999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

植物NAC轉錄因子的結構及功能研究進展

2020-10-20 05:58:30榮歡任師杰汪梓坪王飛周勇
江蘇農業科學 2020年18期
關鍵詞:植物

榮歡 任師杰 汪梓坪 王飛 周勇

摘要:NAC(NAM、ATAF1/2、CUC1/2)轉錄因子是植物特有的一類轉錄因子家族,在植物生長發育、生物及非生物脅迫反應中具有重要的調控作用。NAC蛋白的N端均存在1個高度保守的NAC結構域,而C端是變化的轉錄調控區。通過總結前人的研究進展,綜述NAC轉錄因子在植物分生組織和器官邊界的形成、根的發育、植物細胞次生壁的生長、植物衰老、激素調控和脅迫反應等過程中的重要調控作用,指出今后NAC轉錄因子的研究方向。

關鍵詞:植物;NAC轉錄因子;生長發育;脅迫;NAC生理功能

中圖分類號:S184?文獻標志碼: A

文章編號:1002-1302(2020)18-0044-10

收稿日期:2019-10-31

基金項目:江西省教育廳科技計劃(編號:GJJ180172、GJJ160387)。

作者簡介:榮?歡(1998—),男,江西萍鄉人,主要從事生物科學與生物技術研究。E-mail:962610432@qq.com。

通信作者:周?勇,博士,講師,主要從事植物功能基因組學研究,E-mail:yzhoujxan@163.com;王?飛,博士,副教授,主要從事微生物資源與蛋白質工程研究,E-mail:wangfei179@163.com。

植物在生長發育過程中極易受到逆境脅迫的影響。脅迫主要包括干旱、高鹽、低溫、高溫等非生物脅迫和蟲害、病原菌侵入等生物脅迫,這些脅迫通常會影響植物的正常生長發育。在長期的進化過程中,植物產生了一系列生理生化機制來適應、抵御或消除脅迫的影響。其中,基因表達調控是調節植物逆境脅迫最常見的一種方式。植物細胞感知逆境脅迫信號后,會通過某些信號途徑將信號傳遞給脅迫應答的轉錄因子(transcription factor,簡稱TF),轉錄因子可以通過其DNA結合結構域(DNA binding domain,簡稱DBD)和靶基因上游啟動子區域的特異DNA序列模體(順式作用元件)結合,從而調控靶基因在植物的不同組織、不同細胞或不同環境條件下的特異表達,從而激活植物抗逆反應,降低脅迫對植物造成的傷害[1-3]。由于轉錄因子在植物生長發育和應對脅迫等過程中具有重要的調控作用,因此對轉錄因子的研究一直是功能基因組研究的重要內容。近幾十年來,世界各國科研人員通過基因組測序和功能分析,相繼從不同植物中克隆到了大量的轉錄因子[4],希望通過研究它們的功能,來揭示植物的抗逆機制。

NAC轉錄因子是植物特有的一類轉錄因子家族,命名取自于矮牽牛(Petunia hybrida)的NAM(no apical meristem)基因、擬南芥(Arabidopsis thaliana)的ATAF1/2基因,以及CUC2(cup-shaped cotyledon)基因的首字母。1996年,Souer等研究人員從矮牽牛中克隆出第1個NAC轉錄因子家族成員NAM,它影響矮牽牛頂端分生組織的形成與分化[5]。隨后,NAC轉錄因子相繼在擬南芥、水稻、葡萄、小麥、大豆、木薯、番茄、黃瓜等物種中被發現(表1),是植物中最大的轉錄因子家族之一。很多研究表明,NAC轉錄因子不僅參與了植物根、莖、葉、花的生長發育、果實成熟、激素調控,還參與了生物及非生物脅迫等生理生化反應過程的調控[6-7]。

1?NAC轉錄因子的結構

NAC轉錄因子最顯著的結構特點是在蛋白質的N端存在1個高度保守的NAC結構域(約150~160個氨基酸),而C端是變化的轉錄調控區(transcriptional activation region,簡稱TAR)(圖1)。NAC結構域是NAC轉錄因子的結合域,可以分為5個亞結構域(A~E),其中亞結構域C和D高度保守且含有核定位信號,可能與DNA的結合有關,而亞結構域B和E則變化多樣,可能會賦予NAC不同的功能[9]。有研究表明,亞結構域E能參與調控植物發育時期或組織特異性,并能夠協同亞結構域D與DNA結合[49]。亞結構域A在不同的物種中也高度保守,可能與NAC蛋白形成二聚體有關[50]。NAC蛋白的C端具有高度的多樣性,但會頻繁出現一些簡單氨基酸的重復排列,例如Thr(蘇氨酸)、Ser(絲氨酸)、Pro(脯氨酸)、Glu(谷氨酸)或者酸性氨基酸殘基等,這是植物轉錄激活結構域的典型特征。這些簡單氨基酸的重復排列在NAC同一亞家族是保守的,在不同的亞家族之間卻有明顯的差異。一些特殊的NAC蛋白在C端會有一段跨膜區(transmembrane motifs,簡稱TMs),這種C端具有跨膜特性的NAC轉錄因子(NAC with transmembrane motif 1,簡稱NTM1)一般被稱為NTL(NTM1-like)蛋白,必須從膜上被釋放并轉運到核中才能行使調控功能[51-52]。有些NAC轉錄因子只有NAC結構域,缺少轉錄調控區;更有的NAC結構域在C端,轉錄調控區在N端,中間含有一個保守的鋅指結構。

通過X射線觀察擬南芥ANAC019的NAC結構域的晶體結構,發現它是以數個螺旋元件包圍一個螺旋狀的結構,并和β-折疊組成一種未知的結構[50],而且NAC結構域可通過鹽橋等作用形成一側帶正電荷的蛋白二聚體[50,53],這可能是它們結合DNA的基本形式。

2?NAC轉錄因子的生理功能

NAC轉錄因子因其在結構上有一定的共性和特性,其家族成員在功能上也有一定的共同點和多樣性。但在植物不同部位、生長的不同時期,特定的NAC轉錄因子發揮的作用也不盡相同。總體來說,NAC轉錄因子對植物生長調控主要表現在如下幾個方面。

2.1?參與植物分生組織和器官邊界的形成

矮牽牛NAM基因主要在分生組織和器官原基邊界的細胞內表達,nam突變體缺少莖頂端分生組織(shoot apical meristem,簡稱SAM),器官發育異常,導致幼苗大部分死亡,少部分存活下來的植株在成苗期花器官也會出現發育異常,說明NAM基因可能在分生組織器官原基的形成中起著一定的作用[5]。擬南芥AtNAM在胚胎SAM的整個區域均大量表達,暗示著參與AtNAM也參與SAM的形成[54]。CUC蛋白與矮牽牛NAM蛋白屬于同一亞家族,擬南芥cuc1cuc2雙基因突變體中子葉、萼片和雄蕊融合,難以形成SAM,而單基因的突變體卻沒有明顯的表型,說明它們參與植物頂端分生組織的形成,且存在功能的冗余[55]。進一步研究發現,CUC1在擬南芥胚的頂端分生組織和花器官原基的邊界處表達,處于STM(SHOOT MERISTEMLESS)基因的上游,可以激活很多SAM相關基因的表達,超量表達CUC1可以激活芽尖組織周緣細胞,誘導子葉不定芽的形成[56-57]。有趣的是,CUC1也可以通過一種不依賴STM的途徑促進SAM的形成,該途徑受到AS1(ASYMMETRIC1)和AS2基因的負調控[58]。此外,CUC1可以正調控LIGHT-DEPENDENT SHORT HYPOCOTYLS 4(LSH4)及其同源基因LSH3的表達,而在莖尖超量表達LSH4會抑制植物營養生長階段葉片的生長,以及生殖生長階段花中額外的芽或芽器官的形成[59]。CUC3基因主要在花器官原基邊界表達,其表達量會被CUC1和CUC2所促進,超表達CUC3能促進胚后期的莖分生組織和器官邊界的形成[60-61]。玉米ZmNAM1/2和ZmCUC3在胚芽鞘與葉原基的邊界處大量表達,參與莖尖分生組織的形成[62]。由此可見,植物NAM亞族基因在分生組織和器官邊界的形成中起著關鍵的作用。

2.2?調控根的發育

擬南芥NAC1基因受生長素(auxin)的誘導,主要在根尖和側根生長原基表達,超量表達NAC1能促進側根發育,而反義表達NAC1能抑制TIR1(transport inhibitor responsive protein 1)誘導的側根發育,而生長素應答因子AIR3(auxin-induced in rootcultures 3)和DBP(DNA-binding protein)基因表達也受到NAC1的誘導,說明NAC1可以介導生長素信號以促進側根的形成[63]。進一步研究表明,擬南芥SINAT5蛋白能促進E3泛素復合體與NAC1的連接,進而降低NAC1蛋白水平,減弱生長素信號,從而限制側根的發育和伸長[64]。OsNAC2也可以通過整合生長素和細胞分裂素(cytokinin)信號途徑來調控根的發育[65]。ANAC092/AtNAC2/ORE1基因也在根中特異表達,參與側根的形成與發育[66]。進一步研究表明,ANAC092可以結合ARF8(AUXIN RESPONSE FACTOR 8)和PIN4(PIN-FORMED 4)的啟動子,通過控制生長素信號途徑來負調控根的發育[67]。TaRNAC1是小麥根中特異表達的NAC轉錄因子,在根中超量表達TaRNAC1的轉基因小麥根長、生物量和干旱抗性明顯增加[68]。在擬南芥中超量表達一些來自于其他物種的NAC基因,也能促進側根的形成,如BnNAC14[69]、GmANC20[70]、GmNAC109[71]、CiNAC3和CiNAC4[72]基因等。

2.3?調節植物細胞次生壁的生長

一些NAC轉錄因子會調節細胞次生壁的生長。在擬南芥中,nst1nst2雙突變體均表現出花藥內皮層缺乏次生壁,花藥異常開裂,表明NST1(NAC SECONDARY WALL THICKENING PROMOTING FACTOR1)和NST2參與花粉花藥次生壁的形成,而且存在功能的冗余[73]。在擬南芥nst-1nst-3雙敲除轉基因植株中,除維管導管以外,維管束間纖維與木質部次生壁的加厚被完全抑制,表明NST1和NST3也參與調控木質組織中次生壁的正常形成[74],它們之間也存在部分功能的冗余[75]。苜蓿MtNST1是擬南芥NST1/2/3的同源基因,MtNST1的Tnt1逆轉座子插入突變體出現花粉囊無法裂開,維管素纖維不再木質化[76]。擬南芥SND1(SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1)在莖稈維管束間纖維和木質纖維中特異表達,異位超量表達SND1基因,會使非厚壁的正常細胞大量沉積次級細胞壁而成為厚壁細胞,表明SND1與纖維次級壁的厚度有關[77]。敲除SND1基因不能明顯抑制次級纖維壁的加厚,而snd1nst1雙突變體抑制的表型非常明顯,細胞中纖維素、木聚糖、木質素等成分含量明顯降低,說明SND1和NST1共同參與調控纖維素次生壁的生長[78]。擬南芥VND6(vascular-related NAC Domain 6)和VND7分別在主根的后生木質部和原生木質部中表達,超量表達VND6、VND7均能導致根的后生木質部細胞或原生木質部細胞發育異常,而抑制VND6、VND7的表達則會抑制后生木質部或原生木質部的發育,同時VND7能恢復snd1nst1雙突變體抑制次級纖維壁加厚的表型,說明它們在調控擬南芥根原生木質部導管的分化中起著關鍵作用[79]。進一步研究表明,SND1及其同源蛋白NST1、NST2、VND6和VND7通過調控下游基因MYB類蛋白因子(如MYB46、MYB58、MYB63等)的表達,最終激活次生壁的纖維素、木聚糖和木質素合成的相關基因(如LAC4等),促進不同類型細胞次生壁的生物合成[80-83]。此外,一些SND1的同源基因(如PtVNSs/PtrWNDs等)能夠恢復NST1和NST3雙突變引起的維管束間纖維細胞次生壁的缺陷,它們的超量表達會引起楊樹葉片和擬南芥幼苗的次生壁增厚[84-85]。水稻OsSWNs和玉米ZmSWNs也能互補擬南芥snd1nst1雙突變體在次生細胞壁加厚方面缺陷的表型[86]。這些結果表明,在植物界中與SND1同源的NAC轉錄因子調控次生壁的生物合成機制可能是普遍存在的。

NAC轉錄因子對植物次生壁生長有著雙向作用,既可能促進其生長,又可能抑制其生長。擬南芥ANAC012在開花莖和根的形成層區特異表達,超量表達ANAC012會顯著抑制木纖維中次生壁的形成,但輕微地增加了木質部導管的細胞壁厚度[87]。擬南芥XND1(xylem NAC domain 1)在木質部中高度表達,超量表達XND1的轉基因植株下胚軸原生木質部區域薄壁細胞的次生壁生長會受到明顯的抑制,顯示出極端矮化的表型[88]。

2.4?調控植物衰老

有研究表明,一些NAC轉錄因子能夠間接或直接地加速或延緩植物衰老過程。NAM-B1是野生二粒小麥的一個NAC轉錄因子,能正調控衰老,促進營養成分從營養器官向籽粒轉移[89]。AtNAP(NAC-like,activated by APETALA 3/PISTILLATA)是一個典型的葉片衰老相關基因,超量表達AtNAP的轉基因植株明顯早衰,atnap突變體則表現出延緩葉片衰老的表型[90]。進一步研究發現,AtNAP可以被脫落酸(abscisic acid,簡稱ABA)所誘導,可以和SAG113(SENESCENCE-ASSOCIATED GENE113)的啟動子結合,形成一個ABA-AtNAP-SAG113蛋白調控鏈來控制葉片衰老時的氣孔運動和失水速率,進而調控葉片衰老進程[91]。水稻中AtNAP的同源基因OsNAP可以互補atnap的表型,在調控水稻衰老發育過程中也發揮著重要作用[92-93]。此外,在金絲慈竹(Bambusa emeiensis ‘Viridiflavus)中的同源基因BeNAC1也能互補atnap的表型,在擬南芥中超量表達BeNAC1也會產生不同的早衰表型[94]。超量表達甜瓜CmNAC60基因的擬南芥轉基因植株葉片衰老也明顯加速[95]。另一個同源基因GhNAP也能通過調節ABA介導的葉片衰老途徑來調控棉花的產量和纖維質量[96]。擬南芥ANAC092/AtNAC2/ORE1[97-98]、ANAC032[99]等既能正調控依賴年齡的葉片衰老,也在鹽脅迫誘導的葉片衰老過程中起著重要的作用。一些NAC轉錄因子可以直接結合在葉綠素降解途徑相關基因的啟動子上,通過調節葉綠素的代謝來調控葉片衰老進程,如OsNAP[92]、ANAC016[100]、BrNAC055[101]、SlNAP2[102]等。大多數調控葉片衰老的NAC轉錄因子都是以正調控的方式來調控葉片衰老,但也有少量的NAC轉錄因子是以負調控的方式進行調控的,如ONAC106[103]、DRL1[104]等。

2.5?參與激素調控

很多NAC轉錄因子的表達量受到ABA的誘導,參與ABA的生物合成,或者介導ABA的信號轉導途徑。如擬南芥ATAF1可以直接調節ABA合成基因NCED3的表達,來調控ABA的生物合成[105]。擬南芥VNI2(VND-INTERACTING2)是一個NAC轉錄因子,其表達量受ABA誘導,可以結合RD(RESPONSIVE TO DEHYDRATION)和COR(COLD-REGULATED)基因的啟動子,通過調控RD和COR基因的表達量來介導鹽脅迫和葉片衰老途徑[106]。在擬南芥中超量表達ANAC072/RD26能提高ABA誘導相關基因和脅迫誘導相關基因的表達量,對ABA的敏感性增強,且增強了采后果實的抗逆性,而在ANAC072/RD26受到抑制的植株中這些基因的表達量同樣受到抑制,對ABA不敏感,表明ANAC072/RD26在脅迫應答和ABA信號轉導途徑中起著重要作用[107]。水稻SNAC2(stress-responsive NAC 2)基因也受到ABA的誘導表達,它的超量表達植株表現出耐冷和抗鹽的表型,并對ABA敏感[108]。此外,OsNAP也可以通過介導ABA的信號轉導途徑來增強水稻的抗逆性,在OsNAP的超量表達轉基因植株中,很多脅迫相關基因和脅迫相關轉錄因子的表達量明顯上升[109]。由此可見,介導ABA的信號轉導途徑的NAC轉錄因子多數與逆境信號傳導途徑有關。

NAC轉錄因子是茉莉酸(jasmonic acid,簡稱JA)信號的調控因子。超量表達ANAC072/RD26的轉基因植株也增強了對茉莉酸甲酯(methyl jasmonate,簡稱MeJA)的敏感性,因此ANAC072/RD26可能同時介導ABA和MeJA的信號轉導途徑[107]。擬南芥ATAF1是ABA信號通路的一個負調控因子,但也能誘導JA途徑相關防御信號基因的表達[110]。OsNAP也可能通過MeJA信號傳導途徑正調控水稻葉片衰老途徑[93]。NAC轉錄因子RIM1是水稻矮縮病毒繁殖的宿主因子,rim1突變體植株表現出根生長受抑制,編碼JA生物合成相關基因的表達量明顯上升,而且在JA處理下突變體植株和野生型植株一致,沒有內源JA的積累,說明RIM1是JA信號的負調控因子[111]。

NAC也可以參與生長素、細胞分裂素、乙烯和赤霉素(gibberellins,簡稱GA)等的信號轉導途徑[65-66,112]。擬南芥NAC1基因受生長素誘導并且介導生長素信號以促進側根生長發育[63]。擬南芥AtNAC2受高鹽誘導,這種誘導在乙烯超量突變體eto1-1中被增強,在乙烯不敏感突變體etr1-1、ein2-1和生長素敏感突變體tir1-1中受到抑制,而在ABA敏感突變體abi2-1、abi3-1和abi4-1中沒有顯著變化,說明AtNAC2的鹽脅迫響應參與了乙烯和生長素信號途徑,與ABA信號途徑無關[66]。在擬南芥中,NTL8(NTM 1-like 8)的表達受高鹽誘導和GA的抑制,NTL8可以經過不依賴ABA的GA途徑介導擬南芥種子萌發過程中鹽的調節[113]。

2.6?參與脅迫反應

植物在生長發育過程中極易受干旱、低溫、高溫、高鹽等非生物脅迫和蟲害、病原菌等生物脅迫的影響,植物細胞會產生對這些外界脅迫的感知,并通過多種復雜的信號傳導途徑將其傳遞給控制脅迫應答的轉錄因子,從而激活植物抗逆反應,降低逆境對植物造成的損害。NAC轉錄因子在這些過程中扮演著重要的角色。

很多NAC基因的表達量直接受到非生物逆境的調控,如大豆中有超過1/3(58/152)的NAC基因是潛在的脅迫響應基因[12]。在非生物脅迫中,絕大多數的報道集中在耐冷、耐旱和抗鹽等方面。在水稻中超量表達內源基因SNAC1[114]、OsNAC6 [115]、SNAC2 [108]、ONAC045 [116]、OsNAP [109]、ONAC106 [103]、ONAC022 [117]、OsNAC2 [118]等,或外源基因ATAF1 [119]、EcNAC67 [120]等,均能一定程度地表現出耐冷、耐旱和抗鹽的單一表型或者綜合表型。在擬南芥中異源超表達不同物種來源的NAC成員也有類似的結果[71,121-127]。絕大部分NAC是正調控脅迫反應,但也有少部分NAC能負調控脅迫反應。如OsNAC95在水稻抗旱和耐冷脅迫反應中表現出相反的角色,它可以負調控抗旱脅迫,正調控耐冷脅迫[128]。擬南芥ANAC069能通過降低活性氧(reactive oxygen species,簡稱ROS)的清除能力和脯氨酸含量,來負調控高鹽和滲透脅迫[129]。蘋果MdNAC029/MdNAP以C-repeat binding factor(CBF)依賴的方式負調控植物的抗冷能力[130]。玉米ZmNAC071也通過負調控ROS清除能力來負調控ABA反應和滲透脅迫[131]。NAC轉錄因子調控非生物脅迫反應絕大多數是通過ABA依賴的途徑來進行的,也可以依賴其他激素的信號轉導途徑,如JA [93,132-133]、GA/油菜素內酯(brassinolide,簡稱BR)[134]等。

一些報道表明,NAC轉錄因子也參與生物脅迫。如水稻OsNAC6對抵抗稻瘟病有正調控作用[115]。OsNAC19可能在MeJA信號途徑中參與水稻對稻瘟病菌的響應[135]。擬南芥中ATAF1 [136]和ATAF2 [137]分別對抗灰霉病和枯萎病有負調控作用。在大麥和擬南芥中超量表達ATAF1的同源基因HvNAC6可以增強耐滲透細胞對白粉病菌的抗性[138-139],而超量表達ATAF1在棉花中的同源基因GhATAF1卻增強了對灰葡萄孢菌的敏感性[132]。

3?展望

NAC家族轉錄因子是植物特有的一類轉錄因子,廣泛參與植物生長發育及脅迫反應。到目前為止,NAC轉錄因子已經在幾十種植物中被發現,但不同物種來源的NAC成員可能具有不同的生物學功能,如調控淀粉合成[140-141]、種子活力[142]、果實發育[143-144]、大豆抗毒素合成[145]、開花[146-147]、鋅的轉運[148]等。因此,廣泛研究NAC成員的功能不僅能揭示NAC蛋白的調控網絡,而且通過控制NAC基因或NAC蛋白的表達,提高作物的抗逆性,進而提升產量。

參考文獻:

[1]Singh K B,Foley R C,Onate-Sanchez L. Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology,2002,5(5):430-436.

[2]Chen W J,Tong Z. Networks of transcription factors with roles in environmental stress response[J]. Trends in Plant Science,2004,9(12):591-596.

[3]Huang G T,Ma S L,Bai L P,et al. Signal transduction during cold,salt,and drought stresses in plants[J]. Molecular Biology Reports,2012,39(2):969-987.

[4]Jin P,Zhang H,Kong L,et al. PlantTFDB 3.0:a portal for the functional and evolutionary study of plant transcription factors[J]. Nucleic Acids Research,2014,42:1182-1187.

[5]Souer E,Vanhouwelingen A,Kloos D,et al. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell,1996,85(2):159-170.

[6]Nakashima K,Takasaki H,Mizoi J,et al. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2012,1819(2):97-103.

[7]Shao H B,Wang H Y,Tang X L. NAC transcription factors in plant multiple abiotic stress responses:progress and prospects[J]. Frontiers in Plant Science,2015,6:902.

[8]Nuruzzaman M,Manimekalai R,Sharoni A M,et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene,2010,465(1/2):30-44.

[9]Ooka H,Satoh K,Doi K,et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research:an International Journal for Rapid Publication of Reports on Genes and Genomes,2003,10(6):239-247.

[10]Fang Y J,Jun Y,Xie K B,et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice[J]. Molecular Genetics and Genomics,2008,280(6):547-563.

[11]Hu R B,Guang Q,Kong Y Z,et al. Comprehensive analysis of NAC domain transcription factor gene family in populus trichocarpa[J]. BMC Plant Biology,2010,10(1):145.

[12]Dung T L,Nishiyama R,Watanabe Y,et al. Genome-wide survey and expression analysis of the Plant-Specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA Research,2011,18(4):263-276.

[13]Su H Y,Zhang S Z,Yuan X W,et al. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple[J]. Plant Physiology and Biochemistry,2013,71:11-21.

[14]Singh A K,Sharma V,Pal A K,et al. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.)[J]. DNA Research,2013,20(4):403-423.

[15]Shang H H,Li W,Zou C S,et al. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr: chromosomal location,structure,phylogeny,and expression patterns[J].J Integr Plant Biol,2013,55(7):663-676.

[16]Heng S,Hu M L,Li J Y,et al. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton[J]. BMC Plant Biology,2018,18(1):150.

[17]Puranik S,Sahu P P,Mandal S N,et al. Comprehensive genome-wide survey,genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.)[J]. PLoS One,2013,8(5):e64594.

[18]Nian W,Yu Z,Xin H P,et al. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera[J]. Plant Cell Reports,2013,32(1):61-75.

[19]Viswanathan S,Jagannadham P K,Parameswaran C,et al. NAC transcription factor genes:genome-wide identification,phylogenetic,motif and cis-regulatory element analysis in pigeonpea[Cajanus cajan (L.) Millsp.][J]. Molecular Biology Reports,2014,41(12):7763-7773.

[20]Liu T K,Song X M,Duan W K,et al. Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage[J]. Plant Molecular Biology Reporter,2014,32(5):1041-1056.

[21]Shiriga K,Sharma R,Kumar K,et al. Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize[J]. Meta Gene,2014,2:407-417.

[22]Cenci A,Guignon V,Roux N,et al. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots[J]. Plant Molecular Biology,2014,85(1/2):63-80.

[23]Ha C V,Esfahani M N,Watanabe Y,et al. Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development,dehydration and ABA treatments[J]. PLoS One,2014,9(12):e114107.

[24]Wei H,Wei Y X,Xia Z Q,et al. Genome-wide identification and expression analysis of the NAC transcription factor family in cassava[J]. PLoS One,2015,10(8):e0136993.

[25]Lei L,Song L,Wang Y J,et al. Genome-wide analysis and expression patterns of the NAC transcription factor family in Medicago truncatula[J]. Physiology and Molecular Biology of Plants,2017,23(2):343-356.

[26]Su H Y,Zhang S Z,Yin Y L,et al. Genome-wide analysis of NAM-ATAF1,2-CUC2 transcription factor family in Solanum lycopersicum[J]. Journal of Plant Biochemistry and Biotechnology,2015,24(2):176-183.

[27]Wu Z Y,Xu X Q,Xiong W D,et al. Genome-wide analysis of the NAC gene family in physic nut (Jatropha curcas L.)[J]. PLoS One,2015,10(6):e0131890.

[28]Jun Y,Zhang L H,Bo S,et al. Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon[J]. PLoS One,2015,10(3):e0122027.

[29]Zhuo X K,Zheng T C,Zhang Z Y,et al. Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume[J]. Genes,2018,9(10):494.

[30]Ma J H,Tong D D,Zhang W L,et al. Identification and analysis of the NAC transcription factor family in Triticum urartu[J]. Yi Chuan,2016,38(3):243-253.

[31]Guérin C,Roche J,Allard V,et al. Genome-wide analysis,expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.)[J]. PLoS One,2019,14(3):e0213390.

[32]Saidi M N,Mergby D,Brini F . Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum)[J]. Plant Physiology & Biochemistry,2017,112:117-128.

[33]Wang Y X,Liu Z W,Wu Z J,et al. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant[Camellia sinensis (L.) O. Kuntze][J]. PLoS One,2016,11(11):e0166727.

[34]Karanja B K,Xu L,Wang Y,et al. Genome-wide characterization and expression profiling of NAC transcription factor genes under abiotic stresses in radish(Raphanus sativus L.)[J].PeerJ,2017,5:e4172.

[35]Wei S W,Gao L W,Zhang Y D,et al. Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress[J]. Plant Cell Reports,2016,35(9):1827-1839.

[36]Baranwal V K,Khurana P. Genome-wide analysis,expression dynamics and varietal comparison of NAC gene family at various developmental stages in Morus notabilis[J]. Molecular Genetics and Genomics,2016,291(3):1305-1317.

[37]Liu M Y,Ma Z T,Sun W J,et al. Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum)[J]. BMC Genomics,2019,20(1):113.

[38]Wei L,Li X X,Chao J T,et al. NAC family transcription factors in tobacco and their potential role in regulating leaf senescence[J]. Frontiers in Plant Science,2018,9:1900.

[39]Hussain R M,Mohammed A,Xing F,et al. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars[J]. BMC Plant Biology,2017,17(1):55.

[40]Zhang X M,Yu H J,Sun C,et al. Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus[J]. Plant Physiology and Biochemistry,2017,113:98-109.

[41]Liu X W,Wang T,Bartholomew E S,et al. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber(Cucumis sativus L.)[J].Hortic Res,2018,5(1):31.

[42]Zhang Y J,Li D H,Wang Y,et al. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum[J]. PLoS One,2018,13(6):e0199262.

[43]Feng L,Guo X H,Liu J X,et al. Genome-wide identification,characterization,and expression analysis of the NAC transcription factor in Chenopodium quinoa[J]. Genes,2019,10(7):500.

[44]Diao W P,Snyder J,Wang S B,et al. Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.):chromosome location,phylogeny,structure,expression patterns,cis-elements in the promoter,and interaction network[J]. International Journal of Molecular Sciences,2018,19(4):1028.

[45]Moyano E,Martínez-Rivas F J,Blanco-Portales R,et al. Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits[J]. PLoS One,2018,13(5):e0196953.

[46]Gong X,Zhao L Y,Song X F,et al. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri)[J]. BMC Plant Biology,2019,19(1):161.

[47]Song C,Xin L,Zhang D W,et al. Genome-wide analysis of NAC gene family in Betula pendula[J]. Forests,2019,10(9):741.

[48]He Q,Liu Y H,Zhang M,et al. Genome-wide identification and expression analysis of the NAC transcription factor family in pineapple[J]. Tropical Plant Biology,2019,12(4):255-267.

[49]Olsen A N,Ernst H A,Leggio L L,et al. Preliminary crystallographic analysis of the NAC domain of ANAC,a member of the plant-specific NAC transcription factor family[J]. Acta Crystallographica Section D-Biological Crystallography,2004,60(1):112-115.

[50]Ernst H A,Olsen A N,Larsen S,et al. Structure of the conserved domain of ANAC,a member of the NAC family of transcription factors[J]. EMBO Reports,2004,5(3):297-303.

[51]Kim Y S,Kim S Y,Park J E,et al. A Membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. The Plant Cell,2006,18(11):3132-3144.

[52]Ya-Ni C,Slabaugh E,Brandizzi F. Membrane-tethered transcription factors in Arabidopsis thaliana:novel regulators in stress response and development[J]. Current Opinion in Plant Biology,2008,11(6):695-701.

[53]Chen Q F,Wang Q,Xiong L Z,et al. A structural view of the conserved domain of rice stress-responsive NAC1[J]. Protein & Cell,2011,2(1):55-63.

[54]Duval M,Hsieh T F,Kim S Y,et al. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily[J]. Plant Molecular Biology,2002,50(2):237-248.

[55]Aida M,Ishida T,Fukaki H,et al. Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant[J]. The Plant Cell,1997,9(6):841-857.

[56]Ken-Ichiro H,Takada S,Tasaka M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation[J]. The Plant Journal,2003,36(5):687-696.

[57]Takada S,Hibara K,Ishida T,et al. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation[J]. Development (Cambridge,England),2001,128(7):1127-1135.

[58]Ori N,Eshed Y,Chuck G,et al. Mechanisms that control knox gene expression in the Arabidopsis shoot[J]. Development (Cambridge,England),2000,127(24):5523-5532.

[59]Takeda S,Hanano K,Kariya A,et al. CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3,two members of the ALOG gene family,in shoot organ boundary cells[J]. Plant Journal,2011,66(6):1066-1077.

[60]Ken-Ichiro H,Karim M R,Takada S,et al. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation[J]. The Plant Cell,2006,18(11):2946-2957.

[61]Vroemen C W,Mordhorst A P,Albrecht C,et al. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis[J]. Plant Cell,2003,15(7):1563-1577.

[62]Zimmermann R,Werr W. Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues from Zea mays L.[J]. Plant Molecular Biology,2005,58(5):669-685.

[63]Xie Q,Frugis G,Colgan D F,et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J]. Genes & Development,2000,14(23):3024-3036.

[64]Qi X,Hui-Shan G,Dallman G,et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature,2002,419(693):167-170.

[65]Mao C,He J,Liu L,et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development[J]. Plant Biotechnology Journal,2019,18(2):429-442.

[66]He X J,Mu R L,Cao W H,et al. AtNAC2,a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development[J]. The Plant Journal,2005,44(6):903-916.

[67]Xi D,Xu C,Wang Y X,et al. Arabidopsis ANAC092 regulates auxin-mediated root development by binding to the ARF8 and PIN4 promoters[J]. Journal of Integrative Plant Biology,2019,61(9):1015-1031.

[68]Chen D,Chai S C,Mcintyre C L,et al. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length,biomass and drought tolerance[J]. Plant Cell Reports,2018,37(2):225-237.

[69]Hegedus D,Yu M,Baldwin D,et al. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress[J]. Plant Molecular Biology,2003,53(3):383-397.

[70]Hao Y J,Wei W,Song Q X,et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. The Plant Journal,2011,68(2):302-313.

[71]Yang X F,Kim M Y,Ha J M,et al. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants[J]. Frontiers in Plant Science,2019,10:1036.

[72]Han X M,Feng Z Q,Xing D,et al. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis[J]. BMC Plant Biology,2015,15(1):208.

[73]Mitsuda N,Seki M,Shinozaki K,et al. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence[J]. The Plant Cell,2005,17(11):2993-3006.

[74]Mitsuda N,Iwase A,Hiroyuki Y,et al. NAC transcription factors,NST1 and NST3,are key regulators of the formation of secondary walls in woody tissues of Arabidopsis[J]. The Plant Cell,2007,19(1):270-280.

[75]Mitsuda N,Ohme-Takagi M. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity[J]. The Plant Journal,2008,56(5):768-778.

[76]Zhao X,Gallego-Giraldo L,Wang H Z,et al. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula[J]. The Plant Journal,2010,63(1):100-114.

[77]Zhong R Q,Demura T,Ye Z H. SND1,a NAC domain transcription factor,is a key regulator of secondary wall synthesis in fibers of Arabidopsis[J]. The Plant Cell,2006,18(11):3158-3170.

[78]Zhong R Q,Richardson E A,Ye Z H. Two NAC domain transcription factors,SND1 and NST1,function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis[J]. Planta,2007,225(6):1603-1611.

[79]Yamaguchi M,Mitsuda N,Ohtani M,et al. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation[J]. The Plant Journal,2011,66(4):579-590.

[80]Zhong R Q,Richardson E A,Ye Z H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis[J]. The Plant Cell,2007,19(9):2776-2792.

[81]Mccarthy R L,Zhong R,Ye Z H. MYB83 is a direct target of SND1 and Acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. Plant and Cell Physiology,2009,50(11):1950-1964.

[82]Zhou J L,Lee C,Zhong R Q,et al. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis[J]. The Plant Cell,2009,21(1):248-266.

[83]Zhong R Q,Lee C,Zhou J L,et al. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. The Plant Cell,2008,20(10):2763-2782.

[84]Zhong R,Lee C,Ye Z H. Functional characterization of poplar wood-associated NAC domain transcription factors[J]. Plant Physiology,2010,152(2):1044-1055.

[85]Ohtani M,Nishikubo N,Bo X,et al. A NAC domain protein family contributing to the regulation of wood formation in poplar[J]. The Plant Journal,2011,67(3):499-512.

[86]Zhong R,Lee C,Mccarthy R L,et al. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors[J]. Plant and Cell Physiology,2011,52(10):1856-1871.

[87]Jae-Heung K,Seung H Y,Andrew H P,et al. ANAC012,a member of the plant-specific NAC transcription factor family,negatively regulates xylary fiber development in Arabidopsis thaliana[J]. The Plant Journal,2007,50(6):1035-1048.

[88]Zhao C S,Avci U,Emily H G,et al. XND1,a member of the NAC domain family in Arabidopsis thaliana,negatively regulates lignocellulose synthesis and programmed cell death in xylem[J]. The Plant Journal,2007,53(3):425-436.

[89]Uauy C,Distelfeld A,Fahima T,et al. A NAC gene regulating senescence improves grain protein,Zinc,and Iron content in wheat[J]. Science,2006,314(583):1298-1301.

[90]Guo Y F,Gan S S. AtNAP,a NAC family transcription factor,has an important role in leaf senescence[J]. The Plant Journal:for Cell and Molecular Biology,2006,46(4):601-612.

[91]Zhang K W,Gan S S. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves[J]. Plant Physiology,2012,158(2):961-969.

[92]Liang C Z,Wang Y Q,Zhu Y N,et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(27):10013-10018.

[93]Yong Z,Huang W F,Li L,et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Biology,2013,13(1):132.

[94]Chen Y X,Kai Q,Kuai B K,et al. Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis‘Viridiflavus)[J]. Physiologia Plantarum,2011,142(4):361-371.

[95]Cao S X,Zhang Z B,Wang C H,et al. Identification of a novel melon transcription factor CmNAC60 as a potential regulator of leaf senescence[J]. Genes,2019,10(8):584.

[96]Kai F,Bibi N,Gan S S,et al. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum[J]. Journal of Experimental Botany,2015,66(15):4669-4682.

[97]Kim J H,Woo H R,Kim J,et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis[J]. Science,2009,323(5917):1053-1057.

[98]Balazadeh S,Siddiqui H,Allu A D,et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence[J]. The Plant Journal:for Cell and Molecular Biology,2010,62(2):250-264.

[99]Mahmood K,El-Kereamy A,Sung-Hyun K,et al. ANAC032 positively regulates age-dependent and stress-induced senescence in Arabidopsis thaliana[J]. Plant and Cell Physiology,2016,57(10):2029-2046.

[100]Sakuraba Y,Su-Hyun H,Sang-Hwa L,et al. Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription[J]. Plant Cell Reports,2016,35(1):155-166.

[101]Fan Z Q,Tan X L,Chen J W,et al. BrNAC055,a novel transcriptional activator,regulates leaf senescence in Chinese flowering cabbage by modulating reactive oxygen species production and chlorophyll degradation[J]. Journal of Agricultural and Food Chemistry,2018,66(36):9399-9408.

[102]Ma X M,Zhang Y J,Veronika T,et al. The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato[J]. Plant Physiology,2018,177(3):1286-1302.

[103]Sakuraba Y,Piao W L,Lim J H,et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle[J]. Plant and Cell Physiology,2015,56(12):2325-2339.

[104]Zhu Z G,Li G R,Yan C H,et al. DRL1,encoding a NAC transcription factor,is involved in leaf senescence in grapevine[J]. International Journal of Molecular Sciences,2019,20(11):2678.

[105]Jensen M K,Lindemose S,Masi F D,et al. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana[J]. FEBS Open Bio,2013,3(1):321-327.

[106]Yang S D,Seo P J,Yoon H K,et al. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes[J]. The Plant Cell,2011,23(6):2155-2168.

[107]Fujita M,Fujita Y,Maruyama K,et al. A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant Journal,2004,39(6):863-876.

[108]Hu H,You J,Fang Y,et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Molecular Biology,2008,67(1/2):169-181.

[109]Chen X,Wang Y F,Lv B,et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway[J]. Plant and Cell Physiology,2014,55(3):604-619.

[110]Lu P L,Chen N Z,An R,et al. A novel drought-inducible gene,ATAF1,encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis[J]. Plant Molecular Biology,2007,63(2):289-305.

[111]Yoshii M,Yamazaki M,Rakwal R,et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. The Plant Journal,2010,61(5):804-815.

[112]Xu C,Lu S C,Wang Y F,et al. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice[J]. The Plant Journal,2015,82(2):302-314.

[113]Kim S G,Lee A K,Yoon H K,et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal,2008,55(1):77-88.

[114]Hu H,Dai M,Yao J,et al. Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(35):12987-12992.

[115]Nakashima K,Tran L S,Van Nguyen D,et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. The Plant Journal,2007,51(4):617-630.

[116]Zheng X N,Chen B,Lu G J,et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochemical and Biophysical Research Communications,2009,379(4):985-989.

[117]Hong Y B,Zhang H J,Huang L,et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Frontiers in Plant Science,2016,7:4.

[118]Shen J B,Lv B,Luo L Q,et al. The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice[J]. Scientific Reports,2017,7(1):40641.

[119]Liu Y C,Jie S,Wu Y R. Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice[J]. Journal of Plant Research,2016,129(5):955-962.

[120]Rahman H,Ramanathan V,Nallathambi J,et al. Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice[J]. BMC Biotechnology,2016,16(S1):35.

[121]Guan H R,Xin L,Fei N,et al. OoNAC72,a NAC-Type Oxytropis ochrocephala transcription factor,conferring enhanced drought and salt stress tolerance in Arabidopsis[J]. Frontiers in Plant Science,2019,10:890.

[122]Pang X Y,Xue M,Ren M Y,et al. Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses[J]. Genetics and Molecular Biology,2019,42(3):624-634.

[123]Yong Y,Zhang Y,Lyu Y. A Stress-Responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis[J]. International Journal of Molecular Sciences,2019,20(13):3225.

[124]Borgohain P,Saha B,Agrahari R,et al. SlNAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism[J]. Protoplasma,2019,256(4):1065-1077.

[125]He K,Zhao X,Chi X Y,et al. A novel Miscanthus NAC transcription factor MlNAC10 enhances drought and salinity tolerance in transgenic Arabidopsis[J]. Journal of Plant Physiology,2019,233:84-93.

[126]Yang X W,Kang H,Chi X Y,et al. Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Science,2018,277:229-241.

[127]Cao H S,Li W,Muhammad A N,et al. Ectopic expression of pumpkin NAC transcription factor CmNAC1 improves multiple abiotic stress tolerance in Arabidopsis[J]. Frontiers in Plant Science,2017,8:2052.

[128]Lei H,Hong Y B,Zhang H J,et al. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biology,2016,16(1):203.

[129]He L,Shi X X,Wang Y M,et al. Arabidopsis ANAC069 binds to C[A/G]CG[T/G]sequences to negatively regulate salt and osmotic stress tolerance[J].Plant Mol Biol, 2017,93(4/5):369-387.

[130]An J P,Rui L,Qu F J,et al. An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway[J]. Journal of Plant Physiology,2018,221:74-80.

[131]Lin H,Jing B,Xu J Y,et al. Novel maize NAC transcriptional repressor ZmNAC071 confers enhanced sensitivity to ABA and osmotic stress by downregulating stress-responsive genes in transgenic Arabidopsis[J]. Journal of Agricultural and Food Chemistry,2019,67(32):8905-8918.

[132]Xin H,Zhu L F,Lian X,et al. GhATAF1,a NAC transcription factor,confers abiotic and biotic stress responses by regulating phytohormonal signaling networks[J]. Plant Cell Reports,2016,35(10):2167-2179.

[133]Fang L C,Su L Y,Sun X M,et al. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis[J]. Journal of Experimental Botany,2016,67(9):2829-2845.

[134]Shahnejat-Bushehri S,Tarkowska D,Sakuraba Y,et al. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling[J]. Nature Plants,2016,2(3):16013.

[135]Lin R M,Zhao W S,Meng X B,et al. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea[J]. Plant Science,2007,172(1):120-130.

[136]Wang X E,Basnayake B S,Zhang H J,et al. The Arabidopsis ATAF1,a NAC transcription factor,is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens[J]. Molecular Plant-Microbe Interactions,2009,22(10):1227-1238.

[137]Delessert C,Kazan K,Wilson I W,et al. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis[J]. The Plant Journal,2005,43(5):745-757.

[138]Chen Y J,Perera V,Christiansen M W,et al. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew[J]. Plant Molecular Biology,2013,83(6):577-590.

[139]Jensen M K,Jesper H R,Gregersen P L,et al. The HvNAC6 transcription factor:a positive regulator of penetration resistance in barley and Arabidopsis[J]. Plant Molecular Biology,2007,65(1/2):137-150.

[140]Peng X J,Wang Q,Yu W,et al. A maize NAC transcription factor,ZmNAC34,negatively regulates starch synthesis in rice[J]. Plant Cell Reports,2019,38(12):1473-1484.

[141]Zhang Z Y,Dong J Q,Chen J,et al. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(23):11223-11228.

[142]Li W J,Xue H,Yi C,et al. A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal[J]. New Phytologist,2020,225(4):1667-1680.

[143]Gao Y,Wei W,Zhao X D,et al. A NAC transcription factor,NOR-like1,is a new positive regulator of tomato fruit ripening[J]. Horticulture Research,2018,5(1):75.

[144]Carrasco-Orellana C,Stappung Y,Mendez-Yaez A,et al. Characterization of a ripening-related transcription factor FcNAC1 from Fragaria chiloensis fruit[J]. Scientific Reports,2018,8(1):10524.

[145]Jahan M A,Harris B,Lowery M,et al. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean[J]. BMC Genomics,2019,20(1):149.

[146]Guo S Y,Dai S J,Prashant K S,et al. A membrane-bound NAC-like transcription factor OsNTL5 represses the flowering in Oryza sativa[J]. Frontiers in Plant Science,2018,9:555.

[147]Zhang H H,Cui X Y,Guo Y X,et al. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time[J]. Plant Molecular Biology,2018,98(6):471-493.

[148]Bin Z,Huo D A,Hong X X,et al. The Salvia miltiorrhiza NAC transcription factor SmNAC1 enhances Zinc content in transgenic Arabidopsis[J]. Gene,2019,688:54-61.

猜你喜歡
植物
誰是最好的植物?
為什么植物也要睡覺
長得最快的植物
各種有趣的植物
植物也會感到痛苦
會喝水的植物
植物的防身術
把植物做成藥
哦,不怕,不怕
將植物穿身上
主站蜘蛛池模板: 久久综合亚洲鲁鲁九月天| 韩日免费小视频| 亚洲伊人久久精品影院| 国产簧片免费在线播放| 国产又粗又猛又爽视频| 无码免费的亚洲视频| 久久亚洲国产视频| 香蕉视频国产精品人| 丰满人妻中出白浆| 97精品国产高清久久久久蜜芽| 91亚洲国产视频| 国产视频入口| 国产免费高清无需播放器| 成人综合在线观看| 国产亚洲精品在天天在线麻豆 | 久久婷婷色综合老司机| 国产激爽大片高清在线观看| 成人在线综合| www.精品国产| 亚洲欧洲国产成人综合不卡| 亚洲欧美成aⅴ人在线观看| 亚洲综合网在线观看| 99久久精品免费视频| 99热这里只有精品国产99| 国产大片黄在线观看| 亚洲成aⅴ人在线观看| 亚洲欧美h| 成人精品免费视频| 亚洲最猛黑人xxxx黑人猛交| 国产av无码日韩av无码网站| 香蕉久久国产超碰青草| 亚洲二区视频| 狠狠做深爱婷婷综合一区| 色网站在线免费观看| 亚洲欧美另类专区| 日韩久草视频| 国产午夜无码片在线观看网站 | 日韩A∨精品日韩精品无码| 亚洲三级网站| 2020极品精品国产 | 一级毛片免费观看不卡视频| 日韩在线观看网站| 亚洲自偷自拍另类小说| 国产熟女一级毛片| 亚洲国产av无码综合原创国产| 国产精品黑色丝袜的老师| 日本免费新一区视频| 国产电话自拍伊人| 99热这里只有精品5| 日韩欧美视频第一区在线观看| 免费在线a视频| av大片在线无码免费| 无码精品一区二区久久久| 在线观看亚洲精品福利片 | 日韩第九页| 亚洲精品无码抽插日韩| 特级aaaaaaaaa毛片免费视频 | 国产男女免费视频| 伊人久久婷婷| 在线亚洲精品自拍| 午夜丁香婷婷| 老熟妇喷水一区二区三区| 国产微拍精品| 日本爱爱精品一区二区| 亚洲免费三区| 91久久偷偷做嫩草影院| 久久免费看片| 国产精品女同一区三区五区| 天天干伊人| 中文字幕在线播放不卡| 日本精品视频一区二区 | 国产乱码精品一区二区三区中文 | 日韩在线欧美在线| 成人亚洲天堂| 亚洲精品不卡午夜精品| 色婷婷综合激情视频免费看| 国产视频a| 伊人久综合| 成人欧美在线观看| 国产不卡一级毛片视频| 97se亚洲综合在线天天| 日本草草视频在线观看|