周敏姑,邵國敏,張立元,姚小敏,韓文霆
無人機多光譜遙感反演冬小麥SPAD值
周敏姑1,邵國敏2,張立元2,姚小敏2,韓文霆3※
(1. 西北農林科技大學旱區節水農業研究院,楊凌 712100;2. 西北農林科技大學機械與電子工程學院,楊凌 712100;3. 西北農林科技大學水土保持研究所,楊凌 712100)
為研究無人機多光譜遙感5個波段光譜反射率反演冬小麥SPAD(Soil and Plant Analyzer Development)值的可行性,該研究采用六旋翼無人機搭載五波段多光譜相機,采集冬小麥拔節期、孕穗期、抽穗期、開花期的冠層光譜影像并提取反射率特征參數,建立SPAD值的反演模型。結果表明,當波長范圍在藍光、綠光和紅光波段,冬小麥拔節期、孕穗期和開花期的無人機多光譜影像反射率參數與SPAD值呈負相關關系,而在抽穗期,二者呈正相關;當波長范圍為紅邊及近紅外波段,在整個生長期,二者均呈現正相關關系。該研究構建冬小麥SPAD值反演模型采用了主成分回歸、逐步回歸和嶺回歸法,經對比發現基于逐步回歸法構建的模型效果最優,該模型的校正決定系數為0.77,主成分回歸法次之,嶺回歸法較差。此外,冬小麥抽穗期多光譜反射率反演SPAD值效果最顯著,主成分回歸、嶺回歸和逐步回歸3種回歸模型的校正決定系數分別為0.72、0.74和0.77。該研究可為無人機多光譜遙感監測作物長勢、實現精準農業生產管理提供技術依據。
無人機;遙感;冬小麥;多光譜影像;回歸模型;SPAD
葉綠素含量SPAD(Soil and Plant Analyzer Development)值是農作物生長過程中重要的生化參數之一[1],對其含量的監測有助于衡量作物光合能力和生理損傷狀況[2],從而有效評估作物的生長環境及水肥管理情況,快速、準確地獲取農作物SPAD值是智慧農業發展的必要條件。
目前,農作物SPAD值的監測方法主要包括人工測量法和遙感監測法[3]。人工測量法以手持式葉綠素儀應用最多,但測量時和葉片接觸面積僅有0.000 006 m2,必須進行大量反復測定才能降低測定值的變異,因此存在測量面積小,工作量大,數據代表性差等缺點[4],遠不能滿足作物的大面積精準化管理需求,所以利用遙感技術對作物進行大面積、快速、動態的無損監測被廣泛研究,但遙感監測法由于其非接觸的,遠距離的探測特點,在精度方面不及人工測量法,因其能快速、動態、及時地獲取田間數據,被研究人員應用于小麥的SPAD值監測[5]。目前最常用的方法為衛星遙感和地面遙感,王麗愛等[6]利用環境減災衛星(HJ-1)遙感技術分析了2010—2013年江蘇地區稻茬小麥不同生育期葉片SPAD值與8種植被指數的相關關系,建立的回歸方程能夠較好地估算SPAD值;李粉玲等[7]模擬高分一號(GF-1)衛星光譜反射率,研究了冬小麥SPAD值與18種寬波段光譜指數的關系,證明了基于綠色歸一化植被指數、綠色比值植被指數和三角綠度指數等建立的冬小麥SPAD值估算模型效果較優;張銳等[8]利用便攜式地物光譜儀研究了湖南地區油菜的冠層高光譜反射率和SPAD值的關系,建立SPAD值預測模型,得出基于支持向量機的預測模型反演精度最高(決定系數為0.913)的結論;殷紫等[9]基于地面高光譜測量技術在西北地區利用光譜參數紅邊面積與黃邊面積的比值與油菜葉片SPAD值構建了能較好估算油菜SPAD值的反演模型(決定系數為0.79)。孫紅等[5]利用便攜式地物光譜儀研究了北京市昌平區冬小麥的5個生長期冠層光譜反射率和葉綠素含量的變化特征,并對二者的相關性進行了研究,分別建立了拔節期和孕穗期葉綠素含量線性監測模型。上述研究方法中,衛星遙感雖然能夠實現對農作物SPAD值的大面積快速無損監測,但存在成本高、周期長、分辨率較低等缺點[10];而地面光譜儀掃描范圍小,不易操作,且結果易受人為因素和周圍環境影響[11-12]。無人機遙感平臺既克服了地物光譜儀的工作量大、數據代表性差的缺點,又具有成本低、時效性強、分辨率高的優點,彌補了衛星遙感和地面遙感的不足[13-14],目前已有研究將無人機遙感技術應用于作物的生長參數監測,周敏姑等[15]基于無人機多光譜遙感技術構建7種植被指數,對楊凌地區冬小麥拔節后至孕穗前的生長階段葉片的葉綠素含量進行反演,證明調整土壤亮度植被指數構建的一元二次線性回歸模型反演精度最高(決定系數為0.866);魏青等[16]基于無人機多光譜遙感技術對北京市大興區的冬小麥在不同施氮水平下冠層葉綠素含量進行監測,選取拔節期、抽穗期和灌漿期3個生育期的16種植被指數,采用2種回歸分析方法建立了不同施氮水平下冬小麥冠層葉綠素含量估算模型。以上研究均是利用無人機多光譜影像構建常用植被指數或利用便攜式地物光譜儀獲取冬小麥冠層葉片光譜反射數據對冬小麥葉綠素含量進行估算,但利用無人機遙感的多光譜反射率因素對冠層葉片SPAD值的研究還鮮有報道。
綜上,本研究采用無人機遙感技術結合地面監測的方法,選取冬小麥拔節期、孕穗期、抽穗期和開花期4個生長期,運用多光譜影像,研究不同波段反射率因素與冠層葉片SPAD值的關系,嘗試對冠層葉片5個波段反射率與SPAD值之間建立不同的回歸模型,并對模型進行精度評價,得出反演SPAD值的最佳回歸方法和最佳生長期,以期為陜西關中地區冬小麥SPAD的遙感監測提供理論支持,并為農作物的長勢監測、精準管理提供技術依據。
試驗區位于西北農林科技大學旱區節水農業研究院,地處陜西關中平原中部的楊陵區(34°14′N~34°20′N,107°59′E~108°08′E),地勢南低北高,海拔460 m,年降水量635.1~663.9 mm,年均氣溫12.9 ℃,屬暖溫帶季風半濕潤氣候區,種植作物一年兩熟,以冬小麥和夏玉米為主,當年10月中下旬進行冬小麥播種,次年6月初收獲。
試驗區東西向長度25 m,南北向長度162.5 m,行向由南到北,共劃分為65個2.5 m×25 m的長方形小區,每個小區內選擇1個1 m×1 m的樣本區,樣本區分別位于長方形小區中心點或中心點兩端水平方向8 m處,整體呈S形分布。
根據景毅剛等[17]在氣候變暖對陜西冬小麥生育期的影響中,對1986年以來陜西冬小麥生長發育始期觀測資料進行分析認為,陜西冬小麥拔節期出現在3月下旬末,抽穗期出現在4月下旬前期,開花期出現在4月下旬后期,因此本試驗中無人機多光譜影像和地面數據采集時間選擇為2018年4月1日、8日、16日和27日,分別對應冬小麥冠層葉片光譜變化較為明顯的拔節期、孕穗期、抽穗期和開花期,每次進行SPAD值地面數據采集時同步獲取無人機遙感數據。
1.2.1 無人機多光譜遙感圖像獲取
試驗采用團隊研發的六旋翼無人機,搭載五波段多光譜相機(MicaSense RedEdge-M,美國),組成無人機多光譜信息采集系統,無人機和相機信息參數如表1所示。數據采集選擇天氣晴朗無風的日期,采集時間為15:00—16:00,無人機飛行高度60 m,航速5 m/s,航向和旁向重疊度均為80%,地面分辨率為4 cm/pixel。獲取無人機多光譜影像前,首先在飛行區域內布置漫反射板(反射效率58%,尺寸3 m×3 m,GroupVIII,美國),用于多光譜影像像元亮度值(Digital Number,DN)的標定。多光譜相機鏡頭垂直向下,采集5種不同波長范圍內的小麥冠層多光譜影像,5種波段中心波長分別為475(藍光波段)、560(綠光波段)、668(紅光波段)、717(紅邊波段)和840(近紅外波段)nm。

表1 無人機和相機主要參數
1.2.2 冬小麥4個生長期SPAD值測量
無人機影像采集當日,同步在地面利用手持式葉綠素儀(SPAD-502Plus,日本)測量65個樣本的SPAD值。樣本區內選取具有代表性的7株小麥植株,測量每株倒二葉的葉尖、葉中、葉基3個部位SPAD值,求得平均值作為該植株的SPAD值,7株小麥的平均值作為該樣本的SPAD值。
本研究采用Pix4Dmapper軟件對獲取的無人機多光譜影像進行拼接及處理。首先利用對應地面控制點數據對多光譜影像進行校正,生成數字正射影像圖(Digital Orthophoto Map,DOM);然后利用灰板對多光譜影像進行反射率校正,獲取試驗地反射率影像,以.TIF格式存儲;最后采用ENVI 5.1軟件平臺裁剪得到4個生長期的單波段光譜反射率影像,提取本研究區的平均反射率作為樣本在該波段的光譜反射率(圖1)。
分別提取冬小麥4個生長期的無人機多光譜影像光譜反射率數據及與之對應的同步測量地面數據,構成樣本數據集,每個波段均獲得65組數據,隨機選取70% 的樣本數據(45組數據)作為建模集,采用不同的回歸分析方法構建SPAD值反演模型,再利用其余30% 的樣本數據(20組數據)作為驗證集,評價該SPAD值反演模型。構建冬小麥SPAD值反演模型時,若自變量之間存在多重共線性問題[18]會降低模型檢驗可靠性,導致分析結果不穩定[19-20]。因此,本研究采用主成分回歸法(Principle Component Regression,PCR)、逐步回歸法(Stepwise Regression,SR)與嶺回歸法(Ridge Regression,RR)作為建模方法,消除多重共線性問題,并驗證模型的可靠性及穩定性。主成分回歸法將5個波段降維,利用某幾個主要波段的線性組合解決共線性問題[21];逐步回歸法用實測SPAD值與單波段反射率特征參數進行簡單回歸,逐步引入其余波段,剔除不顯著波段,使模型中的波段既顯著又無多重共線性問題[22];嶺回歸法是一種改良的最小二乘估計法,以損失部分信息和降低精度為代價獲得更可靠回歸系數[23]。

圖1 冬小麥4個生長期多光譜反射率影像
本研究選用決定系數(coefficient of determination,2)、均方根誤差(Root Mean Squared Error,RMSE)綜合評價冬小麥SPAD值反演模型精度[24]。在多元回歸分析中,當回歸模型增加一個解釋變量,決定系數2會相應增大,即2是回歸模型解釋變量個數的非減函數,因此使用2來判斷具有相同被解釋變量和不同個數解釋變量的回歸模型優劣時存在不合理性。為了消除解釋變量個數對決定系數2的影響,選擇使用校正決定系數(adjusted coefficient of determination,2adj)對模型擬合效果進行評價。模型的2越接近1,相應的RMSE數值越小,則模型估算能力越好。R、2adj和RMSE的計算方法如式(1)~(3)所示




本研究首先對無人機多光譜影像進行拼接、裁剪等預處理,獲得冬小麥4個生長期的單波段光譜影像,提取反射率特征參數,并分別建立5個波段反射率數據和實測SPAD值之間的相關關系;然后判斷自變量之間的共線性問題,分別基于主成分回歸、逐步回歸和嶺回歸法構建SPAD值反演模型;最后對各個模型進行驗證分析,優選冬小麥SPAD值的最佳反演模型。具體研究方案如圖2所示。

圖2 冬小麥SPAD值反演模型構建流程圖
試驗選取的65個樣本實測SPAD值統計特征見表2,隨著小麥生長期的推移,SPAD平均值整體呈上升趨勢,此結果與王凱龍等[25]在干旱區冬小麥不同生長階段的光譜特征與葉綠素含量估測研究中的結果一致。本研究中得到的SPAD值變異系數介于1%~10%之間,表現為弱變異[26]。

表2 冬小麥4個生長階段SPAD值統計特征
本研究采用OriginLab軟件,建立的冬小麥不同生長期光譜反射率與SPAD值的特征曲線如圖3所示。冬小麥拔節期至開花期,冠層葉片光譜反射率與SPAD值的關系表現出相同的變化規律,藍、紅光波段的光輻射被葉片中的葉綠素吸收進行光合作用而形成2個低反射區,在綠光波段形成較小的反射峰,紅邊波段出現了高反射峰,在近紅外波段均出現最強反射峰。這是由于小麥冠層在可見光區(400~700 nm)的反射率主要取決于葉綠素含量的多少,葉綠素含量多,吸收率高,反射率就低,藍光波段和紅光波段是植物葉綠素的顯著吸收波段,在綠光區吸收較少故形成綠色反射峰,隨著葉綠素含量的增加,紅邊位置反射率也增加,出現一個高反射峰,而近紅外光譜區,光譜反射率一般受葉片內部細胞結構和的影響,葉綠素含量高的葉片,其內部細胞更為復雜,因而反射率高。對近紅外區葉片光譜反射率和葉綠素含量的關系,已有學者進行過研究,武倩雯等[11]在基于近紅外波段玉米葉綠素含量最佳預測模型研究中,為了探究近紅外波段玉米光譜反射率與其葉綠素含量之間的關系,對玉米葉綠素含量與近紅外光譜反射率及植被指數之間的關系進行分析,建立葉綠素含量最佳模型。結果表明,在近紅外波段,光譜反射率與玉米葉綠素含量的相關性較大。近紅外區葉片光譜反射率雖然影響因素較多,但此波段位于綠色植被強反射光譜區,其為葉片健康狀況最靈敏的標志,對植物長勢反映敏感,指示植物光合作用能否正常進行,因此近紅外區與葉片葉綠素含量關系密切。
由圖3可知,冬小麥從拔節期到開花期,冠層光譜反射率在可見光區隨著SPAD值增大,反射率減小,至孕穗期達到最小,抽穗期開始增大,至開花期達到最大。紅邊和近紅外波段,冠層光譜反射率從拔節期到開花期一直呈現上升趨勢。出現該趨勢的原因在于,小麥植株處于生長階段,SPAD值逐漸增大,光合能力不斷增強,葉綠素含量逐漸增加,葉片的綠色加深,對可見光吸收增加,反射率減小,另外拔節期到孕穗期葉片對地面未全覆蓋,裸露的土壤會增強對可見光的吸收,導致無人機多光譜影像反射率降低;小麥抽穗期階段,由于植株冠層變黃,對可見光反射增強,吸收作用減弱,冠層光譜反射率開始增加,開花期達到最大。

圖3 冬小麥4個生長階段葉片光譜反射率隨SPAD值變化特征
本研究首先采用統計分析軟件SPSS 22.0分析5個波段葉片反射率和其SPAD值之間的相關關系(如表3所示)。由表3可知,當多光譜相機波長范圍處于藍光、綠光和紅光波段時,冬小麥拔節期、孕穗期和開花期的無人機多光譜圖像反射率參數與SPAD值呈負相關關系,而在抽穗期,二者呈正相關;當波長范圍為紅邊及近紅外波段,二者在整個生長期均呈現正相關關系。
此外,不同生長期的小麥葉片反射率與SPAD值的相關程度不同。開花期綠光波段小麥葉片反射率與SPAD值相關系數絕對值最高,為0.89,而拔節期近紅外波段小麥葉片反射率與SPAD值相關系數最小,為0.71。通常認為相關系數為0.5~0.8表現為顯著相關,0.8~1.0表現為高度相關[25];單波段小麥葉片反射率與SPAD值的顯著相關性說明了采用5個波段反射率參數建立SPAD值的估算模型的可行性。
在上述相關性分析的基礎上,本研究對建模數據集(45個樣本)波段反射率與SPAD值進行多元線性回歸分析。在回歸分析前,選用容忍度[27]對5個波段反射率之間進行共線性判斷,結果如表4所示。容忍度的取值在(0,1)之間,值越小,則多重共線性越嚴重[28];通常認為容忍度<0.1時,存在嚴重的多重共線性問題[29]。

表3 冬小麥4個生長階段SPAD值與單波段光譜反射率相關性分析
注:** 表示在0.01水平上顯著相關。
Note: ** indicates correlation is significant at 0.01 level。

表4 冬小麥4個生長階段葉片單波段光譜反射率間容忍度統計分析
由表4可知,拔節期波段1、3、4,孕穗期波段4和開花期波段1、4、5的容忍度>0.1,其余均<0.1。這表明5個波段之間存在較嚴重的多重共線性問題,因此本研究分別采用主成分回歸、逐步回歸和嶺回歸法構建SPAD值反演模型,各模型的評價指標如表5所示。

表5 冬小麥4個生長階段光譜反射率與SPAD值回歸分析結果
注:為SPAD預測值;1、2、3、4和5分別為藍光、綠光、紅光、紅邊和近紅外波段的光譜反射率。共65個樣本,建模樣本45個。
Note:is the predicted SPAD values;1,2,3,4,and5is the spectral reflectance of blue, green, red, red-edge and near-infrared band, respectively. There are 65 samples, including 45 modeling samples.
由表5可知,采用3種回歸分析法建立的冬小麥4個生長期的SPAD值反演模型中,表達模型的波段與波段數目均不相同,這說明在冬小麥生長的不同階段,SPAD對波段光譜的敏感性不同,拔節期最敏感波段為近紅外波段,孕穗期為藍光波段,抽穗期近紅外波段,開花期為綠光和紅光波段。
此外,3種回歸分析法建立的冬小麥SPAD值反演模型在小麥不同生長期的計算精度有所差異。其中,拔節期主成分回歸模型的精度檢驗結果最優,而嶺回歸模型的精度略優于逐步回歸模型,由主成分回歸模型得到的葉綠素SPAD估算值與實測值之間的2adj為0.68,RMSE為0.58;孕穗期主成分回歸模型各項檢驗指標精度仍然最優;而抽穗期逐步回歸模型精度最優,其2adj為0.77,RMSE為0.61;開花期3種回歸模型的2adj值較為接近,但逐步回歸模型的RMSE較小,為0.63,表明其精度較高,抽穗期建立的SPAD值回歸模型精度要高于其他生長期。
比較每個生長期篩選出的最優模型可以看出,抽穗期構建的逐步回歸模型的2adj最高、RMSE最小,故冬小麥抽穗期建立的逐步回歸模型精度優于其他模型,可作為冬小麥SPAD值反演的最佳模型(圖4a)。為驗證模型的可靠性,采用驗證數據集(30%的樣本數據,20個樣本)進行驗證,結果如圖4b所示。結果表明,冬小麥SPAD的預測值與實測值擬合效果較好(2= 0.73,RMSE= 0.56,= 20)。因此,冬小麥抽穗期基于逐步回歸法構建的模型能較好地反演SPAD值。

圖4 基于逐步回歸法的冬小麥抽穗期SPAD值反演模型模擬及預測值與實測值的關系
葉綠素相對含量SPAD值是農作物的主要生化參數之一,其含量變化與作物的生存狀況、生長態勢密切相關,快速、準確、動態地監測作物SPAD值,對智慧農業的發展具有重要意義[30]。本研究選取冬小麥拔節期、孕穗期、抽穗期和開花期4個生長期,利用無人機遙感平臺獲取多光譜影像,提取葉片光譜反射率數據構建冬小麥SPAD值的反演模型。結果發現,4個生長期構建的模型中,抽穗期建立的3種回歸模型精度均高于其他生長期,其中逐步回歸法構建的模型精度最高,2adj為 0.77,RMSE為0.61;李粉玲等[7]等基于高分一號衛星影像數據提取18種高光譜植被指數估算冬小麥葉片SPAD值,認為拔節期構建的模型效果最優。兩種研究方法結果不同的原因可能是:采用植被指數研究SPAD值時,常用的植被指數均是通過藍光、綠光、紅光和近紅外波段的光譜反射率經過波段運算獲得的寬帶綠度指數[31],忽略了紅光波段與近紅外區域的紅邊部分,紅邊是由于植被在紅光波段葉綠素強烈的吸收與近紅外波段光在葉片內部的多次散射而形成的強反射造成的[32],植被覆蓋度越高,紅邊植被指數對SPAD值越敏感,當冬小麥進入抽穗期,植株由生殖生長轉向營養生長,葉片、葉稍鮮重達到峰值,覆蓋度屬于整個生長期中最優時期[33],此階段光譜反射率對紅邊波段敏感性較高,因此紅邊位置對研究作物SPAD值非常重要。王凱龍等[25]基于地面光譜分析儀提取15種高光譜植被指數估算冬小麥SPAD值,將紅邊內一階微分最大值處的波長(Red Edge Position,REP)加入研究,結果認為開花期構建的模型效果最優。綜上,對作物SPAD值進行研究時,獲取光譜數據的方法、植被指數的類別、建模方法的選用等因素,導致不同研究方法得到的模型不同。因此,利用遙感技術對農作物生化參數進行監測時,光譜影像中獲取信息參數的精度、植被指數的適用性以及建模方法的選用還需要進一步研究,光譜反射率與SPAD值之間的相關性高,也并不能說明該波長處的反射率就一定對葉綠素含量有指示作用,需要綜合考慮冬小麥的群體特征葉面積指數、葉片內部結果、植被覆蓋度以及土壤背景等因素的影響。
本研究利用無人機多光譜遙感技術結合地面監測數據研究了葉片光譜反射率參數反演冬小麥SPAD(Soil and Plant Analyzer Development)值的可行性,得出以下結論:
1)冬小麥從拔節期到開花期,冠層光譜反射率與SPAD值特征曲線分析結果表明,拔節期冠層光譜反射率在可見光區隨著SPAD值增大,反射率減小,至孕穗期達到最小,抽穗期開始增大,至開花期達到最大。紅邊和近紅外波段,冠層光譜反射率從拔節期到開花期一直呈現上升趨勢。
2)通過對冬小麥SPAD值與不同波段的無人機多光譜影像反射率進行相關性分析得知,在藍光、綠光和紅光波段,光譜反射率和SPAD值在冬小麥拔節期、孕穗期和開花期均呈顯著負相關關系,而在抽穗期呈正相關;在紅邊和近紅外波段,SPAD值與光譜反射率在冬小麥4個生長期均呈現正相關關系;相關系數絕對值最大為0.89,最小為0.71。
3)利用3種回歸法建立了基于5個波段葉片光譜反射率的SPAD值反演模型。經驗證,冬小麥4個生長期中抽穗期建立的模型精度最高,為SPAD值的最佳反演階段,其次是開花期、拔節期和孕穗期;3種回歸方法建立的反演模型中,抽穗期基于逐步回歸法反演效果最優,其決定系數為0.77,均方根誤差為0.61。
4)通過對3種回歸法構建的冬小麥SPAD值反演模型進行分析得知,不同生長階段SPAD值對波段光譜的敏感性不同,拔節期最敏感波段為近紅外波段,孕穗期為藍光波段,抽穗期為近紅外波段,開花期為綠光和紅光波段。
上述結論表明利用無人機平臺獲取多波段光譜反射率,建立冬小麥SPAD值反演模型,具有較好的預測精度,研究結果可為作物SPAD值的遙感反演研究提供進一步參考,以期為精準農業的管理和決策奠定科學基礎和提供技術支持。
[1] Zhang Suming, Zhao Gengxing, Lang Kun, et al. Integrated satellite, Unmanned Aerial Vehicle (UAV) and ground inversion of the SPAD of winter wheat in the reviving stage[J]. Sensors, 2019, 19(7): 1-17.
[2] 梁亮,楊敏華,張連蓬,等. 基于SVR算法的小麥冠層葉綠素含量高光譜反演[J]. 農業工程學報,2012,28(20):162-171. Liang Liang, Yang Minhua, Zhang Lianpeng, et al. Chlorophyll content inversion with hyperspectral technology for wheat canopy based on SVR algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 162-171. (in Chinese with English abstract)
[3] 岳學軍,全東平,洪添勝,等. 柑橘葉片葉綠素含量高光譜無損檢測模型[J]. 農業工程學報,2015,31(1):294-302. Yue Xuejun, Quan Dongping, Hong Tiansheng, et al. Non-destructive hyperspectral measurement model of chlorophyll content for citrus leaves[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 294-302. (in Chinese with English abstract)
[4] 馬明洋,許童羽,周云成,等. 東北粳稻葉綠素相對含量的無人機高清影像檢測方法[J]. 沈陽農業大學學報,2017,48(6):757-762. Ma Mingyang, Xu Tongyu, Zhou Yuncheng, et al. UAV HD image detection method for SPAD in northeast japonica rice[J]. Journal of Shenyang Agricultural University, 2017, 48(6): 757-762. (in Chinese with English abstract)
[5] 孫紅,李民贊,趙勇,等. 冬小麥生長期光譜變化特征與葉綠素含量監測研究[J]. 光譜學與光譜分析,2010,30(1):192-196. Sun Hong, Li Minzan, Zhao Yong, et al. The spectral characteristics and chlorophyll content at winter wheat growth stages[J]. Spectroscopy and Spectral Analysis, 2010, 30(1): 192-196. (in Chinese with English abstract)
[6] 王麗愛,馬昌,周旭東,等. 基于隨機森林回歸算法的小麥葉片SPAD值遙感估算[J]. 農業機械學報,2015,46 (1):259-265. Wang Liai, Ma Chang, Zhou Xudong, et al. Estimation of wheat leaf SPAD value using RF algorithmic model and remote sensing data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 259-265. (in Chinese with English abstract)
[7] 李粉玲,王力,劉京,等. 基于高分一號衛星數據的冬小麥葉片SPAD值遙感估算[J]. 農業機械學報,2015,46(9):273-281. Li Fenling, Wang Li, Liu Jing, et al. Remote sensing estimation of SPAD value for wheat leaf based on GF-1date[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 273-281. (in Chinese with English abstract)
[8] 張銳,廖桂平,王訪,等. 基于冠層高光譜的油菜角果期紅邊參數及葉片SPAD值反演模型[J]. 江蘇農業科學,2019,47(20):255-259. Zhang Rui, Liao Guiping, Wang Fang, et al. Red edge parameters and SPAD inversion model of rapeseed based on canopy hyperspectral data[J]. Jiangsu Agricultural Sciences, 2019, 47(20): 255-259. (in Chinese with English abstract)
[9] 殷紫,常慶瑞,劉淼,等. 基于光譜指數的不同生育期油菜葉片SPAD估測[J]. 西北農林科技大學學報:自然科學版,2017,45(5):66-72. Yin Zi, Chang Qinrui, Liu Miao, et al. Estimation of rape leaf SPAD in different periods based on spectral indices[J]. Journal of Northwest A&F University: Natural Science Edition, 2017, 45(5): 66-72. (in Chinese with English abstract)
[10] 陳鵬,馮海寬,李長春,等. 無人機影像光譜和紋理融合信息估算馬鈴薯葉片葉綠素含量[J]. 農業工程學報,2019,35(11):63-74. Cheng Peng, Feng Haikuan, Li Changchun, et al. Estimation of chlorophyll content in potato using fusion of texture and spectral features derived from UAV multispectral image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 63-74. (in Chinese with English abstract)
[11] 武倩雯,熊黑鋼,王莉鋒,等. 基于近紅外波段玉米葉綠素含量最佳預測模型研究[J]. 中國農學通報,2015,31(15):260-264. Wu Qianwen, Xiong Heigang, Wang Fengli, et al. Optimum predection model of maize leaf chlorophyll content based on near-infrared band[J]. Chinese Agricultural Science Bulletin, 2015, 31(15): 260-264. (in Chinese with English abstract)
[12] 周雪,王芳,趙庚星. 基于小麥冠層近地多光譜圖像的葉綠素(SPAD值)估測方法[J]. 山東農業科學,2016,48(6):138-141. Zhou Xue, Wang Fang, Zhao Gengxing. Estimation method of chlorophyll content (SPAD value) based on near ground multispectral images of wheat canopy[J]. Shandong Agricultural Sciences, 2016, 48(6): 138-141. (in Chinese with English abstract)
[13] 秦占飛,常慶瑞,謝寶妮,等. 基于無人機高光譜影像的引黃灌區水稻葉片全氮含量估測[J]. 農業工程學報,2016,32(23):77-85. Qin Zhanfei, Chang Qingrui, Xie Baoni, et al. Rice leaf nitrogen content estimation based on hyperspectral imagery of UAV in Yellow River diversion irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 77-85. (in Chinese with English abstract)
[14] 裴浩杰,馮海寬,李長春,等. 基于綜合指標的冬小麥長勢無人機遙感[J]. 農業工程學報,2017,33(20):74-82. Pei Haojie, Feng Haikuan, Li Changchun, et al. Remote sensing monitoring of winter wheat growth with UAV based on comprehensive index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 74-82. (in Chinese with English abstract)
[15] 周敏姑,邵國敏,張立元,等. 基于無人機遙感的冬小麥葉綠素含量多光譜反演[J]. 節水灌溉,2019(9):40-45. Zhou Mingu, Shao Guomin, Zhang Liyuan, et al. Multi-spectral inversion of SPAD value of winter wheat based on unmanned aerial vehicle remote sensing[J]. Water Saving Irrigation, 2019(9): 40-45. (in Chinese with English abstract)
[16] 魏青,張寶忠,魏征,等. 基于無人機多光譜遙感的冬小麥葉綠素含量估測研究[J]. 麥類作物學報,2020,40(3):365-372. Wei Qing, Zhang Baozhong, Wei Zheng, et al. Estimation of canopy chlorophyll content in winter wheat by UAV multispectral remote sensing[J]. Journal of Triticeae Crops, 2020, 40(3): 365-372. (in Chinese with English abstract)
[17] 景毅剛,范建忠,高茂盛. 氣候變暖對陜西冬小麥生育期的影響[J]. 麥類作物學報,2013,33(2):389-396. Jing Yigang, Fan Jianzhong, Gao Maosheng. Influences of the climate warming on developmental stages of winter wheat in Shaanxi[J]. Journal of Triticeae Crops, 2013, 33(2): 389-396. (in Chinese with English abstract)
[18] Ullah M I, Aslam M, Altaf S, et al. Some new diagnostics of multicollinearity in linear regression model[J]. Sains Malaysiana, 2019, 48(9): 2051-2060.
[19] 田明璐,班松濤,常慶瑞,等. 基于無人機成像光譜儀數據的棉花葉綠素含量反演[J]. 農業機械學報2016,47(11):285-293. Tian Minglu, Ban Songtao, Chang Qingrui, et al. Estimation of SPAD value of cotton leaf using hyperspectral images from UAV-based imaging spectroradiometer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 285-293. (in Chinese with English abstract)
[20] 潘蓓,趙庚星,朱西存,等. 利用高光譜植被指數估測蘋果樹冠層葉綠素含量[J]. 光譜學與光譜分析,2013,33(8):2203-2206. Pan Bei, Zhao Gengxing, Zhu Xicun, et al. Estimation of chlorophyll content in apple tree canopy based on hyperspectral parameters[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2203-2206. (in Chinese with English abstract)
[21] 盧二坡,張煥明. 基于穩健主成分回歸的統計數據可靠性評估方法[J]. 統計研究,2011,28(8):21-27. Lu Erpo, Zhang Huanming. An evaluation method of reliability of published statistics data based on robust principal component regression method[J]. Statistical Research, 2011, 28(8): 21-27. (in Chinese with English abstract)
[22] 游士兵,嚴研. 逐步回歸分析法及其應用[J]. 統計與決策,2017,7(14):31-35. You Shibing, Yan Yan. Stepwise regression analysis and its application[J]. Statistics & Decision, 2017, 7(14): 31-35. (in Chinese with English abstract)
[23] 開璇,張莉莉. 主成分回歸和嶺回歸在新疆農業經濟的應用[J]. 遼寧農業職業技術學院學報,2017,19(1):57-61. Kai Xuan, Zhang Lili. Application of Xinjiang agricultural economy based on ridge regression and principal component regression[J]. Journal of Liaoning Agricultural Technical College, 2017, 19(1): 57-61. (in Chinese with English abstract)
[24] Ma Xiaodan, Feng Jiarui, Guan Haiou, et al. Prediction of chlorophyll content in different light areas of apple tree canopies based on the color characteristics of 3D reconstruction[J]. Remote Sensing, 2018, 10(3): 1-16.
[25] 王凱龍,熊黑鋼,張芳. 干旱區冬小麥不同生長階段的光譜特征與葉綠素含量估測研究[J]. 干旱區資源與環境,2013,27(11):45-49. Wang Kailong, Xiong Heigang, Zhang Fang. The spectral characteristics and the best model for chlorophyll content at winter wheat growth stages in arid land[J]. Journal of Arid Land Resources and Environment, 2013, 27(11): 45-49. (in Chinese with English abstract)
[26] 王海峰,張智韜,Amon K,等. 基于灰度關聯-嶺回歸的荒漠土壤有機質含量高光譜估算[J]. 農業工程學報,2018,34(14):124-131. Wang Haifeng, Zhang Zhitao, Amon K, et al. Hyperspectral estimation of desert soil organic matter content based on gray correlation-ridge regression model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 124-131. (in Chinese with English abstract)
[27] 毛博慧,孫民贊,孫紅,等. 冬小麥苗期葉綠素含量檢測光譜學參數尋優[J]. 農業工程學報,2017,33(2):164-169. Mao Bohui, Sun Minzan, Sun Hong, et al. Optimization of spectroscopy parameters and prediction of chlorophyll content at seeding stage of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 164-169. (in Chinese with English abstract)
[28] Gamze G, Hatice S. Examination of dimension reduction performances of PLSR and PCR techniques in data with multicollinearity[J]. Iranian Journal of Science & Technology, 2019, 43(3): 969-978.
[29] 張智韜,王海峰,韓文霆,等. 基于無人機多光譜遙感的土壤含水率反演研究[J]. 農業機械學報,2018,49(2):173-181. Zhang Zhitao, Wang Haifeng, Han Wenting, et al. Inversion of soil moisture content based on multispectral remote sensing of UAV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 173-181. (in Chinese with English abstract)
[30] Ahmed A D, Abdulah E K, Ismael B. et al. Solving multicollinearity problem of gross domestic product using ridge regression method[J]. Periodicals of Engineering and Natural Sciences, 2020, 2(8): 668-672.
[31] 郭燕,程永政,黎世民,等. 區域尺度冬小麥葉綠素含量的高光譜預測和空間變異研究[J]. 麥類作物學報,2017,37(7):970-977. Guo Yan, Cheng Yongzheng, Li Shimin, et al. Hyperspectral-based estimation and spatial variability of chlorophyll content of winter wheat in regional scale[J]. Journal of Triticeae Crops, 2017, 37(7): 970-977. (in Chinese with English abstract)
[32] 羅丹,常慶瑞,齊雁冰,等. 基于光譜指數的冬小麥冠層葉綠素含量估算模型研究[J]. 麥類作物學報,2016,36(9):1225-1233. Luo Dan, Chang Qingui, Qi Yanbing, et al. Estimation model chlorophyll content in winter wheat canopy based on spectral indices[J]. Journal of Triticeae Crops, 2016, 36(9): 1225-1233. (in Chinese with English abstract)
[33] 鞠昌華,田永超,朱艷,等. 小麥疊加葉片的葉綠素含量光譜反演研究[J]. 麥類作物學報,2008,28(6):1068-1074. Ju Changhua, Tian Yongchao, Zhu Yan, et al. Spectral inverse study of stacked leaf chlorophyll concentration in wheat[J]. Journal of Triticeae Crops, 2008, 28(6): 1068-1074. (in Chinese with English abstract)
Inversion of SPAD value of winter wheat by multispectral remote sensing of unmanned aerial vehicles
Zhou Mingu1, Shao Guomin2, Zhang Liyuan2, Yao Xiaomin2, Han Wenting3※
(1.,,712100,; 2.,,712100,; 3.,,712100,)
Remote sensing technology has been widely used to monitor the changes in SPAD, which is an important parameter. In this study, the multispectral images were acquired by a six-rotor unmanned aerial vehicle, and the SPAD of winter wheat was measured to carry out the estimation research. The four growth stages with the most obvious changes in SPAD were selected, namely the jointing stage, booting stage, heading stage, and flowering stage. The camera with five bands (475, 560, 668, 717, and 840 nm) was used to collect multispectral canopy leaves at the four stages. A total of four data collections were performed to extract spectral reflectance data and the SPAD was measured from 1stApril to 27thApril 2018. A total of 65 samples were selected and recorded with GPS. The test area was divided into 65 sample zones with each one measuring 2.5 m×25 m, of which one sample area of 1 m × 1 m was selected. All the zones were in a rectangle, so they could be evenly distributed 8 m from the center of the cell in the horizontal direction. The overall samples were S-shaped distribution. The samples in the middle were located at the center of the rectangular cell. The SPAD of 65 samples were measured by SPAD-502 chlorophyll meter at the same time when the UAV data was collected. In the sample area, seven leaves of different canopy parts were selected to measure the tip, middle, and base. The average of the three parts was used as the SPAD values of the leaf. Finally, the average value of the leaf blades was taken as the final SPAD value of the sample. The canopy reflectance data was extracted from multispectral images. And then the correlation coefficients of SPAD values and spectral reflectance data in four growth stages were analyzed. Herein, the reflectivity of single-band and SPAD directly had serious collinearity problems so principal component regression, stepwise regression, and ridge regression these three methods were chosen to solve it. After that, the SPAD inversion models were established separately by using the reflectance data and the SPAD values as the data source. The best inversion model and stage were selected by comparison. The results showed that a high correlation was obtained between the SPAD and canopy spectral reflectance. In the visible light band, the negative correlation was observed between canopy spectral reflectance and SPAD at the jointing stage, booting stage, and flowering stage. On the contrary, it was a positive correlation at the heading stage and a positive correlation at the red-edge and near-infrared bands at all four stages. Compared with the main bands in the model expression, the frequency of passing the screening in different growth stages was different. The highest passing frequency was the near-infrared band in the jointing stage. The blue band was selected at the booting stage, the near-infrared band at the heading stage, and the green and red bands at the flowering stage. This study compared the prediction accuracy of the models established by three regression methods. The results showed that the models of stepwise regression established at the heading stage had the highest inversion accuracy with the adjusted coefficient of determination was 0.77, and the root mean square error was 0.61. The validation showed the coefficient of determination was 0.73, and the root mean square error was 0.56. It indicated that the model could be used to estimate the crop coefficient. Compared with the four periods, the heading stage was the best inversion stage of SPAD value. The study results proved the feasibility of inversion of the winter wheat SPAD value by unmanned aerial vehicle multispectral remote sensing, and at the same time, it could provide a reference for the rapid monitoring of the SPAD value of other crops.
unmanned aerial vehicle; remote sensing; winter wheat; multispectral image; regression model; SPAD
周敏姑,邵國敏,張立元,等. 無人機多光譜遙感反演冬小麥SPAD值[J]. 農業工程學報,2020,36(20):125-133.doi:10.11975/j.issn.1002-6819.2020.20.015 http://www.tcsae.org
Zhou Mingu, Shao Guomin, Zhang Liyuan, et al. Inversion of SPAD value of winter wheat by multispectral remote sensing of unmanned aerial vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 125-133. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.015 http://www.tcsae.org
2020-03-04
2020-05-25
“十三五”國家重點研發計劃項目(2017YFC0403203);楊凌示范區產學研用協同創新重大項目(2018CXY-23)
周敏姑,實驗師,主要從事農業智能檢測、材料分析與檢測研究。Email:zmingu@163.com
韓文霆,博士,研究員,主要從事無人機遙感與精準灌溉技術研究。Email:hanwt2000@126.com
10.11975/j.issn.1002-6819.2020.20.015
S252
A
1002-6819(2020)-20-0125-09