陳玉坤 靳國永 葉天貴



摘要: 基于卡萊拉統一公式(CUF)建立了一般邊界條件下功能梯度(FGM)梁的高階統一動力學模型和分析方法。利用二維泰勒公式對FGM梁截面位移函數進行高階擬合,經典梁理論可以視為一階泰勒公式的特殊形式。采用Voigt線性混合模型分別考慮了兩種功能梯度材料分布形式:材料屬性僅沿寬度或厚度單一方向發生變化;材料屬性同時沿寬度和厚度方向發生變化。通過罰函數法將FGM梁的邊界條件量化為邊界能量的形式,實現了對邊界條件的參數化分析,并消除了位移容許函數對邊界條件的依賴性。利用瑞利-利茲法和勒讓德多項式函數對FGM梁的振動問題進行求解。通過與文獻中結果對比,驗證了此方法的有效性和正確性。最后,研究了幾何尺寸、材料屬性和邊界條件對FGM梁振動特性的影響規律。
關鍵詞: 結構振動; 功能梯度梁; 一般邊界條件; 卡萊拉統一公式(CUF); 罰函數方法
中圖分類號: O327; O326 ?文獻標志碼: A ?文章編號: 1004-4523(2020)04-0756-08
DOI:10.16385/j.cnki.issn.1004-4523.2020.04.014
引 言
功能梯度材料(Functionally Graded Materials, FGMs)是將兩種或兩種以上的材料按照一定的比例混合起來,其材料屬性沿一定方向上呈現微觀的連續性變化,可有效降低和避免一般層合材料由于層間材料參數差距過大而產生的應力集中現象。近年來,隨著材料技術和加工工藝的進步,各種FGMs也漸漸出現[1]。為此,對FGM梁結構的動力學特性研究具有十分重要的意義。
首先,本文以固支邊界(C-C)條件下長寬比L/b=10的FGM梁為例,驗證本文方法的收斂性。表2給出了兩種不同材料屬性分布的FGM梁無量綱化頻率隨截斷級數的變化情況,表中每一行代表FGM梁不同類型的振動模態,每一列代表了不同的勒讓德多項式項數。從表中可以較為清楚地看到隨著勒讓德多項式項數的增加,本文方法的計算結果快速收斂至穩定值。故而在接下來的計算分析中,勒讓德多項式項數統一取為M=14。圖3給出了FGM梁(Type 2)的幾類特殊模態的振型圖,紅色網格代表彎曲模態的彎曲中性面。從圖3中可以看出,前兩階彎曲模態的彎曲中性面不再為xy或yz平面,而是繞著y軸發生一定的旋轉,旋轉角度與功能梯度材料屬性有關,由于本案例所選用的功能梯度材料屬性關于梁截面對角線呈對稱分布,所以其彎曲中性面與截面對角線重合。另外,而且可以看出本文方法不僅可以用于預測FGM梁的彎曲模態,而且可以較為準確地預測FGM梁的扭轉模態和縱振模態。
為了進一步驗證本文方法的正確性,表3給出了簡支邊界(S-S)條件下三種不同長寬比的FGM梁的無量綱頻率參數。同時表3也列出了文獻[11]中的計算結果,在該文獻中,作者利用有限元方法進行求解。通過與文獻[11]對比,可以發現,對于不同長寬比的FGM梁結構,本文方法均具有較高的計算精度。對于經典梁理論模型,當結構長寬比較小時,其計算結果往往會產生較大的誤差。而本文方法由于不存在對應力應變分布規律的任何假設,故而可以適用于任意長寬比的FGM梁結構。
3 結 論
本文基于CUF理論建立了一般邊界條件下FGM梁的高階統一動力學模型;同時考慮了兩種功能梯度材料分布形式:沿寬度單一方向變化和沿截面任意方向變化。通過罰函數法將FGM梁的邊界條件量化為邊界能量的形式,實現了對邊界條件的參數化分析,并消除了位移容許函數對邊界條件的依賴性。利用瑞利-利茲法對FGM梁的三維振動問題進行求解,并驗證了該方法的快速收斂性和正確性。最后,本文重點研究了幾何尺寸、材料屬性和邊界條件對功能梯度梁振動特性的影響。針對本文所研究的FGM梁,其無量綱頻率參數隨著長寬比的增大和材料梯度指數的增加而迅速減小,直至趨于穩定。在利用罰函數方法對FGM梁邊界條件的研究中可以發現,罰因子參數存在一彈性區間,當罰因子參數的取值在此區間外時,FGM梁各階無量綱頻率參數保持不變;當罰因子參數取值在此區間內時,無量綱頻率隨特定的罰因子參數迅速增大。
參考文獻:
[1] 李 信,劉海昌,滕元成,等. 功能梯度材料的研究現狀及展望[J]. 材料導報,2012,(S1): 370-373.
Li Xin,Liu Haichang,Teng Yuancheng,et al. Research status and future directions on functionally gradient materials[J]. Materials Review,2012,(S1):370-373.
[2] ?im ek M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories[J]. Nuclear Engineering and Design,2010, 240(4):697-705.
[3] Alshorbagy A,Eltaher M,Mahmoud F.Free vibration characteristics of a functionally graded beam by finite element method[J]. Applied Mathematical Modeling,2011,35(1): 412-425.
[4] Murín J, Aminbaghai M, Kuti V. Exact solution of the bending vibration problem of FGM beams with variation of material properties[J]. Engineering Structures, 2010,32(6):1631-1640.
[5] 王 迪,朱 翔,李天勻,等. 基于能量有限元法的功能梯度梁振動分析[J]. 振動與沖擊, 2018, 37(3):119-124.
Wang Di,Zhu Xiang,Li Tianyun,et al. Vibration analysis of a FGM beam based on energy finite element method[J]. Journal of Vibration and Shock, 2018, 37(3):119-124.
[6] Carrera E, Giunta G. Hierarchical evaluation of failure parameters in composite plates[J]. AIAA Journal, 2009,47(3):692-702.
[7] Carrera E, Giunta G. Exact, hierarchical solutions for localized loadings in isotropic, laminated and sandwich shells[J]. Journal of Pressure Vessel Technology, 2009,131(4):0412021-04120214.
[8] Carrera E, Petrolo M, Nali P. Unified formulation applied to free vibrations finite element analysis of beams with arbitrary section[J]. Shock & Vibration, 2011,18:485-502.
[9] Carrera E, Pagani A, Petrolo M, et al. Recent developments on refined theories for beams with applications[J]. Mechanical Engineering Reviews, 2015,2(2):14-00298.
[10] Giunta G, Biscani F, Belouettar S, et al. Free vibration analysis of composite beams via refined theories[J]. Composites Part B: Engineering, 2013,44(1):540-552.
[11] Giunta G, Crisafulli D, Belouettar S, et al. Hierarchical theories for the free vibration analysis of functionally graded beams[J]. Composite Structures, 2011, 94(1) :68-74.
[12] Chen Y, Ye T, Jin G. Quasi-3D solutions for the vibration of solid and hollow slender structures with general boundary conditions[J]. Computers & Structures, 2019, 211:14-26.
[13] Carrera E, Giunta G, Petrolo M. Beam Structures. Classical and Advanced Theories[M]. New York: Wiley,2011.
[14] Ye T, Jin G, Shi S, et al. Three-dimensional free vibration analysis of thick cylindrical shells with general end conditions and resting on elastic foundations[J]. International Journal of Mechanical Sciences, 2014, 84:120-137.
Abstract: In this study, a uniform dynamic model is established using Carrera unified formulation for the vibration analysis of FGM beams with general boundary conditions. Higher-order Taylor expansions are used to simulate the cross-sectional displacement functions, and the classical beam theories can be seen as particular cases of the first-order Taylor expansion. Two types of material distribution over the beams cross-section are considered by utilizing the Voigt model and power-law function. The penalty method is applied and three groups of penalty factor are used for the boundary conditions of the FGM beam. In this way, the energy stored in the boundary conditions can be considered as a part of the total energy function, releasing the limitation of geometrical boundary restraints on the selection of admissible functions. The Rayleigh-Ritz method and Legendre polynomial functions are utilized to address the vibration problem of the FGM beams. Several numerical examples are carried out to demonstrate the effectiveness and correctness of the present method. Finally, the effects of the geometrical dimensions, material parameters and boundary conditions on the vibration characteristics of the FGM beams are studied.
Key words: structural vibration; FGM beams; general boundary conditions; Carrera unified formulation; penalty method