999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Research on predictive control model of RBF neural network based on group intelligence optimization

2020-07-24 06:33:26LeiXIAOLiluGUOXiaojieWANGJieQIU
機床與液壓 2020年12期

Lei XIAO, Li-lu GUO, Xiao-jie WANG, Jie QIU

(1College of Computer Science and Technology, Yulin Normal University, Yulin 537000, China)(2College of Computer Science and Technology, Xidian University, Xi’an 710000, China )(3School of Information Science and Engineering, Xinjiang University, Urumqi 830011, China)

Abstract: In order to improve the accuracy of the predictive control model, the RBF neural network is used to complete the network traffic prediction, and the model parameters are optimized by using the hybrid leapfrog algorithm in the swarm intelligence algorithm. First, the hybrid leapfrog algorithm is introduced in the modeling process. Then, the weights and thresholds of the RBF neural network are used as individual frogs, and multiple randomly combined individuals with weights and thresholds constitute a frog group. Group the frog groups, and obtain global optimal individuals through continuous regrouping and iteration within the group to obtain the optimal weights and thresholds in order to determine the optimal predictive control model. Experiments prove that the predictive control model based on RBF neural network optimized by swarm intelligence has higher accuracy.

Key words: RBF neural network, Swarm intelligence, Hybrid leapfrog algorithm, Network traffic forecast, Fitness function

With the development of the mobile Internet, the types of equipment connected to the Internet have become more diversified, and the types of data accessed have become significantly different, and users have higher requirements for data upload and download rates. This all places higher requirements on the development of the Internet, especially support for network traffic, which is particularly important for the user experience. The Internet must provide a guarantee that a large number of users can smoothly upload and download data, and at the same time ensure the full use of network equipment resources. Therefore, it is very important to make a good network prediction and make a reasonable network flow control strategy based on the actual network traffic.

In the case of limited network resources, using historical data to predict current and future network traffic based on network traffic in order to continuously balance and allocate network resources can effectively improve the utilization of network equipment and resources. However, in the face of the increasing amount of data and the heterogeneity of user equipment, how to meet the different traffic refinement requirements of different types of equipment needs further research. Ref. [1] provided a more comprehensive discussion on the direction of wireless network traffic prediction, explained the characteristics of wireless network user increment and its demand for traffic, and provided a basis for further targeting the direction and focus of wireless network traffic. Ref. [2] adopts a support vector machine method combining artificial bee colony and artificial fish swarm to complete the traffic prediction, which integrates multiple swarm intelligence algorithms. Ref. [3] uses a swarm intelligence algorithm to implement wireless sensor network traffic prediction, which expands the range of traffic prediction to wireless sensor networks. Therefore, this paper combines swarm intelligence algorithm with RBF neural network to realize network traffic prediction and improve its adaptability to traffic prediction.

1 RBF neural network

Let the input sample beXk=(x1,x2,…,xn),k=1,2,…,m, where m and n respectively represent the total number of samples and the total number of features in one sample. Generally speaking, the number of neurons in the input layer is equal to the total number of features. The number of layer neurons is generally less than the total number of features. The output of the K-th sample after the model isYk=(y1,y2,…,yn), and n is the number of neurons in the output layer.

First, the value of the input sample after reaching the first layer of the hidden layer after weighting isS1j[4].

(1)

After the value ofS1jis passed through the feature conversion function,b1jcan be obtained.

(2)

The feature conversion function selected by RBF neural network is Gaussian function[5]. Whereσis a real number greater than 0, andcjis the center value of the j-th hidden layer. Taking the first hidden layer as input, the value that reaches the second hidden layer after weighting isS2j.

(3)

Then solve the transformation function to getb2j.

(4)

The output through all hidden layers is weighted byVjtand the result isLt.

(5)

The above formula is solved by the Gaussian function to obtain the output of the entire model:

(6)

The error result of the k-th sample isEk.

(7)

The error of all samples isE.

(8)

Formula (8) is derived from formula (9) by first-order derivation.

ΔVjt=-?Ek/?Vjt

(9)

Solve the weights from the hidden layer to the output layer. Continue to solve the weights ΔWjtof the input and hidden layers.

(10)

2 Swarm intelligence optimized RBF neural network

The swarm intelligence algorithm has a wide content and contains more algorithms[6]. This paper selects a hybrid frog-leaping algorithm in the swarm intelligence algorithm to optimize the parameters of the RBF neural network and improve the accuracy of the network traffic prediction of the RBF neural network.

2.1 Hybrid frog leaping algorithm

(11)

(12)

2.2 Hybrid frog jump optimized RBF neural network

The hybrid frog leaping algorithm of Section 2.1 is used to realize the weight and threshold determination of RBF neural network. The main process is that: during the (t+1)-th calculation iteration, using the results after the t-th iteration, the frogXb(t) with a larger RMSE is continuously approached to the frogXw(t) with a smaller RMSE. In order to ensure that the frogs in the group can move closer to the frog with a smaller RMSE, a hungry moving method is proposed as shown in formula (13)[9].

Δw(t)=rand()(Xb(t)-x(t))

(13)

Xw(t+1)=Xw(t)Δw(t)

Rmin≤Δw(t)≤Rmax

(14)

If the value ofXw(t+1) at time (t+1) is larger thanXw(t), that is, it has better fitness, then replaceXw(t) withXw(t+1). Otherwise, continue to execute formulas (13) and (14). With regard to the frog moving step size, a step size factorCcan be introduced[10]. Then the calculation of thei-th moving distance of thek-th frog is shown in formula (15).

(15)

C=Cmin+inow/Gglobal×(Cmax-Cmin)

(16)

WhereCminandCmaxare the minimum and maximum moving step sizes of the frogs in the current group, which can be set according to the actual situation.Gglobalis the sum of fitness values of all frogs in the group, andinowis the number of times the frog moves at the current moment.

When the fitness value of all frogs in the group is closer toXb(t), and the error is within the set threshold, then the algorithm stops iteratively and outputs the frog distribution map at the current moment, which is the optimal solution.

2.3 Network flow forecasting process based on hybrid frog leap optimization RBF neural network

The process of frog leap hybrid optimization to obtain the optimal individual is actually the process of solving the RBF neural network weight and threshold optimal solution. With the optimal solution of weights and thresholds, the network traffic prediction model of RBF neural network can be determined. In the process of the hybrid frog jumping algorithm, it is necessary to continuously group the entire frog group, and continuously update the position of the individual with a larger RMSE in the group to improve the fitness value of all individuals in the group. The parameter adjustment method of this neural network model is highly efficient, and each iteration increases the fitness value.

The network flow prediction process of the RBF neural network optimized by the hybrid frog leap is shown in Fig.1.

Fig.1 Flow chart of network traffic prediction of leapfrog hybrid optimization RBF neural network

3 Experimental design and results analysis

In order to verify the performance of hybrid frog leap-optimized RBF neural network for network traffic prediction, a case simulation was performed. The simulation data comes from a large power grid platform[11-13], and the data flow for one month is selected as the simulation object.

3.1 Simulation of prediction accuracy

The RBF neural network and the RBF neural network through the hybrid frog jumping algorithm were used to simulate the network traffic for one month on a weekly basis[14]. The root mean square error (RMSE) was selected as the accurate criterion for network prediction[15]. In the simulation process, in order to fully verify the impact of the hybrid frog jump optimization on the prediction accuracy rate, the RBF neural network structure is differentiated. The simulation results are shown in Table 1.

Table 1 prediction accuracy of the two algorithms

It can be seen from Table 1 that under the same neural network scale, the RBF neural network traffic prediction based on the hybrid frog leap optimization has a lower RMSE, which indicates that the prediction accuracy is higher. Especially when the number of hidden layers is 10, the predictions for 4 weeks all show lower RMSE, and more ideal prediction results can be obtained. Therefore, in actual operation, the appropriate neural network scale can be selected according to Table 1 to complete the network traffic prediction.

In addition, in order to further verify the advancedness of the proposed method, a comparison experiment is performed with a network prediction method using a wavelet neural network. The test data set is one month of network traffic. The comparison result is shown in Fig.2. Among them, the number of hidden layers of the RBF neural network optimized by the hybrid leapfrog is ten. As can be seen from Fig.2, compared to the wavelet neural network, the hybrid frog leap-optimized RBF neural network shows a lower RMSE.

Fig.2 Comparison results of RMSE

3.2 Optimization of leapfrog mixed parameters

In order to further analyze the optimal performance of RBF neural network optimized by frog leap hybrid, the main parameters of the hybrid frog leap algorithm were differentiated and simulated. The main purpose is to simulate the number of frog groups, the step size of frog movement, and the number of iterations within the group after grouping frog groups to verify the impact of different parameters on the accuracy of prediction. The number of hidden layer neurons in the RBF neural network is set to 10. Select the number of packets 10, 20, 30, 40, and 50, with steps of 1, 3, and 5, to predict the network traffic for one month. After 10 predictions, the predicted maximum, average, and minimum RMSE values are solved, as shown in Table 2.

Table 2 RMSE of different groups and steps

As can be seen from Table 2, when the number of packets belongs to [10, 20, 30, 40, 50] and the step size is [1, 3, 5], RMSE does not exceed 0.7. Moreover, the maximum and minimum deviations from the mean are not large, and the algorithm is relatively stable. By comparison, when the number of groups is 30 and the step size is 3, the average value of RMSE is the smallest, only 0.049 9. In actual application, the parameters of the hybrid frog jumping algorithm can be fine-tuned by repeatedly changing the main parameter simulation method to achieve better prediction results.

Table 3 RMSE of iterations in different groups

The number of groups and step size were fixed to 30 and 3, and the number of different iterations was adjusted to verify its impact on prediction accuracy.

It can be concluded from Table 3 that as the number of iterations in the group increases, the maximum, minimum, and average values of RMSE decrease slowly. However, when the number of iterations is 40 and 50, the minimum and average RMSE of the two do not change. In addition, the maximum value is almost unchanged and stable, and it does not always decrease as the number of iterations increases. Therefore, the setting of the number of iterations should be reasonable, and if the number of iterations is increased blindly, the prediction time will definitely increase. The reasonable number of iterations in the group should be set according to the actual situation.

4 Conclusion

The hybrid frog leap is used to optimize the network traffic prediction of the RBF neural network, which improves the network traffic prediction accuracy. The following conclusions are obtained through experimental simulations: 1) The specific operation process of traffic prediction should reasonably set the size of the neural network; 2) By fine-tuning the main parameters of the hybrid frog jumping algorithm, better network traffic prediction results can be obtained.

主站蜘蛛池模板: 国产精品微拍| 精品成人免费自拍视频| 色爽网免费视频| 日本色综合网| 欧美成人h精品网站| av在线无码浏览| 国产丝袜91| 亚洲欧美综合另类图片小说区| 国产福利小视频高清在线观看| 国产成人无码Av在线播放无广告| 婷婷亚洲最大| 国产迷奸在线看| 91视频免费观看网站| 国产精品久久久久久久伊一| 午夜毛片福利| 免费观看三级毛片| 亚洲综合婷婷激情| 免费看美女自慰的网站| 国产成人h在线观看网站站| 亚洲欧美日韩另类在线一| 亚洲一区二区三区中文字幕5566| 91久草视频| 国产丝袜无码一区二区视频| 亚洲AV无码不卡无码| 精品国产中文一级毛片在线看 | 国产三级成人| 日韩无码黄色网站| 亚洲毛片一级带毛片基地| 2021精品国产自在现线看| 亚洲视频一区| 少妇露出福利视频| 玩两个丰满老熟女久久网| 成人韩免费网站| 亚洲人成亚洲精品| 国产嫖妓91东北老熟女久久一| 精品撒尿视频一区二区三区| 国产一区三区二区中文在线| 久久这里只有精品66| 天堂成人av| 国产尤物视频在线| 青青草国产在线视频| 中国一级特黄大片在线观看| 无码一区中文字幕| 午夜不卡福利| 亚洲成在人线av品善网好看| 国产精品女熟高潮视频| 一级一级一片免费| av在线无码浏览| 51国产偷自视频区视频手机观看| av一区二区三区在线观看 | 国产a在视频线精品视频下载| 99在线视频精品| 9cao视频精品| 国产精品污污在线观看网站| 日韩在线欧美在线| 大乳丰满人妻中文字幕日本| 欧美人与牲动交a欧美精品| 色妞永久免费视频| 色综合激情网| 久久这里只有精品免费| 全免费a级毛片免费看不卡| 亚洲天堂网视频| 欧美精品二区| 亚洲最新网址| 久久久久人妻一区精品| 国产一级做美女做受视频| 99久久国产自偷自偷免费一区| 午夜精品福利影院| 精品国产自在现线看久久| 日本午夜影院| 国产精品七七在线播放| 亚洲三级网站| 成人午夜视频免费看欧美| 超清人妻系列无码专区| 欧美日本在线播放| 亚洲一区毛片| 日韩高清成人| 国产视频资源在线观看| 欧美日韩午夜| 欧美激情视频一区二区三区免费| 2020最新国产精品视频| 欧美精品黑人粗大|