賈翼 鄧晗 馬澤剛



[摘要] 目的 探討大麻素Ⅱ型受體(CB2受體)激活對1-甲基-4-苯基-吡啶離子(MPP+)誘導原代星形膠質細胞炎癥反應的影響。方法 培養原代星形膠質細胞,生長狀態良好時將其分為Control組、MPP+組、JWH133(CB2受體激動劑)+MPP+組、AM630(CB2受體抑制劑)+JWH133+MPP+組。應用免疫印跡法(Western Blot)檢測Control組和MPP+組細胞CB2受體蛋白的表達。應用實時熒光定量PCR(RT-PCR)檢測各組環氧化酶2(COX-2)和誘導型一氧化氮合酶(iNOS)基因的表達。結果 與Control組相比,MPP+組的CB2受體蛋白表達上升(F=29.78,P<0.01)。與Control組比較,MPP+組COX-2和iNOS基因的表達明顯上調(F=22.59、11.27,q=10.13、5.57,P<0.01);JWH133預處理抑制MPP+誘導的COX-2和iNOS基因表達的上調(q=6.26、4.16,P<0.05);此抑制作用可被AM630所阻斷(q=5.34、5.67,P<0.01)。結論 激活CB2受體可抑制MPP+誘導的原代星形膠質細胞炎癥反應。
[關鍵詞] 受體,大麻酚,CB2;大麻素受體激動劑;1-甲基-4-苯基吡啶;星形細胞;環氧化酶2;一氧化氮合酶Ⅱ型
[中圖分類號] R338.2 ?[文獻標志碼] A ?[文章編號] 2096-5532(2020)02-0156-05
doi:10.11712/jms.2096-5532.2020.56.071 [開放科學(資源服務)標識碼(OSID)]
[網絡出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200417.0907.003.html;2020-04-18 15:26
[ABSTRACT] Objective To investigate the effect of cannabinoid 2 receptor (CB2 receptor) on 1-methyl-4-phenylpyridinium (MPP+)-induced inflammatory response in primary cultured astrocytes. ?Methods Primary cultured astrocytes were cultured and divided into Control group, MPP+ group, JWH133 (CB2 receptor agonist)+MPP+ group, and AM630 (CB2 receptor antagonist)+JWH133+MPP+ group when growing well. Western blotting was used to determine the protein expression of CB2 receptor in Control group and MPP+ group. Quantitative real-time PCR was performed to measure the mRNA expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). ?Results Compared with Control group, the MPP+ group had significantly up-regulated CB2 receptor protein expression (F=29.78,P<0.01) and significantly up-regulated COX-2 and iNOS mRNA expression (F=22.59,11.27;q=10.13,5.57;P<0.01). JWH133 pre-treatment significantly inhibited the up-regulated mRNA expression of COX-2 and iNOS induced by MPP+ (q=6.26,4.16;P<0.01), while this was blocked by CB2 receptor antagonist AM630 (q=5.34,5.67;P<0.01). ?Conclusion Activation of CB2 receptor can inhibit MPP+-induced inflammatory response in primary cultured astrocytes.
[KEY WORDS] receptor, cannabinoid, CB2; cannabinoid receptor agonists; 1-methyl-4-phenylpyridinium; astrocytes; cyclooxygenase 2; nitric oxide synthase type Ⅱ
星形膠質細胞是中樞神經系統中數量最多的一類神經膠質細胞,它們在維持細胞外液動力學、調節神經遞質代謝、促進神經再生和修復中起重要的作用[1],在帕金森?。≒D)的發生發展中也具有重要作用[2]。PD是一種常見的神經變性疾病,其病理特征為黑質致密部多巴胺(DA)能神經元的選擇性缺失[3]。神經炎癥則是PD神經變性的主要因素之一[4]。在病理情況下,過度活化的星形膠質細胞釋放一系列炎性遞質,如腫瘤壞死因子α(TNF-α)、白細胞介素1β(IL-1β)、環氧化酶2(COX-2)[5]和誘導型一氧化氮合酶(iNOS)等,可以引起神經炎癥[6],并激活小膠質細胞繼續釋放炎性遞質加重神經炎癥,從而誘導神經元死亡[7-8]。因此,有效抑制星形膠質細胞的活化和炎性因子的釋放對于PD的治療有重要意義。大麻素Ⅱ型受體(CB2受體)是一種G蛋白耦聯受體[9],大量研究表明CB2受體在中樞神經系統疾病的發病中起重要作用[10-11]。關于CB2受體治療神經炎癥反應的研究已經取得了一定進展。有研究證實,WIN55、212-2(合成CB1/2受體激動劑)和JWH133(選擇性CB2受體激動劑)[12]通過激活小膠質細胞CB2受體抑制脂多糖[13]和β-淀粉樣蛋白[14]誘導的TNF-α和一氧化氮(NO)的產生;在動物實驗中激活膠質細胞CB2受體可以通過抑制炎癥反應來保護DA能神經元[15-16]。CB2受體不僅在小膠質細胞中表達,在星形膠質細胞和神經元中也有表達[17],但目前缺少關于星形膠質細胞中CB2受體的研究。目前尚不清楚JWH133能否通過選擇性激活CB2受體抑制星形膠質細胞的炎癥反應。本研究應用1-甲基-4-苯基-吡啶離子(MPP+)制備原代星形膠質細胞的炎癥模型,觀察JWH133對MPP+誘導的COX-2和iNOS基因表達的影響,以及CB2受體拮抗劑AM630的阻斷效應,確定JWH133激活星形膠質細胞CB2受體是否具有抗炎作用,從而為PD的治療提供新靶點。
1 材料與方法
1.1 實驗材料
二甲基亞砜(DMSO)、MPP+購自美國Sigma-Aldrich公司;DEMED/F12培養液購自美國Hyclone公司;青霉素/鏈霉素溶液購自索萊寶公司;CB2受體激動劑JWH133和抑制劑AM630購自美國Tocris Bioscience公司,用DMSO溶解制成儲備溶液(1 mmol/L)置于-20 ℃儲存,使用時用培養液稀釋至工作濃度;兔源CB2受體抗體購自英國Abcam公司;兔源GAPDH抗體購自博奧森生物技術有限公司;HRP標記山羊抗兔IgG購自聯科生物技術有限公司;TRIzol購自南京諾唯贊生物科技有限公司;PCR逆轉錄試劑盒和SYBR Green購自abm公司;新生SD大鼠購自濟南朋悅實驗動物繁育有限公司。
1.2 細胞培養及分組
取新生24 h SD大鼠中腦,將其置于DEMED/F12基礎培養液中,除去腦膜和血管,用1 000、200、10 μL槍頭輕輕吹打使其呈渾濁離散狀態,收集至大離心管中。離心,棄上清,加入含體積分數0.10胎牛血清、20 g/L青霉素/鏈霉素的DEMED/F12培養液,吹打混勻后將細胞接種到培養瓶中,在37 ℃、含體積分數0.05 CO2培養箱中差速黏附處理(倒置放置)30 min,隔天更換新鮮培養液培養7 d以上,待細胞長滿瓶底90%以上時,置于37 ℃搖床中以210 r/min振蕩16~18 h除去其他膠質細胞,更換新鮮培養液,用胰酶消化法收集細胞,采用特定星形膠質細胞標記物(GFAP)的免疫熒光染色進行鑒定,星形膠質細胞純度≥95%,進行下一步實驗。將原代培養的星形膠質細胞分為Control組(A組)、MPP+組(B組)、JWH133+MPP+組(C組)和AM630+JWH133+MPP+組(D組)。 Control組正常培養;MPP+組加入200 μmol/L的MPP+孵育24 h;JWH133+MPP+組用1 μmol/L JWH133預處理40 min,然后加入200 μmol/L MPP+共孵育24 h;AM630+JWH133+MPP+組用1 μmol/L JWH133和1 μmol/L AM630預處理40 min,然后加入200 μmol/L MPP+共孵育24 h。
1.3 免疫印跡法(Western Blot)檢測CB2 受體蛋白的表達
Control組和MPP+組星形膠質細胞經處理后,吸凈培養板中的培養液,每孔加入100 μL的裂解液(RIPA裂解液∶PMSF=99∶1),冰上裂解30 min。刮下底部的蛋白置于相應的EP管中,在4 ℃下以12 000 r/min離心20 min,取上清80 μL,用BCA法測定蛋白濃度。每組蛋白的上樣量為20 μg,電泳(電壓為80 V和120 V)后將蛋白轉移至PDVF膜上(轉膜電流為300 mA)。用50 g/L BSA封閉液封閉1 h,然后將PDVF膜放入CB2受體一抗溶液中,置4 ℃搖床上孵育過夜。次日用TBST清洗3次,每次10 min,將PDVF膜放入二抗中,室溫孵育1 h,重復TBST 清洗。使用ECL顯色液處理進行顯影。目的蛋白的表達以CB2受體與GAPDH灰度值的比值表示。實驗重復5次,取平均值。
1.4 實時熒光定量PCR(PT-PCR)檢測COX-2和iNOS mRNA水平
本文4組星形膠質細胞經處理后,采用TRIzol法提取總RNA,將每個樣品在1 000 μL TRIzol試劑中勻漿以純化總RNA,使用反轉錄試劑盒對2 μg的總RNA進行反轉錄:加入AccuRT反應混合物(4×)和DEPC水,使總體積達到8 μL,42 ℃變性2 min;加入12 μL的反應體系(內含AccuRT反應混合物終止液2 μL、多合一RT Master Mix(5×)4 μL、DEPC水6 μL) 25 ℃作用10 min,繼以42 ℃作用15 min逆轉錄合成cDNA。采用SYBR Green染料法定量檢測COX-2和iNOS的基因表達[18]。大鼠原代星形膠質細胞RT-PCR擴增引物及其序列見表1。采用2-△△CT法計算目的基因相對表達量。實驗重復5次,取均值。
1.5 統計學分析
應用Graphpad Prism 5.0軟件進行統計學分析,實驗所得數據以±s表示,兩組間比較采用F檢驗,多組間的比較采用單因素方差分析(One-way ANOVA),然后用Turkey法進行組間兩兩比較,P<0.05表示差異有統計學意義。
2 結 ?果
2.1 MPP+處理對原代星形膠質細胞CB2受體蛋白表達的影響
Control組和MPP+組CB2受體蛋白相對表達量分別為0.80±0.08和1.12±0.08,兩組比較差異有統計學意義(F=29.78,P<0.01)。表明MPP+處理可以上調原代星形膠質細胞CB2受體蛋白的表達,提示炎癥時星形膠質細胞CB2受體表達增多。見圖1。
2.2 JWH133對MPP+誘導的原代星形膠質細胞COX-2和iNOS基因表達的影響
與Control組相比,MPP+組COX-2和iNOS基因表達明顯上調(F=22.59、11.27,q=10.13、5.57,P<0.01);JWH133+MPP+組細胞COX-2和iNOS基因表達水平較MPP+組均明顯降低,差異均具有統計學意義(q=6.26、4.16,P<0.05);而JWH133的抗炎作用可被AM630阻斷,AM630+JWH133+MPP+組COX-2和iNOS基因表達水平較JWH133+MPP+組明顯升高,差異有統計學意義(q=5.34、5.67,P<0.01)。見表2。
3 討 ?論
大麻素系統包括內源性大麻素、大麻素受體以及內源性大麻素的合成酶和降解酶。大麻素受體包含大麻素Ⅰ型受體(CB1受體)和CB2受體[7]。大麻素受體與G蛋白耦聯,通過抑制腺苷酸環化酶和電壓門控鈣通道(例如N型、P/Q型和L型鈣電流)介導信號轉導[9],激活有絲分裂原激活的蛋白激酶(MAPK)和向內整流鉀離子通道[19]。與CB1受體調節相比,CB2受體的激活已經被證明沒有精神副作用[20]。近年來關于激活CB2受體對神經退行性疾病具有保護作用的研究日漸增多,尤其是針對它的抗炎作用,已有大量研究證據支持CB2受體可以通過參與抑制炎癥反應而起到神經保護作用[21-22]。GMEZ-GLVEZ等[23]發現,使用HU-308(一種CB2受體激動劑)激活CB2受體可以抑制脂多糖誘導的紋狀體和黑質中炎性因子(例如iNOS)的表達。CHUNG等[16]的研究表明,使用大麻素受體激動劑WIN55、212和JWH133激活CB2受體,可以調節1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導的小膠質細胞活化和炎性因子的表達,從而防止PD小鼠模型中黑質紋狀體DA能神經元的死亡。TAO等[24]于2016年發現,JWH133激活CB2受體可以通過促進小膠質細胞表型從M1轉至M2,顯著抑制炎性因子的釋放[25],從而對神經炎癥產生影響。JWH133是一種選擇性CB2受體激動劑,對CB2受體的選擇性是CB1受體的200倍,對CB2受體具有很高的親和力[11]。本課題組在前期工作中已顯示,JWH133激活CB2受體具有對抗MPP+誘導的SH-SY5Y細胞凋亡和神經毒性的作用。關于CB2受體起到的神經保護作用,人們更關注的是CB2受體在小膠質細胞中的抗炎作用,或者CB1/CB2受體在中樞神經系統中的協同工作[26]。但是最近有研究通過免疫組織化學實驗分析顯示,在PD病人腦中黑質區CB2受體與星形膠質細胞共定位,而不與其他神經膠質細胞或神經元共定位[27]。而且與正常對照組相比較,在PD病人中樞神經系統炎癥狀態下,星形膠質細胞CB2受體的表達急劇增加[28]。星形膠質細胞在PD進程中炎癥所導致的神經元功能障礙和死亡中起關鍵的作用[28-29],活化的反應性星形膠質細胞釋放炎性因子(如IL-1β、TNF-α、COX-2和iNOS)以及活性氧的產生增加[30],會加劇炎癥過程,促進PD的發生[7,31]。而抑制活化的星形膠質細胞釋放炎性因子將會對PD起到一定的改善作用。
MPP+是MPTP的有毒代謝產物,它可以激活神經膠質細胞、神經元和肥大細胞釋放神經炎性遞質[32]。本實驗應用MPP+制備原代星形膠質細胞炎癥模型。Western Blot檢測結果顯示,MPP+作用于原代星形膠質細胞可引起CB2受體蛋白表達的升高,表明炎癥時星形膠質細胞CB2受體表達增多。為了檢測CB2受體表達增多是否具有抗炎作用,本研究使用選擇性CB2受體激動劑JWH133來激活CB2受體,然后通過檢測炎性因子COX-2和iNOS的基因表達水平,探討JWH133對炎癥反應的作用。COX-2是生成前列腺素的關鍵酶,iNOS可催化生成NO,它們對神經元具有毒性作用,參與并誘導神經炎癥,導致神經元細胞死亡[33]。本實驗研究結果顯示,使用1 μmol/L的JWH133對原代星形膠質細胞進行預處理,能夠有效抑制MPP+誘導的COX-2和iNOS基因表達上調,表明選擇性激活CB2受體對原代星形膠質細胞具有明顯的抗炎作用。進一步使用1 μmol/L的AM630進行驗證,結果顯示其能夠阻斷JWH133的抗炎作用。
綜上所述,本實驗初步證明JWH133激活CB2受體能抑制MPP+誘導的原代星形膠質細胞的炎癥反應,抑制COX-2和iNOS基因的表達,其抗炎作用可以被AM630所阻斷。本文結果為通過激活CB2受體抑制星形膠質細胞神經炎癥從而治療PD提供了新的方案[34],但還需要進一步研究其所涉及的機制。
[參考文獻]
[1] SOFRONIEW M V, VINTERS H V. Astrocytes: biology and pathology[J]. Acta Neuropathologica, 2010,119(1):7-35.
[2] HEATHER D B, WARREN D H, WADE-MARTINS R. The role of astrocyte dysfunction in Parkinsons disease pathogenesis[J]. Trends in Neurosciences, 2017,40(6):358-370.
[3] KORDOWER J H, OLANOW C W, HEMRAJ B D, et al. Disease duration and the integrity of the nigrostriatal system in Parkinsons disease[J]. Brain, 2013,136(8):2419-2431.
[4] HUANG Wanqiu, XU Yazhou, ZHANG Yuxin, et al. Metabolomics-driven identification of adenosine deaminase as therapeutic target in a mouse model of Parkinsons disease[J]. Journal of Neurochemistry, 2019,150(3):282-295.
[5] KEMPURAJ D, THANGAVEL R, YANG E, et al. Dopami-nergic toxin 1-methyl-4-phenylpyridinium, proteins alpha-synuclein and glia maturation factor activate mast cells and release inflammatory mediators[J]. PLoS One, 2015,10(8):e0135776.
[6] LOSSINSKY A S, SHIVERS R R. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Review[J]. Histology and Histopathology, 2004,19(2):535-564.
[7] DURAISAMY K, THANGAVEL R, GOVINDHASAMY P S, et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration[J]. Frontiers in Cellular Neuroscience, 2017,11:216.
[8] BROUGH D, ROTHWELL N J, STUART M A. Interleukin-1 as a pharmacological target in acute brain injury[J]. Experimental Physiology, 2015,100(12):1488-1494.
[9] MUNRO S, THOMAS K L, ABU-SHAAR M. Molecular characterization of a peripheral receptor for cannabinoids[J]. Nature, 1993,365(6441):61-65.
[10] NI R Q, MU L J, AMETAMEY S. Positron emission tomography of type 2 cannabinoid receptors for detecting inflammation in the central nervous system[J]. Acta Pharmacologica Sinica, 2019,40(3):351-357.
[11] CHEN Dejie, GAO Ming, GAO Fenfei, et al. Brain cannabinoid receptor 2: expression, function and modulation[J]. Acta Pharmacologica Sinica, 2017,38(3):312-316.
[12] HUFFMAN J W, HEPBURN S A, LYUTENKO N, et al. 1-Bromo-3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-tetrahydrocannabinols: new selective ligands for the cannabinoid CB2 receptor[J]. Bioorganic & Medicinal Chemistry, 2010,18(22):7809-7815.
[13] DI MARZO V, STELLA N, ZIMMER A. Endocannabinoid signalling and the deteriorating brain[J]. Nature Reviews Neuroscience, 2015,16(1):30-42.
[14] RAMREZ B G, BLZQUEZ C, GMEZ DEL PULGAR T, et al. Prevention of Alzheimers disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2005,25(8):1904-1913.
[15] JAVED H, AZIMULLAH S, HAQUE M E, et al. Cannabinoid type 2 (CB2) receptors activation protects against oxidative stress and neuroinflammation associated dopaminergic neurodegeneration in rotenone model of Parkinsons disease[J]. Frontiers in Neuroscience, 2016,10(57):321.
[16] CHUNG Y C, SHIN W H, BAEK J Y, et al. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinsons disease[J]. Experimental & Molecular Medicine, 2016,48(1):e205.
[17] FERNNDEZ-RUIZ J, ROMERO J, VELASCO G, et al. Cannabinoid CB2 receptor: a new target for controlling neural cell survival[J]? Trends in Pharmacological Sciences, 2007,28(1):39-45.
[18] JIANG Mingchun, CHEN Xiaohan, ZHAO Xia, et al. Involvement of IGF-1 receptor signaling pathway in the neuroprotective effects of Icaritin against MPP+-induced toxicity in MES23.5 cells[J]. European Journal of Pharmacology, 2016,786:53-59.
[19] LU H C, MACKIE K. An introduction to the endogenous cannabinoid system[J]. Biological Psychiatry, 2016,79(7):516-525.
[20] PACHER P, BATKAI S, KUNOS G. The endocannabinoid system as an emerging target of pharmacotherapy[J]. Pharmacol Rev, 2006,58(3):389-462.
[21] RAMIREZ S H, HASKO J, SKUBA A, et al. Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions[J]. Journal of Neuroscience, 2012,32(12):4004-4016.
[22] ROM S, ZULUAGA-RAMIREZ V, DYKSTRA H, et al. Selective activation of cannabinoid receptor 2 in leukocytes suppresses their engagement of the brain endothelium and protects the blood-brain barrier[J]. The American Journal of Pathology, 2013,183(5):1548-1558.
[23] GMEZ-GLVEZ Y, PALOMO-GARO C, FERNNDEZ-RUIZ J, et al. Potential of the cannabinoid CB2 receptor as a pharmacological target against inflammation in Parkinsons disease[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016,64:200-208.
[24] TAO Yihao, LI Lin, JIANG Bing, et al. Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model[J]. Brain Behavior and Immunity, 2016,58:118-129.
[25] COLTON C A. Heterogeneity of microglial activation in the innate immune response in the brain[J]. J Neuroimmune Pharmacol, 2009,4(4):399-418.
[26] ZARRUK J G, FERNNDEZ-LPEZ D, GARCA-YBE-NES I, et al. Cannabinoid type 2 receptor activation downregulates stroke-induced classic and alternative brain macrophage/microglial activation concomitant to neuroprotection[J]. Stroke, 2012,43(1):211-219.
[27] NAVARRETE F, GARCA-GUTIRREZ M S, ARACIL-FERNNDEZ A, et al. Cannabinoid CB1 and CB2 receptors, and monoacylglycerol lipase gene expression alterations in the basal ganglia of patients with Parkinsons disease[J]. Neurotherapeutics, 2018,15(2):459-469.
[28] JAYCIE L L, BARKER-HALISKI M L, DAHLE E J, et al. Neuronal injury, gliosis, and glial proliferation in two models of temporal lobe epilepsy[J]. Journal of Neuropathology and Experimental Neurology, 2016,75(4):366-378.
[29] DOMENICO A D, CAROLA G, CALATAYUD C, et al. Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinsons disease[J]. Stem Cell Reports, 2019,12(2):213-229.
[30] SOFRONIEW M V. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators[J]. Neuroscientist, 2014,20(2):160-172.
[31] NIRANJAN R. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinsons disease: focus on astrocytes[J]. Molecular Neurobiology, 2014,49(1):28-38.
[32] DURAISAMY K, SELVAKUMAR G P, THANGAVEL R, et al. Glia maturation factor and mast cell-dependent expression of inflammatory mediators and proteinase activated receptor-2 in neuroinflammation[J]. Journal of Alzheimers Disease, 2018,66(3):1117-1129.
[33] HALD A, LOTHARIUS J. Oxidative stress and inflammation in Parkinsons disease: is there a causal link[J]? Experimental Neurology, 2005,193(2):279-290.
[34] RIETHER D. Selective cannabinoid receptor 2 modulators: a patent review 2009-present[J]. Expert Opinion on Therapeutic Patents, 2012,22(5):495-510.
(本文編輯 馬偉平)