gated chloride channel of Plutella xylostella is associated with resistance to abamectin [J]. Insect Molecular Biology, 2016, 25(2): 116125.

[26]BARBARA G S, ZUBE C, RYBAK J, et al. Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera [J]. Journal of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology, 2005, 191(9): 823836.

[27]NARAHASHI T, ZHAO Xiong, IKEDA T, et al. Glutamate-activated chloride channels: Unique fipronil targets present in insects but not in mammals [J]. Pesticide Biochemistry and Physiology, 2010, 97(2): 149152.

[28]RAYMOND V, SATTELLE D B, LAPIED B. Co-existence in DUM neurones of two GluCl channels that differ in their picrotoxin sensitivity [J]. Neuroreport, 2000, 11(12): 26952701.

[29]ZHAO Xilong, YEH J Z, SALGADO V L, et al. Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons [J]. Journal of Pharmacology and Experimental Therapeutics, 2004, 310(1): 192201.

[30]JANSSEN D, DERST C, BUCKINX R, et al. Dorsal unpaired median neurons of Locusta migratoria express ivermectin-and fipronilsensitive glutamate-gated chloride channels [J]. Journal of Neurophysiology, 2007, 97(4): 26422650.

[31]EL HASSANI A K, DUPUIS J P, GAUTHIER M, et al. Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee [J]. Invertebrate Neuroscience, 2009, 9(2): 91100.

[32]DEGANI-KATZAV N, GORTLER R, GORODETZKI L, et al. Subunit stoichiometry and arrangement in a heteromeric glutamate-gated chloride channel [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(5): E644E653.

[33]HEUSSER S A, YOLUK O, KLEMENT G, et al. Functional characterization of neurotransmitter activation and modulation in a nematode model ligand-gated ion channel [J]. Journal of Neurochemistry, 2016, 138(2): 243253.

[34]YATES D M, PORTILLO V, WOLSTENHOLME A J. The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans [J]. International Journal for Parasitology, 2003, 33(11): 11831193.

[35]BOUMGHAR K, COURET-FAUVEL T, GARCIA M, et al. Evidence for a role of GABA-and glutamate-gated chloride channels in olfactory memory [J]. Pharmacology Biochemistry and Behavior, 2012, 103(1): 6975.

[36]EL HASSANI A K, DACHER M, GAUTHIER M, et al. Effects of sublethal doses of fipronil on the behavior of the honeybee(Apis mellifera)[J]. Pharmacology Biochemistry and Behavior, 2005, 82(1): 3039.

[37]EL HASSANI A K, GIURFA M, GAUTHIER M, et al. Inhibitory neurotransmission and olfactory memory in honeybees [J]. Neurobiology of Learning and Memory, 2008, 90(4): 589595.

[38]EL HASSANI A K, SCHUSTER S, DYCK Y, et al. Identification, localization and function of glutamate-gated chloride channel receptors in the honeybee brain [J]. European Journal of Neuroscience, 2012, 36(4): 24092420.

[39]DEMARES F, DROUARD F, MASSOU I, et al. Differential involvement of glutamate-gated chloride channel splice variants in the olfactory memory processes of the honeybee Apis mellifera [J]. Pharmacology Biochemistry and Behavior, 2014, 124: 137144.

[40]LIU H P, LIN S C, LIN C Y, et al. Glutamate-gated chloride channels inhibit juvenile hormone biosynthesis in the cockroach, Diploptera punctata [J]. Insect Biochemistry and Molecular Biology, 2005, 35(11): 12601268.

[41]CHIANG A S, LIN W Y, LIU H P, et al. Insect NMDA receptors mediate juvenile hormone biosynthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(1): 3742.

[42]CHIANG A S, PSZCZOLKOWSKI M A, LIU H P, et al. Ionotropic glutamate receptors mediate juvenile hormone synthesis in the cockroach, Diploptera punctata [J]. Insect Biochemistry and Molecular Biology, 2002, 32(6): 669678.

[43]SULLIVAN J P, JASSIM O, FAHRBACH S E, et al. Juvenile hormone paces behavioral development in the adult worker honey bee [J]. Hormones and Behavior, 2000, 37(1): 114.

[44]MALESZKA R, HELLIWELL P. Effect of juvenile hormone on short-term olfactory memory in young honeybees (Apis mellifera) [J]. Hormones and Behavior, 2001, 40(3): 403408.

[45]MCCARTHY E V, WU Ying, DECARVALHO T, et al. Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons [J]. Journal of Neuroscience, 2011, 31(22): 81818193.

[46]COLLINS B, KANE E A, REEVES D C, et al. Balance of activity between LN(v)s and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila [J]. Neuron, 2012, 74(4): 706718.

[47]LIU W W, WILSON R I. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(25): 1029410299.

[48]WANG Jinda, GU Liuqi, KNIPPLE D C. Evaluation of some potential target genes and methods for RNAi-mediated pest control of the corn earworm Helicoverpa zea [J]. Pesticide Biochemistry and Physiology, 2018, 149: 6772.

[49]KANE N S, HIRSCHBERG B, QIAN S, et al. Drug-resistant Drosophila indicate glutamate-gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25): 1394913954.

[50]MERMANS C, DERMAUW W, GEIBEL S, et al. A G326E substitution in the glutamate-gated chloride channel 3 (GluCl3)of the two-spotted spider mite Tetranychus urticae abolishes the agonistic activity of macrocyclic lactones [J]. Pest Management Science, 2017, 73(12): 24132418.

[51]DERMAUW W, ILIAS A, RIGA M, et al. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: Implications for acaricide toxicology and a novel mutation associated with abamectin resistance [J]. Insect Biochemistry and Molecular Biology, 2012, 42(7): 455465.

[52]KWON D H, YOON K S, CLARK J M, et al. A point mutation in a glutamate-gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch [J]. Insect Molecular Biology, 2010, 19(4): 583591.

[53]WANG Xingliang, PUINEAN A M, OREILLY A O, et al. Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms [J]. Insect Biochemistry and Molecular Biology, 2017, 86: 5057.

[54]AMANZOUGAGHENE N, FENOLLAR F, DIATTA G, et al. Mutations in GluCl associated with field ivermectin-resistant head lice from Senegal [J]. International Journal of Antimicrobial Agents, 2018, 52(5): 593598.

[55]GAO Jianrong, ZHU Kunyan. Increased expression of an acetylcholinesterase gene may confer organophosphate resistance in the greenbug, Schizaphis graminum (Homoptera: Aphididae) [J]. Pesticide Biochemistry and Physiology, 2002, 73(3): 164173.

[56]PAN Yiou, SHANG Qingli, FANG Kui, et al. Down-regulated transcriptional level of Ace1 combined with mutations in Ace1 and Ace2 of Aphis gossypii are related with omethoate resistance [J]. Chemico-Biological Interactions, 2010, 188(3): 553557.

[57]YAN Huihui, XUE Chaobin, LI Guangyue, et al. Flubendiamide resistance and Bi-PASA detection of ryanodine receptor G4946E mutation in the diamondback moth (Plutella xylostella L.) [J]. Pesticide Biochemistry and Physiology, 2014, 115: 7377.

[58]MARKUSSEN M D K, KRISTENSEN M. Low expression of nicotinic acetylcholine receptor subunit Mdα 2 in neonicotinoid-resistant strains of Musca domestica L. [J]. Pest Management Science, 2010, 66(11): 12571262.

[59]ZHANG Yixi, WANG Xin, YANG Baojun, et al. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor 8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens [J]. Journal of Neurochemistry, 2015, 135(4): 686694.

[60]CHEN Xuelin, YUAN Linze, DU Yuzhou, et al. Cross-resistance and biochemical mechanisms of abamectin resistance in the western flower thrips, Frankliniella occidentalis [J]. Pesticide Biochemistry and Physiology, 2011, 101(1): 3438.

[61]梁延坡. 小菜蛾對阿維菌素抗性的分子機制研究 [D]. 蘭州: 甘肅農業大學, 2009.

[62]柳峰. GluCl受體在小菜蛾對阿維菌素抗性中的作用研究 [D]. 北京: 中國農業科學院, 2011.

[63]WANG Jinda, CHEN Lifei, LIN Dongjiang, et al. Molecular cloning, characterization and functional analysis of GluCl from the oriental armyworm, Mythimna separata Walker [J]. Pesticide Biochemistry and Physiology, 2019, 156: 5662.

[64]施秀珍, 郭兆將, 朱勛,等. 小菜蛾抑制性谷氨酸受體的RNA干擾 [J]. 昆蟲學報, 2012, 55(12): 13311336.

[65]WEI Peiling, CHE Wunan, WANG Jinda, et al. RNA interference of glutamate-gated chloride channel decreases abamectin susceptibility in Bemisia tabaci [J]. Pesticide Biochemistry and Physiology, 2018, 145: 17.

[66]XU Zhifeng, WU Qiong, XU Qiang, et al. Functional analysis reveals glutamate-gated chloride and γ-amino butyric acid channels as targets of avermectins in the carmine spider mite [J]. Toxicological Sciences, 2016, 155(1): 258269.

(責任編輯:田 喆)

收稿日期: 20190306?? 修訂日期: 20190404

基金項目:國家自然科學基金青年基金(31701807);江蘇省自然科學基金青年基金(BK20170491)

致? 謝: 參加本試驗部分工作的還有江代禮、譚翰杰、張能和紀燁斌等同學,特此一并致謝。

通信作者 E-mail:wangjj@ yzu.edu.cn

#為并列第一作者

主站蜘蛛池模板: 日本人妻丰满熟妇区| 亚洲综合二区| 99热6这里只有精品| 日韩在线中文| 欧美精品1区2区| 国产毛片高清一级国语| 最新亚洲人成无码网站欣赏网| 欧美一级爱操视频| 久久频这里精品99香蕉久网址| 国产亚洲精品91| 亚洲人成在线免费观看| 亚洲欧美在线综合一区二区三区| 强奷白丝美女在线观看| 国产毛片一区| 一级爆乳无码av| 最新国产网站| 国产日韩欧美视频| 免费在线播放毛片| 狠狠做深爱婷婷综合一区| 国产a v无码专区亚洲av| 久久精品一品道久久精品| 粗大猛烈进出高潮视频无码| 538国产视频| 亚洲成人精品久久| 天堂中文在线资源| 99久久精品国产综合婷婷| 日本午夜视频在线观看| 午夜精品国产自在| 国产精品无码AV中文| 亚洲精品亚洲人成在线| 97se亚洲| 中文字幕在线看视频一区二区三区| 四虎精品免费久久| 中文国产成人精品久久一| 尤物成AV人片在线观看| 久久性妇女精品免费| 国产欧美中文字幕| 国产真实二区一区在线亚洲| 国产主播一区二区三区| a网站在线观看| 国产精品欧美在线观看| 亚洲大学生视频在线播放| 欧美一级高清片欧美国产欧美| 91精品国产自产在线老师啪l| 久久亚洲国产最新网站| 国产亚洲精品精品精品| 国产成人a毛片在线| 青青久在线视频免费观看| 91色在线观看| 国产在线日本| 国产丝袜第一页| 国产微拍精品| 国产97视频在线观看| 国产毛片片精品天天看视频| 国产精品漂亮美女在线观看| 久久情精品国产品免费| 成年A级毛片| 无码国产偷倩在线播放老年人| 91久久精品国产| 亚洲男人的天堂久久香蕉| 国产成人精品免费视频大全五级| 丁香五月婷婷激情基地| 99这里只有精品6| 国产丝袜91| 无码网站免费观看| av手机版在线播放| 亚洲国产成人久久77| 日本午夜影院| 在线观看免费国产| 亚洲一区无码在线| 欧美国产在线一区| 69av在线| 欧美在线伊人| 久久久无码人妻精品无码| 日韩在线观看网站| 午夜欧美理论2019理论| 久久人人妻人人爽人人卡片av| 午夜限制老子影院888| 亚洲精品无码不卡在线播放| 国产日韩欧美一区二区三区在线| 在线看片中文字幕| 视频二区国产精品职场同事|