陶凱 陳強
摘要:將全頻率多波束衛星系統建模為MIMO系統,分析其信道特征,在此基礎上進行預編碼設計以提高系統容量。針對SLNR/SSLNR預編碼算法BER性能損失大的問題,基于GMD矩陣分解對SSLNR算法進行改進,結合其信道特點減小預處理矩陣的維度,提出GMD-SSLNR算法。首先基于用戶間距進行分組,每組分別對等效信道矩陣進行GMD運算,能有效降低碼流間的增益差,并采用THP方法在發端抵消掉已知的組間干擾泄漏。分析和仿真表明,相比SLNR-THP及SSLNR-THP算法,算法有效提高了系統的誤碼性能,并降低了運算復雜度。
關鍵詞:多波束衛星;MIMO通信; GMD;SSLNR;低信噪比
中圖分類號:TN927.2? ??文獻標識碼:A???? 文章編號:1007-9416(2020)04-0000-00
0引言
衛星通信系統 波束間的頻率復用能有效提升系統容量[1-2]。根據文獻[3][4],全頻率復用多波束衛星系統可建模為分布式MIMO系統,因此可將預編碼技術用于多波束衛星系統前向鏈路,以提高其系統容量。
經典的基于信漏躁比[5](SLNR)和基于塊對角化(BD)的預編碼[6]算法均有效降低同道干擾,但在工程上是很難實現的。文獻[7]的的BLR-SSLNR-THP算法中,但當用戶有多個碼流時,碼流間的增益差較大導致系統BER性能差。為此,文獻[8]提出了幾何均值分解(GMD)方法,GMD方法將信道矩陣分解成對角值一致的三角矩陣,從而使得每個子信道增益相等。本文利用GMD矩陣運算,對SSLNR預編碼進行改進,并充分利用衛星信道特點降低矩陣運算量,設計了基于GMD的SSLNR算法——GMD-SSLNR算法。該算法中,每組用戶的不同碼流具有相同的增益,能夠有效提高系統的誤碼性能。
1 系統模型
2 GMD-SSLNR預編碼算法
2.1 算法原理
按距離將用戶分為三組: 則第一組用戶接收的信號可表示為:
2.2 算法復雜度分析
廣義特征值分解的計算復雜度為
[9]。由于GMD-SSLNR算法在每個用戶上進行廣義特征值分解,所以算法總的運算復雜度為
。每次GMD分解的復雜度為
。因此,由于
,則總的復雜度為
。本文的GMD-SSLNR算法單次廣義特征分解的計算復雜度為
。因此其總的復雜度為
。其中,
表示每組的平均用戶數目。而SSLNR-THP的復雜度為
,GMD-SSLNR的復雜度為
。可見,相比SSLNR-THP算法和SLNR算法, GMD-SSLNR算法計算復雜度較小,且隨著分組數的增多和
的增大而減小。
3仿真結果及分析
本節對多波束衛星MIMO系統采用蒙特卡洛方法進行系統性能仿真,將仿真結果與SSLNR-THP算法、SLNR-THP進行對比,如圖1所示。
由圖1易知,在中低信噪比區域,三種算法的誤碼性能相當。隨著信噪比的提升,相比SLNR-THP和SSLNR-THP算法,本文算法的系統誤碼性能有著非常明顯的優勢,且隨著信噪比逐漸增大,優勢更加明顯。在高信噪比區域,本文算法優于SSLNR-THP算法大約5.6dB,優于SLNR-THP算法大約13.2dB。這是由于本文算法通過GMD矩陣運算有效消除了各用戶之間的增益差。
4 結語
本文提出一種適用于衛星MIMO系統的GMD-SSLNR算法。算法首先利用SSLNR求得等效矩陣,運算過程中充分利用信道特點,降低矩陣維度,然后對其進行GMD分解。復雜度分析表明,相比SLNR-THP及SSLNR-THP算法,本文算法運算復雜度相對較低。仿真結果表明,在高信噪比區域,本文算法優于SSLNR-THP算法大約5.6dB,優于SLNR-THP算法大約13.2 dB。說明本文算法通過GMD矩陣運算有效消除了各用戶之間的增益差。因此,本文算法有一定的工程應用價值。
參考文獻
[1] Vidal O, Verelst G, Lacan J, et al. Next generation high throughput satellite system[C]// Proceedings of IEEE First AESS European Conference on Satellite Telecommunications. Rome:IEEE,2012:1-7.
[2] Arapoglou P, Liolis K, Bertinelli M, et al. MIMO over satellite: a review [J].IEEE Communications Surveys & Tutorials,2011,13(1):27-51.
[3] 王楊,趙旦峰,廖希.多波束衛星系統中低復雜度分組預編碼算法[J].哈爾濱工業大學學報,2015,47(3):77-82.
WANG Yang,ZHAO Danfeng,LIAO Xi. Low-complexity group precoding in multi-beam satellite systems [J].Journal of Harbin Institute of Technology,2015,47(3):77-82.
[4] CHEN C, CHO T, CHUNG W. Block-lattice-reduction-aided Tomlinson-Harashima precoder designs for MU-MIMO downlink communications with clusters of correlated Users [J].IEEE Transactions on Vehicular Technology,2014,63(3):1146-1159.
[5] C P, T M, Z W. A New SLNR-Based Linear Precoding for Down-link Multi-User Multi-Stream MIMO Systems[J].IEEE Communications Letters,2010,14(11):1008-1010.
[6] Spencer Q H,Swindlehurst A L,Haardt M. Zero-forcing methods for downlink spatial multiplexing in multi-user MIMO channels[J].IEEE Transactions on Signal Processing,2004,52(2):461-471.
[7] S M, B H. Solution of the multiuser downlink beamforming problem with individual SINR constraints[J].IEEE Transactions on Vehicular Technology,2004,53(1):18-28.
[8] Jiang Y, L J, Hager WW. Joint transceiver design for MIMO communications using geometric mean decomposition[J]. IEEE Trans. Signal Process.,2005,53(10):3791 -3803.
[9] 程云鵬,張凱院,徐仲.矩陣論[M].西安:西北工業大學出版社,2008.
Cheng Yunpeng,Zhang Kaiyuan,Xu Zhong.Matrix Theory[M].Xian:anaorthwestern Polytechnic University Press,2008.
收稿日期:2020-02-22
作者簡介:陶凱(1987—),男,山東濰坊人,博士,工程師,研究方向:無線通信。
Precoding Technology for Satellite MIMO System Based on GMD
TAO Kai1,CHEN ?Qiang2
(1.The 54th Research Institute of CETC, Shijiazhuang Hebei 050081;
2.Unit 73676, PLA, Wuxi Jiangsu 214400)
Abstract: Multi-beam satellite with full frequency multiplexing is modeled to MIMO system, and then its channel character is analyzed, based on which the precoding algorithm is designed to improve the system throughput. The existing SLNR/SSLNR precoding algorithms are all with loss of BER. In this paper, the SSLNR algorithm is improved based on GMD matrix decomposition, and the dimension of the preprocessing matrix is decreased because of the channel character and a new precoding algorithm named GMD-SSLNR is proposed The users are grouped based on the distance between them and each group decomposes the equivalent channel matrix respectively, which can reduce the gain difference among the data streams, and the known leaking interference of the transmitter is offset with the THP algorithm. Analysis and Simulation results show that compared to SLNR-THP and SSLNR-THP, the proposed algorithm can improve the BER performance and reduce the complexity.
Key words: Multi-beam Satellite; MIMO Communications; GMD; SSLNR; Lower BER