王 建,安美生,尹必峰,王 斌,陳 沛
柴油-航空煤油寬餾程混合燃料對(duì)柴油機(jī)燃燒與排放的影響
王 建,安美生,尹必峰,王 斌,陳 沛
(江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 212013)
為了研究柴油-航空煤油寬餾程混合燃料對(duì)柴油機(jī)燃燒與排放的影響,按照中國(guó)3號(hào)航空煤油(rocket propellant 3, RP3)的摻混比(體積比)分別為20%、40%與60%與國(guó)VI柴油進(jìn)行混合,配制3種具有不同理化特性的柴油-RP3寬餾程混合燃料(D80K20、D60K40與D40K60),并通過臺(tái)架試驗(yàn),研究了最大扭矩轉(zhuǎn)速2700 r/min所對(duì)應(yīng)的100%、50%與10%負(fù)荷工況(分別記為A、B、C工況)下,D100、D80K20、D60K40和D40K60對(duì)柴油機(jī)缸內(nèi)工作過程、排放、顆粒物濃度與粒徑分布的影響規(guī)律。結(jié)果表明,3種工況下,與D100相比,RP3摻混比增加到60%時(shí),缸內(nèi)最大壓力的變化范圍小于0.2 MPa,預(yù)混燃燒放熱率峰值增大13.21~27.43 J/°CA,滯燃期延長(zhǎng)2.19~2.53 °CA,燃燒持續(xù)期縮短1.73~1.91 °CA,預(yù)混燃燒累積放熱百分比增加4.66%~5.28%,缸內(nèi)最高溫度的上升幅度小于35 K,與放熱率峰值和最大燃燒壓力相對(duì)應(yīng)的曲軸轉(zhuǎn)角后移1.67~2.23 °CA,有效熱效率上升0.15%~0.46%。柴油-RP3寬餾程混合燃料能夠顯著降低柴油機(jī)碳煙排放,并且降低效果隨著柴油機(jī)負(fù)荷的增加和RP3摻混比的增大更加明顯,但對(duì)NOX排放沒有明顯的影響,與D100相比,柴油機(jī)在3種工況下燃用D40K60時(shí)的碳煙排放分別降低53.6%、44.1%、35%,NOX排放的上升幅度均小于2%,核態(tài)顆粒物數(shù)量濃度上升12.5%~90.6%,積聚態(tài)顆粒物數(shù)量濃度、顆粒物總數(shù)量濃度、顆粒物表面積濃度和總質(zhì)量濃度分別降低20.1%~45.8%、14.2%~42.1%、32.5%~41.6%、28.5%~38.8%,且積聚態(tài)顆粒物的粒徑朝小粒徑方向移動(dòng)。試驗(yàn)結(jié)果表明,柴油-RP3寬餾程混合燃料對(duì)柴油機(jī)燃燒與排放有重要的影響,能明顯改善柴油機(jī)碳煙與NOX排放之間的trade-off關(guān)系,并且在降低柴油機(jī)顆粒物總數(shù)量濃度、總質(zhì)量濃度以及表面積濃度方面具有較為顯著的效果,有利于降低柴油機(jī)DFP載體上的顆粒物堆積、延長(zhǎng)DFP再生周期。
柴油機(jī);燃燒;排放;柴油-航空煤油混合燃料;寬餾程;顆粒濃度;粒徑
柴油機(jī)由于良好的動(dòng)力性、經(jīng)濟(jì)性和可靠性,在國(guó)民生產(chǎn)領(lǐng)域中占據(jù)著重要的地位。近年來,隨著其產(chǎn)量的快速增長(zhǎng),尾氣排放對(duì)環(huán)境的污染越來越嚴(yán)重,相關(guān)的排放法規(guī)也越來越嚴(yán)格,如何有效降低柴油機(jī)的尾氣排放特別是顆粒物排放受到了廣泛的關(guān)注[1-4]。研究表明,柴油機(jī)的污染物排放與燃料的性質(zhì)有著極其密切的關(guān)系,通過燃料的設(shè)計(jì)與改進(jìn),是優(yōu)化柴油機(jī)缸內(nèi)工作過程和降低尾氣排放的一種重要手段[5-8]。
JP8航空煤油及其混合燃料是國(guó)外當(dāng)前的研究熱點(diǎn)之一[9-11]。Lee等[12]研究發(fā)現(xiàn)在柴油機(jī)中燃用JP8可以顯著降低排氣煙度,研究也發(fā)現(xiàn)生物柴油-JP8-柴油混合燃料對(duì)于降低柴油機(jī)NOX排放具有一定的效果[13]。然而,國(guó)內(nèi)關(guān)于航空煤油及其混合燃料對(duì)柴油機(jī)燃燒與排放方面的研究較少,而且國(guó)內(nèi)常用的RP3航空煤油與國(guó)外JP8航空煤油在理化性質(zhì)等方面具有較為顯著的差別。此外,相關(guān)研究顯示,寬餾程燃料在實(shí)現(xiàn)柴油機(jī)高效率和低排放燃燒方面具有一定的優(yōu)勢(shì)[14-16]。Du等[17]研究了汽油/柴油混合燃料對(duì)柴油機(jī)微粒排放的影響,研究發(fā)現(xiàn),汽油/柴油混合燃料使柴油機(jī)微粒數(shù)量濃度分布曲線中的核態(tài)微粒與積聚態(tài)微粒數(shù)量濃度峰值均向小粒徑方向移動(dòng)。王喬等[18]研究了汽油/柴油混合燃料對(duì)柴油機(jī)預(yù)混燃燒及排放的影響,結(jié)果表明,提高汽油摻入比例,可有效拓展柴油機(jī)實(shí)現(xiàn)預(yù)混壓燃的負(fù)荷范圍,能夠在不引起NOX增加的前提下顯著降低排氣煙度。然而,現(xiàn)有研究主要集中于汽油/柴油混合燃料對(duì)柴油機(jī)燃燒與排放的影響,關(guān)于柴油-RP3寬餾程混合燃料燃燒與排放方面的研究很少,對(duì)于柴油機(jī)燃用柴油-RP3寬餾程混合燃料的顆粒物濃度以及粒徑分布等方面的研究更是鮮有報(bào)道。與汽油相比,RP3的表面張力和運(yùn)動(dòng)黏度更高,對(duì)柴油機(jī)噴油系統(tǒng)等零部件的潤(rùn)滑效果可能造成的不利影響更小,因此,有必要研究柴油-RP3寬餾程混合燃料對(duì)柴油機(jī)燃燒與排放的影響。若能夠?qū)崿F(xiàn)柴油-RP3寬餾程燃料在柴油機(jī)中的應(yīng)用,那么柴油的餾程可以得到拓寬,這對(duì)提高柴油產(chǎn)量、減少環(huán)境污染等具有重要意義。
本文以國(guó)Ⅵ柴油與RP3航空煤油作為基礎(chǔ)燃料,配制了具有不同理化特性的柴油-RP3寬餾程混合燃料,通過臺(tái)架試驗(yàn),研究了RP3摻混比對(duì)柴油機(jī)缸內(nèi)工作過程、排放、顆粒物濃度和粒徑分布的影響規(guī)律,以期為實(shí)現(xiàn)柴油機(jī)的高效與清潔燃燒提供新的思路與試驗(yàn)依據(jù)。
試驗(yàn)中以國(guó)Ⅵ柴油與RP3航空煤油作為基礎(chǔ)燃料,按照不同的RP3摻混比與柴油進(jìn)行混合,配制具有不同理化性質(zhì)的柴油-RP3寬餾程混合燃料。與柴油相比,RP3的運(yùn)動(dòng)黏度與表面張力較小,十六烷值較低,當(dāng)混合燃料中RP3的摻混比較大時(shí),可能會(huì)對(duì)柴油機(jī)的燃油噴射系統(tǒng)產(chǎn)生不利影響,而且燃料的著火性會(huì)變差,因此在本試驗(yàn)中,按照RP3摻混比20%、40%和60%與柴油進(jìn)行混合,配制了3種具有不同理化性質(zhì)的柴油-RP3混合燃料,分別記為D80K20、D60K40和D40K60,純柴油記為D100。混合燃料的理化參數(shù)根據(jù)文獻(xiàn)[19-20]計(jì)算得到,結(jié)果如表1所示。

表1 燃料理化特性計(jì)算值
注:T10、T50與T90分別是10%、50%和90%的餾出溫度,℃;FBP為終餾點(diǎn)溫度,℃;D表示柴油,K表示航空煤油,數(shù)字表示各自的摻混比。下同。
Note: T10, T50 and T90 are respectively 10%, 50% and 90% distil-off temperature, ℃. FBP is the final boiling point temperature,℃. D stands for diesel, K for aviation kerosene, and the numbers represent their respective mixing ratios. The same below.
試驗(yàn)樣機(jī)為電控單體泵單缸風(fēng)冷直噴式柴油機(jī),其基本參數(shù)如表2所示。試驗(yàn)中采用AVL GH14P缸壓傳感器進(jìn)行氣缸壓力的測(cè)量,壓力信號(hào)經(jīng)KISLER 5011電荷放大器放大并傳輸?shù)紸VL INDIMODUL 622燃燒分析儀中,該燃燒分析儀可以通過內(nèi)部程序?qū)Ω讐簲?shù)據(jù)進(jìn)行分析和計(jì)算,進(jìn)而得到瞬時(shí)放熱率、累積放熱量、以及缸內(nèi)溫度等數(shù)據(jù)。測(cè)功機(jī)和油耗儀分別采用杭州中成公司的CWAC-YVP-15-50/2交流電力測(cè)功機(jī)(15 kW)和MCS-960油耗儀,尾氣排放和煙度分別采用HORIBA MEXA 7200D尾氣分析儀與AVL 415s濾紙煙度計(jì)進(jìn)行測(cè)量,顆粒物濃度和粒徑分布采用TSI公司的3090-EEPS粒徑分析儀進(jìn)行測(cè)量,粒徑測(cè)量范圍為5.6~560 nm。柴油機(jī)整機(jī)性能試驗(yàn)臺(tái)架如圖1所示。

表2 試驗(yàn)樣機(jī)基本參數(shù)
試驗(yàn)方案及試驗(yàn)條件如表3所示。選取排放惡劣的典型工況進(jìn)行研究,轉(zhuǎn)速2 700 r/min,負(fù)荷率分別為100%、50%和10%,代表大、中、小3種負(fù)荷,分別記為工況A、工況B和工況C。在試驗(yàn)過程中,設(shè)定曲軸轉(zhuǎn)角信號(hào)分辨率為0.2 °CA,保持柴油機(jī)在同一工況下燃用D100、D80K20、D60K40和D40K60的噴油定時(shí)與噴油脈寬不變。為了保證試驗(yàn)結(jié)果的可比性,在試驗(yàn)測(cè)量前首先對(duì)發(fā)動(dòng)機(jī)進(jìn)行預(yù)熱,待機(jī)油溫度達(dá)到設(shè)定值后,再進(jìn)行缸內(nèi)壓力、小時(shí)耗油量、排放、顆粒物濃度和粒徑分布數(shù)據(jù)的采集。為了減小測(cè)量誤差,在每種試驗(yàn)工況下,分別連續(xù)采集200個(gè)循環(huán)的缸壓數(shù)據(jù),取平均值進(jìn)行計(jì)算和分析,顆粒物濃度和粒徑分布以60 s為1個(gè)測(cè)量時(shí)間段進(jìn)行采集并取其平均值進(jìn)行計(jì)算。

1.燃油箱 2.油耗儀 3.柴油機(jī) 4.空氣濾清器 5.測(cè)功機(jī)控制系統(tǒng) 6.測(cè)功機(jī) 7.電荷放大器 8.燃燒分析儀 9.電腦 10.煙度計(jì) 11.排放測(cè)試分析儀 12.顆粒物粒徑分析儀

表3 試驗(yàn)方案與試驗(yàn)條件
3.1.1 缸壓與放熱率
柴油機(jī)在A、B、C工況下分別燃用D100、D80K20、D60K40和D40K60的缸壓與瞬時(shí)放熱率曲線如圖2所示。可以看出,隨著RP3摻混比的增加,缸內(nèi)燃燒壓力和瞬時(shí)放熱率在A、B、C 工況下的變化趨勢(shì)是一致的:缸內(nèi)燃燒壓力峰值變化不大,預(yù)混燃燒放熱率峰值增大,擴(kuò)散燃燒放熱率峰值減小,與缸內(nèi)燃燒壓力峰值及預(yù)混和擴(kuò)散燃燒放熱率峰值相對(duì)應(yīng)的相位后移。以工況A為例,與D100相比,當(dāng)在柴油機(jī)中燃用D40K60時(shí),缸內(nèi)燃燒壓力峰值由7.14變?yōu)?.13 MPa,燃燒壓力峰值所對(duì)應(yīng)的相位后移2.07 °CA,預(yù)混燃燒放熱率峰值由103.85增大至128.97 J/(°CA),擴(kuò)散燃燒放熱率峰值由54.15減小至43.69 J /(°CA),預(yù)混與擴(kuò)散燃燒放熱率峰值所對(duì)應(yīng)的相位分別后移2.15和1.98 °CA。這主要是因?yàn)椋阂环矫妫S著RP3摻混比的增加,柴油-RP3寬餾程混合燃料的十六烷值降低,滯燃期變長(zhǎng)(圖3a),在滯燃期內(nèi)形成的可燃混合氣的數(shù)量增加,使得預(yù)混燃燒放熱率峰值增大,與此同時(shí),十六烷值降低使得燃燒始點(diǎn)推遲,導(dǎo)致與缸內(nèi)燃燒壓力峰值及預(yù)混與擴(kuò)散燃燒放熱率峰值所對(duì)應(yīng)的相位后移;另一方面,燃燒過程發(fā)生在活塞下行階段,雖然RP3摻混比的增加使得預(yù)混燃燒放熱率峰值增大,進(jìn)而會(huì)導(dǎo)致柴油機(jī)缸內(nèi)壓力上升,但預(yù)混燃燒放熱率峰值所對(duì)應(yīng)的相位更加遠(yuǎn)離上止點(diǎn),此時(shí)氣缸容積增大,導(dǎo)致缸內(nèi)壓力降低,這兩方面的綜合影響最終導(dǎo)致柴油機(jī)缸內(nèi)燃燒壓力峰值變化不大。對(duì)工況C而言,由于柴油機(jī)負(fù)荷小,噴射進(jìn)入氣缸內(nèi)的燃油量很少,并且氣缸內(nèi)的溫度低,滯燃期長(zhǎng),絕大部分燃油在預(yù)混燃燒階段燃燒完畢,沒有出現(xiàn)明顯的擴(kuò)散燃燒放熱率峰值,如圖2c所示。

注:ATDC表示上止點(diǎn)后。
3.1.2 滯燃期與燃燒持續(xù)期
RP3摻混比對(duì)柴油機(jī)缸內(nèi)燃燒的滯燃期與燃燒持續(xù)期的影響如圖3所示。定義滯燃期為噴油始點(diǎn)與CA10之間的曲軸轉(zhuǎn)角,燃燒持續(xù)期為CA10和CA90之間的曲軸轉(zhuǎn)角,其中CA10和CA90分別代表累計(jì)放熱量占總放熱量的10%和90%所對(duì)應(yīng)的曲軸轉(zhuǎn)角。

圖3 RP3摻混比對(duì)滯燃期與燃燒持續(xù)期的影響
從圖3可以看出,隨著RP3摻混比的增加,滯燃期變長(zhǎng),燃燒持續(xù)期縮短。與D100相比,柴油機(jī)在A、B、C工況下燃用D40K60時(shí),滯燃期延長(zhǎng)2.19~2.53 °CA,燃燒持續(xù)期縮短1.73~1.91 °CA。隨著RP3摻混比的增加,如表1所示,試驗(yàn)燃料的運(yùn)動(dòng)黏度、表面張力以及初餾點(diǎn)均隨RP3體積比例的增加而降低,此時(shí)燃料的蒸發(fā)與霧化特性變好,更容易在氣缸內(nèi)形成可燃混合氣,因此擴(kuò)散燃燒速率加快,燃燒持續(xù)期變短。
3.1.3 預(yù)混與擴(kuò)散燃燒累積放熱百分比
表4為柴油機(jī)在A、B、C工況下分別燃用D100、D80K20、D60K40和D40K60的預(yù)混與擴(kuò)散燃燒累積放熱百分比。本文中用CAPP表示預(yù)混燃燒峰值所對(duì)應(yīng)的曲軸轉(zhuǎn)角,定義預(yù)混燃燒持續(xù)期為CA10與CAPP之間的曲軸轉(zhuǎn)角,擴(kuò)散燃燒持續(xù)期為CAPP與CA90之間的曲軸轉(zhuǎn)角,預(yù)混與擴(kuò)散燃燒階段的累積放熱百分比根據(jù)以下公式進(jìn)行計(jì)算:



式中與分別是預(yù)混與擴(kuò)散燃燒階段的累積放熱百分比,1與2分別是預(yù)混與擴(kuò)散燃燒階段的累積放熱量,J;為整個(gè)燃燒持續(xù)期的總放熱量,J。
從表4可以看出,隨著RP3摻混比的增加,預(yù)混燃燒累積放熱百分比增大,擴(kuò)散燃燒累積放熱百分比減小。與D100相比,柴油機(jī)在A、B、C工況下燃用D40K60時(shí),預(yù)混燃燒累積放熱百分比增大4.66%~5.28%。隨著RP3摻混比的增加,滯燃期變長(zhǎng)且滯燃期內(nèi)形成的可燃混合氣增多,因而預(yù)混燃燒階段的累積放熱百分比增加,擴(kuò)散燃燒階段的累積放熱百分比減小。

表4 RP3摻混比對(duì)預(yù)混和擴(kuò)散燃燒累積放熱百分比的影響
3.1.4 缸內(nèi)最高溫度
柴油-RP3寬餾程混合燃料對(duì)柴油機(jī)缸內(nèi)最高溫度的影響如圖4所示。雖然預(yù)混燃燒累積放熱百分比隨著RP3摻混比的增加而增大,但十六烷值的降低使得整個(gè)燃燒階段更加遠(yuǎn)離上止點(diǎn),因此缸內(nèi)最高溫度變化不大。與D100相比,3種工況下缸內(nèi)最高溫度的上升幅度均小于35 K。

圖4 RP3摻混比對(duì)缸內(nèi)最高溫度的影響
柴油機(jī)在A、B、C工況下分別燃用D100、D80K20、D60K40和D40K60的有效熱效率如圖5所示。可以看出,柴油-RP3寬餾程混合燃料對(duì)柴油機(jī)的有效熱效率有一定的影響,但影響不大,隨著RP3摻混比的增加,有效熱效率略有上升。與D100相比,有效熱效率上升0.15%~0.46%。RP3摻混比的增加使得預(yù)混燃燒累積放熱百分比增加,燃燒定容度提高,因此有效熱效率略有改善。

圖5 RP3摻混比對(duì)有效熱效率的影響
RP3摻混比對(duì)柴油機(jī)soot與NOX排放的影響如圖6所示。可以看出,3種工況下,柴油-RP3寬餾程混合燃料可以顯著降低柴油機(jī)的soot排放,并且降低效果隨著柴油機(jī)負(fù)荷的增加和RP3摻混比的增大而更加顯著,但對(duì)NOX排放沒有明顯影響。工況A下,與D100相比,柴油機(jī)燃用D80K20、D60K40和D40K60時(shí),soot排放由153.7分別降低至132.5、104.9和71.4 mg/m3,降低幅度分別為13.8%、31.8%和53.6%;B、C 工況下,柴油機(jī)燃用D40K60時(shí),soot排放分別由燃用D100的25.4和1.2降低至14.2和0.78 mg/m3,降低幅度為44.1%和35%。此外,A、B、C工況下,柴油機(jī)燃用D80K20、D60K40和D40K60的NOX排放相比D100上升幅度均小于2%。隨著RP3摻混比的增加,柴油-RP3寬餾程混合燃料的蒸發(fā)與霧化效果變好,缸內(nèi)油氣混合效果得到改善,減少了燃料富集高溫區(qū)域,soot排放顯著降低。柴油機(jī)在燃用D100、D80K20、D60K40和D40K60時(shí)的缸內(nèi)最高溫度相差不大,NOX排放變化不大,因此柴油-RP3寬餾程混合燃料能明顯改善柴油機(jī)soot與NOX排放之間的trade-off關(guān)系。

圖6 RP3摻混比對(duì)soot與NOX排放的影響
試驗(yàn)使用的顆粒物粒徑分析儀的粒徑測(cè)量范圍5.6~560 nm。文中定義柴油機(jī)尾氣中粒徑范圍為5.6~50和50~560 nm的顆粒物分別為核態(tài)顆粒物與積聚態(tài)顆粒物[21-22]。
3.4.1 顆粒物數(shù)量濃度與粒徑
RP3摻混比對(duì)柴油機(jī)顆粒物粒徑與數(shù)量濃度的影響如圖7所示。從圖中可以看出,3種工況下,柴油機(jī)的粒徑均呈雙峰形態(tài)分布,第一峰處于10~15 nm之間,屬于核態(tài)顆粒物,第二峰處于80~160 nm之間,屬于積聚態(tài)顆粒物。相同負(fù)荷工況下,隨著RP3摻混比的增加,核態(tài)顆粒物數(shù)量濃度逐漸增加,積聚態(tài)顆粒物數(shù)量濃度逐漸減小,積聚態(tài)顆粒物的粒徑朝小粒徑方向移動(dòng)。

圖7 RP3摻混比對(duì)顆粒物粒徑與數(shù)量濃度的影響
對(duì)圖7中不同粒徑段的顆粒物數(shù)量濃度進(jìn)行求和統(tǒng)計(jì)與計(jì)算,得到RP3摻混比對(duì)柴油機(jī)核態(tài)與積聚態(tài)顆粒物數(shù)量濃度以及顆粒物總數(shù)量濃度的影響,計(jì)算結(jié)果如圖8所示。從中可以看出,在A、B、C工況下,柴油機(jī)燃用D100的顆粒物總數(shù)量濃度最高。相同負(fù)荷工況下,隨著RP3摻混比的增加,核態(tài)顆粒物數(shù)量濃度增加,積聚態(tài)顆粒物數(shù)量濃度與顆粒物總數(shù)量濃度均減小。工況A下,與D100相比,柴油機(jī)燃用D40K60時(shí)的核態(tài)顆粒物數(shù)量濃度由6.05×105增加為11.53×105個(gè)/cm3,增加幅度為90.6%,積聚態(tài)顆粒物數(shù)量濃度和顆粒物總數(shù)量濃度分別由2.112×107和2.173×107減少為1.144×107和1.259×107個(gè)/cm3,降低幅度達(dá)45.8%和42.1%。B、C工況下,當(dāng)RP3摻混比為60%時(shí),核態(tài)顆粒物數(shù)量濃度分別增加12.5%與20.5%,積聚態(tài)顆粒物數(shù)量濃度分別降低57.1%與20.1%,顆粒物總數(shù)量濃度分別降低50.3%與14.2%。
隨著RP3摻混比的增加,混合燃料的運(yùn)動(dòng)黏度與表面張力均減小,噴射進(jìn)入氣缸內(nèi)的燃料的霧化效果更好,改善了可燃混合氣的形成與燃燒,同時(shí)減少了小尺寸顆粒物的碰撞凝并[23],使得顆粒物總數(shù)量濃度與積聚態(tài)顆粒物數(shù)量濃度降低。此外,研究表明,柴油機(jī)積聚態(tài)顆粒物數(shù)量濃度的降低會(huì)減弱對(duì)氣相組分成核的抑制作用,促進(jìn)小尺寸顆粒物的生成[24],因此核態(tài)顆粒物數(shù)量濃度隨RP3摻混比的增加而上升。

圖8 RP3摻混比對(duì)核態(tài)顆粒物與積聚態(tài)顆粒物數(shù)量濃度及顆粒物總數(shù)量濃度的影響
3.4.2 顆粒物表面積濃度與總質(zhì)量濃度
圖9所示為柴油機(jī)在A、B、C工況下分別燃用D100、D80K20、D60K40和D40K60的顆粒物表面積濃度和總質(zhì)量濃度。可以看出,在相同試驗(yàn)工況下,隨著RP3摻混比的增加,顆粒物表面積濃度與總質(zhì)量濃度都逐漸降低。與D100相比,柴油機(jī)在A、B、C工況下燃用D40K60時(shí),顆粒物表面積濃度降低32.5%~41.6%,總質(zhì)量濃度降低28.5%~38.8%,這與圖8中的結(jié)果是一致的。其原因是:與D100相比,柴油-RP3寬餾程混合燃料的C/H比有所降低,且滯燃期變長(zhǎng),預(yù)混燃燒所占比例提高;運(yùn)動(dòng)黏度與表面張力降低,蒸發(fā)與霧化特性更好,缸內(nèi)的燃燒狀況得到改善,這些因素共同導(dǎo)致顆粒物表面積濃度與總質(zhì)量濃度的降低。排氣顆粒物總數(shù)量濃度、總質(zhì)量濃度和表面積濃度的降低以及顆粒物粒徑的減小能夠降低柴油機(jī)DFP載體上的顆粒物堆積,有利于延長(zhǎng)DFP的再生周期。

圖9 RP3摻混比對(duì)顆粒物表面積濃度與總質(zhì)量濃度的影響
按照RP3航空煤油的摻混比分別為20%、40%和60%與國(guó)VI柴油進(jìn)行混合,配制了3種具有不同理化特性的柴油-RP3寬餾程混合燃料(D80K20、D60K40與D40K60),并通過臺(tái)架試驗(yàn)研究了最大扭矩轉(zhuǎn)速2 700 r/min所對(duì)應(yīng)的100%、50%與10%負(fù)荷工況(A、B、C工況)下,D100、D80K20、D60K40和D40K60對(duì)柴油機(jī)缸內(nèi)工作過程、排放、顆粒物濃度與粒徑分布的影響規(guī)律,得到以下主要結(jié)論:
1)A、B、C工況下,與D100相比,RP3摻混比達(dá)60%時(shí),缸內(nèi)最大壓力的變化范圍小于0.2 MPa,預(yù)混燃燒累積放熱百分比增大4.66%~5.28%,滯燃期延長(zhǎng)2.19~2.53 °CA,燃燒持續(xù)期縮短1.73~1.91 °CA,預(yù)混燃燒放熱百分比增加4.66%~5.28%,最高溫度的上升幅度小于35 K,有效熱效率上升0.15%~0.46%。
2)柴油-RP3寬餾程混合燃料在降低柴油機(jī)soot排放方面具有顯著的作用,并且降低效果隨著柴油機(jī)負(fù)荷的增加和RP3摻混比的增大更加明顯,但對(duì)NOX排放沒有明顯的影響。與D100相比,柴油機(jī)在A、B、C 3種工況下燃用D40K60時(shí)的soot排放分別降低53.6%、44.1%、35%,NOX排放的上升幅度均小于2%。
3)A、B、C工況下,隨著RP3摻混比從0增加到60%,柴油機(jī)核態(tài)顆粒物的數(shù)量濃度上升12.5%~90.6%,積聚態(tài)顆粒物數(shù)量濃度、顆粒物總數(shù)量濃度、顆粒物表面積濃度和總質(zhì)量濃度分別降低20.1%~45.8%、14.2%~42.1%、32.5%~41.6%、28.5%~38.8%,并且積聚態(tài)顆粒物的粒徑朝小粒徑方向移動(dòng)。
[1]環(huán)境保護(hù)部,中國(guó)機(jī)動(dòng)車環(huán)境管理年報(bào)[R]. 北京:環(huán)境保護(hù)部,2017.
[2]Konstandopoulos A G, Kostoglou M, Beatrice C, et al. Impact of combination of EGR, SCR and DPF technologies for the low-emission rail diesel engines[J]. Emission Control Science and Technology, 2015, 1(3): 213-225.
[3]孫萬臣,李鵬磊,郭亮,等. 噴油參數(shù)對(duì)丁醇/柴油混合燃料燃燒及排放影響[J]. 內(nèi)燃機(jī)學(xué)報(bào),2017(5):5-12.
Sun Wanchen, Li Penglei, Guo Liang, et al. Effects of injection parameters on combustion and emissions on a butanol/diesel blend engine[J]. Transactions of CSICE, 2017(5): 5-12. (in Chinese with English abstract)
[4]譚丕強(qiáng),王德源,樓狄明,等. 農(nóng)業(yè)機(jī)械污染排放控制技術(shù)的現(xiàn)狀與展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):1-14.
Tan Piqiang, Wang Deyuan, Lou Diming, et al. Progress of control technologies on exhaust emissions for agricultural machinery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 1-14. (in Chinese with English abstract)
[5]Ashok B, Nanthagopal K, Vivek A, et al. Effects of n-octanol as a fuel blend with biodiesel on diesel engine characteristics[J]. Fuel, 2019, 235: 363-373.
[6]韓偉強(qiáng),盧耀,黃澤遠(yuǎn),等. 預(yù)混比和噴油定時(shí)對(duì)異丁醇/柴油RCCI燃燒與排放特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(9):88-96.
Han Weiqiang, Lu Yao, Huang Zeyuan, et al. Effect of premixing ratio and start of injection on RCCI combustion and emission characteristics fueled with iso-butanol/diesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 88-96. (in Chinese with English abstract)
[7]劉軍恒,孫平,劉源,等. PODE摻混比對(duì)高壓共軌柴油機(jī)顆粒物物理特性的影響[J]. 西安交通大學(xué)學(xué)報(bào),2017(12):109-116.
Liu Junheng, Sun Ping, Liu Yuan, et al. Effects of PODE blending ratio on the physical characteristics of particulate matters for high-pressure common-rail diesel engines[J]. Journal of Xi’an Jiaotong University, 2017(12): 109-116. (in Chinese with English abstract)
[8]李瑞娜,王忠,劉帥. 十六烷值改進(jìn)劑對(duì)甲醇/生物柴油柴油機(jī)排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):75-80.
Li Ruina, Wang Zhong, Liu Shuai. Experiment of cetane number improver on emissions of diesel engine fueled with methanol/biodiesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 75-80. (in Chinese with English abstract)
[9]Uyumaz A, Solmaz H, Y?lmaz E,et al. Experimental examination of the effects of military aviation fuel jp-8 and biodiesel fuel blends on the engine performance, exhaust emissions and combustion in a direct injection engine[J]. Fuel Processing Technology, 2014, 128: 158-165.
[10]Jeongwoo Lee, Jungyeon Lee, Sanghyun Chu, et al. Emission reduction potential in a light-duty diesel engine fueled by JP-8[J]. Energy, 2015, 89: 92-99.
[11]Tsanaktsidis C G, Tzilantonis G T, Spinthiropoulos K. Diesel fuel based on mixtures of petroleum and vegetable raw materials[J]. Petroleum Chemistry, 2017, 57(5): 471-475.
[12]Lee J, Bae C. Application of JP-8 in a heavy duty diesel engine[J]. Fuel, 2011, 90(5): 1762-1770.
[13]Hasan Bay?nd?r, Mehmet Zerrakki I??k, Zeki Argunhan, et al. Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel- kerosene-diesel blends[J]. Energy, 2017, 123: 241-251.
[14]楊彬彬,堯命發(fā),鄭尊清,等. 燃料組分和噴油壓力對(duì)寬餾分燃料燃燒與排放影響的試驗(yàn)研究[J]. 工程熱物理學(xué)報(bào),2013,34(6):1174-1178.
Yang Binbin, Yao Mingfa, Zheng Zunqing, et al. Experimental study on the effects of fuel component and injection pressure on combustion and emissions of wide-distillation fuel[J]. Journal of Engineering Thermophysics, 2013, 34(6): 1174-1178. (in Chinese with English abstract)
[15]Ren S, Kokjohn S L, Wang Z , et al. A multi-component wide distillation fuel (covering gasoline, jet fuel and diesel fuel) mechanism for combustion and PAH prediction[J]. Fuel, 2017, 208(1): 447-468.
[16]劉浩業(yè),王志,王建昕. 用PODE_(3-4)煤基燃料改善汽油/柴油寬餾分燃料的燃燒與排放特性[J]. 內(nèi)燃機(jī)工程,2016,37(6):7-14.
Liu Haoye, Wang Zhi, Wang Jianxin. Improving combustion and emission characteristics of gasoline/diesel wide distillation fuel (WDF) by PODE3-4[J]. Chinese Internal Combustion Engine Engineering, 2016, 37(6): 7-14. (in Chinese with English abstract)
[17]Du Jiakun, Sun Wanchen, Guo Liang, et al. Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends[J]. Energy Conversion and Management, 2015, 100: 300-309.
[18]王喬,孫萬臣,郭亮,等. 汽油/柴油混合燃料對(duì)壓燃式發(fā)動(dòng)機(jī)預(yù)混燃燒及排放的影響[J]. 汽車工程,2018,40(11):1267-1274.
Wang Qiao, Sun Wanchen, Guo Liang, et al. The effect of gasoline/diesel blends on the combustion and emission characteristics of a premixed-combustion CI engine[J]. Automotive Engineering, 2018, 40(11): 1267-1274. (in Chinese with English abstract)
[19]Atmanli A, Ileri E, Yuksel B, et al. Extensive analyses of diesel-vegetable oil-n-butanol ternary blends in a diesel engine[J]. Applied Energy, 2015, 145: 155-162.
[20]Leach F, Stone R, Fennell D, et al. Predicting the particulate matter emissions from spray-guided gasoline direct-injection spark ignition engines[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017, 231(6): 717-730.
[21]周小波,胡清華,閆峰,等.重型柴油機(jī)顆粒物分布規(guī)律的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):62-69.
Zhou Xiaobo, Hu Qinghua, Yan Feng, et al. Experimental study on particle distribution of exhaust emission of heavy-duty diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 62-69. (in Chinese with English abstract)
[22]王忠,孫波,趙洋,等.小型非道路柴油機(jī)排氣管內(nèi)顆粒的粒徑分布與氧化特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):41-46.
Wang Zhong, Sun Bo, Zhao Yang, et al. Characteristics of particle coagulation and oxidation in exhaust pipe of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 41-46. (in Chinese with English abstract)
[23]孫智勇,魏明銳,劉近平,等. 乙醇-柴油混合燃料燃燒和顆粒尺寸分布[J]. 內(nèi)燃機(jī)學(xué)報(bào),2017,35(2):33-38.
Sun Zhiyong, Wei Mingrui, Liu Jinping, et al. Combustion and particles size distribution of a diesel engine fueled with ethanol-diesel blends[J]. Transactions of CSICE, 2017, 35(2): 33-38. (in Chinese with English abstract)
[24]Desantes J M, V Bermúdez, JM García, et al. Effects of current engine strategies on the exhaust aerosol particle size distribution from a heavy-duty diesel engine[J]. Journal of Aerosol Science, 2005, 36(10): 1251-1276.
Effects of diesel-aviation kerosene wide distillation blend fuels on combustion process and emission characteristics of diesel engines
Wang Jian, An Meisheng, Yin Bifeng, Wang Bin, Chen Pei
(,,212013,)
Limited by the non-uniform fuel-air mixture in the cylinder, there exists “trade-off” relationship between soot and NOXemissions for diesel engines. Studies showed that fuel properties have important impacts on diesel engine performance. Therefore, it is an effective way to improve the combustion process and reduce emissions of diesel engines by changing and designing fuel properties. In order to investigate the effects of diesel-kerosene wide distillation blended fuels on diesel engines, three kinds of wide distillation blended mixed fuels with different physical and chemical properties of diesel and RP3 were prepared,that were D80K20 (80% diesel and 20% aviation kerosene (RP3) by volume), D60K40 (60% diesel and 40% aviation kerosene (RP3) by volume) and D40K60 (40% diesel and 60% aviation kerosene (RP3) by volume) in this research. The engine bench test was carried out in a single-cylinder diesel engine equipped with electronic unit pump. During the test, engine speed was controlled to be constant at 2700 r/min, engine load ratio was 100%, 50% and 10% of the full loads (respectively represented heavy, medium and light load conditions and marked as working conditions A, B, C). Fuel injection tim and injection duration remained unchanged when the test diesel engine was fueled with different fuels at the same load condition. In-cylinder pressure, exhaust emissions, particulate concentration and particulate size for D100(only diesel), D80K20, D60K40 and D40K60 at working conditions A, B, C were experimentally measured. Combustion parameters such as heat release rate, ignition delay, combustion duration and cumulative heat released percentage of premixed combustion phase were calculated based on the in-cylinder pressure data. As RP3 ratios in the diesel-RP3 blends increased from 0 to 60%, the variation of maximum in-cylinder pressure was less than 0.2 MPa, the maximum heat release rate percentage of premixed combustion increased by 4.66%-5.28%. Besides, the ignition delay was prolonged by 2.19-2.53 °CA due to the decreased of cetane number. The cumulative heat released percentage of premixed combustion phase increased by 4.66%-5.28%. The combustion duration decreased by 1.73-1.91°CA. The increasement of maximum in-cylinder temperature was no more than 35 K. The brake thermal efficiency increased slightly by 0.15%-0.46% due to the higher isovolumetric degree. With regard to exhaust gas emissions, soot emissions for the diesel-RP3 wide distillation blended fuels reduced apparently especially at high load conditions. And the higher RP3 ratios in the diesel-RP3 wide distillation blended fuels, the more evident reduction on soot emissions. At working condition A, compared with D100, soot emissions for D80K20, D60K40 and D40K60 respectively decreased from 153.7to 132.5, 104.9 and 71.4 mg/m3, the reduction range was 13.8%, 31.8% and 53.6% repectively. At working conditions B and C, compared with D100, soot emissions for D40K60 respectively decreased from 25.4 and 1.2to 14.2 and 0.78 mg/m3, the reduction range was 44.1% and 35% respectively. Due to the similar maximum in-cylinder combustion temperature for D100, D80K20, D60K40 and D40K60, there were no obvious impacts on NOXemissions. At working conditions A, B and C, the growth rate of NOXemissions was no more than 2%. In respect of the particulate size, the curve of particulate size distribution shifted to the smaller size as RP3 ratios increased. At working conditions A, B and C, as RP3 ratios increased from 0 to 60%, the nucleation-mode particulate concentration increased by 12.5%-90.6%, the accumulation-mode particulate concentration, total particulate concentration, surface area concentration and total mass concentration respectively decreased by 20.1%-45.8%, 14.2%-42.1%, 32.5%-41.6%, 28.5%-38.8%. The results showed that diesel-RP3 wide distillation blended fuels have advantages on improving “trade-off” relationship between soot and NOXemissions, as well as reducing particulate concentration of diesel engines. Therefore, it is a potential way to increase the production of diesel fuel, reduce the environmental pollution, decrease the number and mass of particulates accumulated on DPF carrier and extend the regeneration life of DPF by using diesel-RP3 wide distillation blended fuels in diesel engines.
diesel engines; combustion; emissions; diesel-aviation kerosene blended fuels; wide distillation; particulate concentration; particulate size
王 建,安美生,尹必峰,王 斌,陳 沛. 柴油-航空煤油寬餾程混合燃料對(duì)柴油機(jī)燃燒與排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):79-86.doi:10.11975/j.issn.1002-6819.2020.02.010 http://www.tcsae.org
Wang Jian, An Meisheng, Yin Bifeng, Wang Bin, Chen Pei. Effects of diesel-aviation kerosene wide distillation blend fuels on combustion process and emission characteristics of diesel engines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 79-86. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.02.010 http://www.tcsae.org
2019-08-11
2019-11-07
江蘇省高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(蘇證辦發(fā)[2015]);江蘇重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE201518)
王建,副教授,主要從事中小功率內(nèi)燃機(jī)工作過程與性能優(yōu)化方面的研究。Email: wangjian@mail.ujs.edu.cn
10.11975/j.issn.1002-6819.2020.02.010
TK421
A
1002-6819(2020)-02-0079-08